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Dielectric permittivity of sodium di(2-ethylhexyl)sulfosuccinate —HzO —iso-octane microemulsions
in terms of their microscopic structure
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The clustering process in sodium di(2-ethylhexyl)sulfosuccinate —H20 —iso-octane microemulsions
has been studied by dielectric relaxation spectroscopy and small-angle x-ray scattering (SAXS). The
SAXS experiments are interpreted using the pair-correlation function for the microemulsion drop-
lets obtained from the multicomponent sticky hard-sphere-droplet model. The results indicate the
presence of a strong interaction between the droplets and the solvent medium. The structural pa-
rameters extracted from this analysis are used to calculate the correction term to the Clausius-
Mossotti equation for the polarizability of the microemulsion system. Good agreement is found be-
tween the observed and calculated polarizabilities.

I. INTRODUCTION

The sodium di(2-ethylhexyl) sulfosuccinate (AOT) mol-
ecule is a double-chained ionic surfactant capable of
dispersing large amounts of water and oil, two otherwise
immiscible liquids. As a result of their amphilic structure
the molecules reside at the oil-water interface with the
hydrocarbon chains directed toward the oil phase and the
ionic head groups solvated in the water, thereby causing
a marked reduction in the interfacial tension. '

A large region of the AOT-H20 —iso-octane phase dia-

gram consists of the so-called microemulsion phase,
which is fluid, transparent, isotropic, and thermodynami-
cally stable at room temperature. In this water-in-oil mi-

croemulsion the water is dispersed in the oil medium as
small spherical (nanometer-sized) droplets surrounded by
a monomolecular layer of surfactant molecules. ' The
curvature of the interface toward the water is believed to
be dictated by the cone-shaped geometry of the AOT
molecules. This is widely regarded as the driving force
for the formation of a water-in-oil microemulsion phase
in this sytem. The droplet size is determined by the mo-
lar water-surfactant ratio, Wo, while the concentration of
the droplets is determined by the molar ratio of oil to sur-
factant, So.' ' '

Interestingly, a percolationlike transition in the dielec-
tric behavior has been observed within the micro-
emulsion phase region of the AOT —H20 —iso-octane sys-

tern. ' This percolation transition can be induced by
raising the concentration of the dispersed water and is
characterized by an ircrease in the conductivity of the
microemulsion by at least five orders of magnitude.
Simultaneously, the low-frequency permittivity e„„ofthe

system diverges and can exceed values of 100.'

Furthermore, this percolation transition can also be in-
duced by increasing the temperature at constant mi-
croemulsion composition.

Our laboratory has previously reported an extensive
study of the dielectric properties of the AOT-H20 —iso-
octane system' ' and proposed a "macrofluid" model
for describing the observed polarizabilities. In this model
the microemulsion is taken to consist of interacting drop-
lets and the deviations of the observations from a classi-
cal Clausius-Mossotti behavior have been rationalized in
terms of the formation of droplet clusters. The diver-
gence of the permittivity is attributed to excess dipole-
polarization associated with the contact regions between
the droplets. ' ' The modification to the Clausius-
Mossotti relation explicitly contains the pair-correlation
function g(r). This function, well known from liquid-
state thermodynamics, describes droplet-droplet correla-
tions. ' Unfortunately g (r) cannot be extracted from
dielectric relaxation experiments as these only yield infor-
mation about macroscopic properties.

Nevertheless, the pair-correlation function g (r) can be
determined in experiments utilizing scattering of elec-
tromagnetic radiation. It is well known that small-angle
x-ray scattering (SAXS) experiments can be used to ac-
cess the Fourier transform of g (r), the structure factor
S(q), in colloid-particle systems with particle size be-
tween 1 and 100 nm. ' The structural information ob-
tained from SAXS experiments can now be combined
with the model describing the dipole polarizability of the
microemulsion clusters in order to calculate the
modifications to the Clausius-Mossotti relation. In this
way the dielectric permittivity of the microemulsion can
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be predicted as a function of temperature and composi-
tion. To our knowledge such a quantitative comparison
between the microscopic structure and macroscopic be-
havior of these systems has not been attempted as yet.

This approach is impeded by the fact that the pair-
correlation function g (r) cannot be obtained in a
straightforward manner from the SAXS intensity curves
as a consequence of the inherent structural polydispersity
of the microemulsion systems. ' "' ' ' Nevertheless,
we have recently shown how to express the pair-
correlation function for a system of interacting particles
with size dispersity within the Percus-Yevick formalism.

This multicomponent model for sticky hard spheres
is used in this paper for the analysis of SAXS intensity
curves obtained from AOT —HzO —iso-octane microemul-
sions at various concentrations and temperatures.

This paper is organized as follows. In Sec. II we outline
the model used for describing the dielectric properties of
the microemulsion in terms of polarizability of the medi-
um. In Sec. III we consider the consequences of the po-
lydispersity in droplet size, and show that a moderate vari-
ation in the droplet size does not have any effect on the
permittivity of the medium. In Secs. IV and V we present
a detailed analysis of SAXS experiments on two mi-

croemulsion systems, with different average droplet sizes
8'p=25 and 35. In Sec. VI we compare the polarizabili-
ties calculated from the structural parameters obtained
from the analysis of the SAXS experiments and those mea-
sured in dielectric experiments.

II. PERMITTIVITY IN TERMS OF POLARIZABILITY

E Epa—: =a P (2)

where P is the volume fraction occupied by the particles
and e is the measured permittivity. The CM relation can
be extended to the case of higher volume fraction by con-
sidering the contributions to the dipole polarizability
arising from all the possible pairs of spheres present in
the mixture. It has been previously shown that this
correction term can be incorporated in the CM relation
in a general operational way as'

a=a P [1+Iz(Q,T)$ ] . (3)

The correction term Iz($, T) describes the fact that at
larger volume fractions, when clusters of particles are
formed, the polarizability per unit volume increases
significantly above the value of a single sphere. The in-
crease in the dipole polarizability due to two-sphere in-
teractions is of the form' '

The dipole polarizability o, of a homogeneous sphere
of permittivity e suspended in a medium permittivity ep

is given by

E E'p

n =
E'p +26p

For a suSciently dilute dispersion of spheres the
Clausius-Mossotii (CM) relation is valid, giving the
effective polarizability of the medium as

Iz(P, T)= J dr r g(r)b(r)
P

(4)

with az(r) the polarizability of a pair of spheres separated

by distance r and averaged over all orientations.
Bedeaux, Wind, and van Dijk have shown furthermore
that the excess polarizability h(r) of two conducting
spheres, of diameter D, is sharply peaked at the point of
contact, r =D, and decays rapidly to zero for larger r.
We note here that Eq. (4) is exact only in the case where-

by the multiplet excess polarizabilities are negligible.
Equation (3) has been shown to be remarkably success-

ful in describing the dielectric permit tivity of
AOT- HzO —iso-octane microemulsions. ' These mi-

croemulsions may be considered as a macrofluid of small
droplet suspended in a continuous oil phase. Each drop-
let consists of a water core surrounded by a monomolecu-
lar layer of AOT molecules. It was found that a at a
constant water-surfactant ratio is independent of temper-
ature and volume fraction. Surprisingly however the
correction Iz(P, T) at a given water-surfactant ratio was
found to be independent of the volume fraction P~ but ex-
hibited an Arrhenius temperature dependence. ' As a
and b, (r) only depend on the dielectric structure of the
microemulsion particle, it was concluded that the mi-
croemulsion droplets do not change shape or size on
varying the temperature or microemulsion composition.

The finding that Iz(P, T) is independent of the volume
fraction is remarkable, particularly in view of the fact
that it is a function of the pair correlation function g (r),
Eq. (4). As in general g(r) depends on the particle con-
centration, we intuitively expect to observe a volume-
fraction dependence for I~.

In this section we shall consider the possible origin of
this behavior and outline a method for obtaining a
theoretical expression for Iz(gz, T) based on a realistic
microscopic model of the microemulsion structure. To
this end we shall need expressions for the pair-correlation
function g(r) and the excess dipole polarizability func-
tion h(r), appearing in Eq. (4).

A. Model for h, (r)

The model for the dielectric permittivity behavior of
microemulsion systems presented by Bedeaux, Wind, and
van Dijk and van Dijk and co-workers' ' in terms of
a dispersion of conducting spheres in a nonconducting
medium is highly idealized. A more realistic model must
incorporate the effects of the surfactant molecules ad-
sorbed in the water-oil interface. We shall therefore con-
sider here each microemulsion droplet to consist of a con-
ducting sphere, representing the water core with the sur-
factant counter ions, surrounded by a nonconducting lay-
er with a permittivity equal to that of the medium. This
nonconducting layer represents the apolar part of the sur-

where g(r) is the usual pair correlation function, V the
volume of a sphere, and A(r) the excess polarizability of a
pair of spheres. This is in turn given by

az(r) —a
b, (r) =
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factant solvated in the continuous oil phase. The length
of the nonconducting layer will only be equal to that of a
surfactant molecule, provided the oil-phase molecules are
rigorously excluded from it. However as we cannot rule
out a partial penetration of the oil, we expect the length

I

of the nonconducting layer to be somewhat larger than
that of a single surfactant molecule.

In the absence of a closed expression for b, (r), for this
model, we approximated the expression given by
Bedeaux, Wind, and van Dijk by the function

1+ (r D„—)
1 1

b(r)=
0, r&D

2

+—1+1 16
(r —D„)2

2 CO

(6)

B. Model for g ( r )

We shall now obtain the pair correlation function g (r)
by considering the micr oemulsion system to be a
macrofluid' """and treat the microemulsion droplets
as identical particles dispersed in vacuum. We shall take
the interaction potential between two droplets to consist
of a hard repulsive core with an additional contribution
from an attractive short-range term. This latter contri-
bution is the simplest interaction term necessary for
describing the clustering phenomena observed in the mi-
croemulsion systems. This sticky hard-sphere potential
(SHS) introduced by Baxter is defined by

~'

r &D'

(D D')—
4(r) = ln 12m

D
(7)

This function enables us to reproduce the two principle
features of the conducting-sphere model for the mi-
croemulsions droplets, namely the sharp peak at r =D„
and the long decaying tail. Here D„ is the diameter of
the conducting sphere and the decay constant co charac-
terizes the range of the excess polarizability function
b, (r). We have found that a good approximation of the
excess polarizability given by Bedeaux and van Dijk ' is
obtained on taking D„/co equal to 15. The dependence
of the excess polarizability function Eq. (6) on D„ /co is
shown in Fig. 1.

in the limit D ~D with D the diameter of the particles
and ~ the stickiness parameter determining the measure
of attraction. The hard-sphere potential is recovered
from Eq. (7) in the limit r~ ee and the contribution of
the surface attraction increases on decreasing the value of

We note here that the range D —D' of the attractive
term in the SHS potential Eq. (7) is zero for a given value
of ~. The solution of the Ornstein-Zernike integral equa-
tion for the SHS potential was given by Baxter within
the Percus-Yevick (PY) approximation. Interestingly, it
has been shown recently that this solution yields a good
approximation for the behavior of fluid systems of mole-
cules interacting through an attractive square-well poten-
tial. ' In particular, if the range of attraction does not
exceed 10% of the molecular diameter the systems are
well modeled by the SHS potential, Eq. (7).

The solutions of the PY formalism for the hard-sphere
and sticky hard-sphere potentials are not entirely analytic
and do not yield closed expressions for g (r). Consequent-
ly, efficient numerical algorithms have been developed for
the evaluation of the pair correlation function with great
precision. ' ' Our method for the evaluation of g(r) for
the SHS potential is summarized in the Appendix and
closely follows the approach proposed by Perram and
Barker and Henderson in obtaining g(r) for the case
of the hard-sphere fluid. However, some care has to be
taken in our SHS case as the correlation functions and
their derivatives have discontinuities at r =D, 2D, 3D,
etc. The solution for g (r) is found to be:

0, D&r

0.4—

xg (x)=
5(x —1 ), 0&x &1

12

a&e""+e""[azcos(gx )+a3sin(gx )], 1 &x &2

O. Z—
I

50

0.0-
o.s 1. 1 1.3 1.5 1.7

r)D

FIG. l. Model excess polarizability function h(r) [Eq. (6)]
for three values of D „/co: 5, 15, and 50.

where a&, a2, a3, k, p, r), and g (see Appendix) are func-
tions of P and r, x is the reduced distance r/D, and 1

denotes the left-hand limit. The solution for g (x) in the
intervals 2 & x & 3, 3 & x & 4, etc. , can be simply obtained
by the successive application of the propagator equation,
Eq. (A7) of the Appendix. We note here that as g(x) and
its derivatives are well behaved (piecewise continuous) for
x & 2, the efficient algorithm proposed by Glandt and
Kofke can be used in the numerical computations. Now,
successive applications of the trapezoidal rule yield the nu-
merical values of g (x) to any required accuracy.

However, here we shall only be concerned with the ex-
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pression for g (x) in the range 0(x &2, as the excess po-
larizability h(r) does not differ significantly from zero for
x )2.

C. I2(p, T ) for the SHS model

In order to gain insight into both the effect of the sur-
face adhesion term of the interaction potential on the
dielectric polarizability as well as its volume-fraction
dependence, we shall consider the case where the excess
polarizability of a pair of conducting spheres is represent-
ed by a 5 function at x =1. For this case the correction
term of the polarizability I2, Eq. (4), is given by

I2(P, T) = I dr r g (r)D5(r D)—
V 0

—[g(D )+g(D )]=—'l(l+r),4~D 1

V 2 2
(9)

6.0-
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FIG. 2. Volume-fraction dependence of I, for the sticky
hard-sphere system at five values of the stickiness parameter ~.
~~ ~ corresponds to hard spheres with no attraction.

It is important to note now that A, is a function of both (()

and r (see Appendix). Consequently we also expect Iz to
exhibit a dependence on the volume fraction P. Equation
(9) shows that Iz is defined by both the right- and left-
hand limit of g(r) at r =D. The value of the left-hand
limit g(D ) is directly proportional to the number of
bound spheres (particles) in the system. However, the
right-hand limit g (D+ ) represents the contribution to I2
from those spheres that are close, yet not in contact with
each other. It is clear that the contribution from g (D )

to I2 becomes dominant on increasing the stickiness of
the particles, while the term g (D+ ) becomes important
on decreasing the stickiness. For a repulsive hard-core
potential this term is a slowly increasing function of the
volume fraction.

Figure 2 shows the dependence of I2 on the volume
fraction of the spheres P for different values of the sticki-
ness (surface adhesion) parameter r. I2 can be seen to de-
crease with decreasing stickiness (increasing ~) at every
volume fraction P. The volume-fraction dependence of
I2 is rather difficult to understand physically. It appears
to be determined by the relative contributions of g (D )

and g (D+ ) at a given value of the stickiness parameter.
The results shown in Fig. 2 can now be used to ration-

alize the experimental observation that I2 is independent
of the voluine fraction P. This behavior implies [Eq. (9)],

that the stickiness must vary with the volume fraction so
as to cancel the P dependence in A, . As in the SHS model
I2 is found to decrease with decreasing stickiness, we
conclude that the stickiness must decrease with increas-
ing volume fraction in order to make I2 independent of
the volume fraction. We shall see that this is an impor-
tant prediction.

We shall now consider qualitatively the effect of the
finite range of the excess dipole polarizability a2(r) on I2.
In addition we shall also take into account a difference
between the hard-sphere diameter DHs of a particle and
the diameter of the water core D „such that DHs & D „.
This difference may be viewed as the contribution of the
nonconducting surfactant layer to the size of a mi-
croemulsion droplet. It is clear that a larger range of
az(r), corresponding to a larger value of co in Eq. (6), will
result in an increase in the value of I2 at a Axed volume
fraction and stickiness. This increase arises from the fact
that particles that are close to each other, but not in
direct contact, contribute to I2. On the other hand, an
increase in D„s at a constant value of D„will have the
opposite effect, and cause Iz to decrease. We thus con-
clude that the dependence of I2 on the volume fraction
may be eliminated if the hard-sphere diameter DHs ex-
hibits a dependence on P.

The experimental observation from dielectric measure-
ments' that I2 is independent of P can thus be explained
in terms of two distinct physical effects: a (() dependence of
the stickiness and a volume-fraction-dependent hard-
sphere diameter. In order to be able to distinguish be-
tween these effects, we have incorporated both (( depen-
dencies in our model. This is justified by the fact that
SAXS experiments monitor both the diameter of the water
core and the contribution of the surfactant layer to the
hard-sphere diameter and in addition yield the stickiness
parameter.

III. POLYDISPERSITY

Colloidal systems exhibit various kinds of polydispersi-
ty on a microscopic level. ' ' ' For example, the po-
lydispersity in the particle diameter of a microemulsion
arises from the competition between opposing contribu-
tions to the free energy such as surface tension, electric
double-layer potential, and surfactant interactions. This
property impedes the interpretation of experiments moni-
toring the microscopic properties of the system. It thus
becomes necessary to incorporate polydispersity explicit-
ly in the analysis of SAXS experiments. This can only be
done using reasonable models for the size distribution
functions. We now note that any unimodal distribution
function may in practice be represented by a Gaussian or
generalized exponential distribution to a good approxi-
mation.

We shall restrict our discussion to systems exhibiting
polydispersity in size and interaction potentials, both of
which can be treated within the framework of the
Percus-Yevick formalism. The microemulsion parti-
cles will be considered to be spherical, so that the size dis-
tribution simply describes the differences in the particle
diameters. Furthermore, we shall take the attractive
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term in the interaction potential to be different for parti-
cles of different size.

It has been shown previously that both types of po-
lydispersity can be incorporated explicitly into the PY
formalism provided the distribution functions are ex-
pressed in discrete forms. ' In this case, the equa-
tions are transformed to matrix equations from which the
pair-correlation functions can be evaluated numerically.
In practice, however, it may not be feasible to distinguish
between dispersion in interaction and a dispersion in size,
as their effects on the properties monitored in an experi-
ment will almost always be correlated. Thus, unless one
of the polydispersities is small, it will be diScult to esti-
mate accurately the distribution function of the other.
The correction term I2 of the effective polarizability con-
sidered above involves to a first approximation only the
value of the pair-correlation function at the point of con-
tact, or in other words, the number of contacts between
the spheres in the system. As this quantity can be cal-
culated analytically for the multicomponent SHS system,
we shall use it here to illustrate the effects of both types
of polydispersities on the total effective polarizability.

First, we shall consider the effect of polydispertiy in
particle size on the average number of bonds per particle
z in a multicomponent SHS system. In order to do this
we define a system containing p classes of spherically
symmetric particles with number densities x„,
n = 1, . . . ,p, differing in their hard-sphere diameters D„.
The number density x„ofparticles in class n is given by

I

the discrete form of the Schulz size distribution. This dis-
tribution has proved to be particularly useful for model-

ing the size polydispersity and was used by us previously
for the analysis of SAXS experiments.

The average number of bonds per particle (coordina-
tion number) z is defined by

—z= —g x„P„
n=1

(10)

P„can be expressed in terms of the usual multicom-
ponent pair-correlation functions g„(r):

j./2.(D„+D )P„=I dr 4rrr g„(r)= A,„(D„+D )
0 24

(12)

Here g„(r) and A,„are obtained from the polydisperse
equivalent of Eq. (8) for g (x), x =r/D, and Eq. (A2) for
I, appearing in the PY formalism for the interaction po-
tential between particles of classes m and n:

where P„„,is the probability that a particle is bound to
a particle in class n, and N/V is the average number of
particles per unit volume. P„„,may be expressed in the
probability P„which is the probability that a particle of
class m is bound to a particle of class n:

P

Pn, pair g xm Pnm
m=1

(r) = ln 12'„

2r &s

D„+D —s„
D„+D

0, D„+D &2r

s„&2r &D„+D (13)

with s„~D„+D and with all the parameters ~„
equal, corresponding to a monodisperse interaction.
Note that we define the interaction to be polydisperse
when the parameters ~„describing the stickiness be-
tween particles of classes m and n are different. The nu-

rnerical solution of the PY equations for this potential
has been described by us previously. Using Eqs.
(10)—(12) we find

relatively less important when the stickiness increases
(low r) Furtherm. ore, the relative change in z increases
with increasing volume fraction. Overall, however, the
effect of the polydispersity in size on z is limited and does

8.0

g z.o-

V 48„
—z= g x„x A,„(D„+D ) (14)

It is important to note that in the derivation of Eq. (14)
we have effectively neglected the contributions to g(r)
from the region 1 &r/D &2 [Eq. (8)]. Furthermore, for
the monodisperse case )i, is given by Eq. (A2) in the ap-
pendix.

The dependence of the coordination number z on the
particle volume fraction P at different relative dispersions
in particle size is shown in Fig. 3. The main effect of in-
troducing polydispersity in the particle size appears to be
a decrease in the number of contact points z. This effect
is relatively large for low stickiness (high r) and becomes

O. 0 O. Z 0.4 0.8

FIG. 3. Average number of contacts per particle z vs the
volume fraction P, for two sticky hard-sphere dispersions with
~=5 and 0.0975 (=~, ) with no polydispersity (solid line) and
with relative polydispersities u /D =0. l (dot ted line), 0.2
(short-dashed line), and 0.3 (long-dashed line).
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not exceed 10%%uo. We may therefore safely assume the
effect of the size distribution on the effective polarizabili-
ty of a dispersion of spheres to be negligible.

In contrast to the effects of size distribution considered
above, it is difficult to obtain a quantitative estimate of
the effect of a dispersion in interaction on the coordina-
tion number z of a dispersion of spheres. The reason for
this difficulty is that we have no a priori model for the
distribution of the stickiness matrix elements ~„„entering
the potential [Eq. (13)]. Nevertheless an analysis of this
effect may be attempted using our previous observations
that the average stickiness in the microemulsion system
depends on the average size of the particles. It was found
that for a rnonodisperse interaction potential the ap-
parent stickiness between larger particles was systemati-
cally less than the stickiness between smaller particles.
The relative difference however was found to be smaller
than a factor of 10. We have therefore considered the
case for which the diagonal matrix elements of the sticki-
ness matrix, describing the stickiness of two spheres of
the same size class, vary linearly by an order of magni-
tude between the two extreme populations with diameters
D +3o and D —30.. The nondiagonal elements, describ-
ing the stickiness between spheres of two different diame-
ters, were taken as the average of the two corresponding
diagonal elements. On the basis of these considerations
we estimate z will increase by not more than 30%.

We conclude this section by noting that in general a
size dispersion decreases the coordination number of a
system of sticky spheres, while a dispersion in stickiness
has a compensating effect by increasing the coordination
number. If the distribution functions describing these
dispersions are not too wide the effects are small. Furth-
ermore, because the size and interaction dispersions have
opposite effects on the coordination number we may as-
sume that neglecting both types of dispersion will not
cause too great an error in the calculation of Iz.

The procedures described above can also be used to
show that the effects of both types of polydispersity on
SAXS intensity curves are correlated in a way similar to
that calculated above for z. Thus the polydispersity in
the size compensates the polydispersity in stickiness to a
large extent. We have consequently analyzed the SAXS
observations using a single stickiness parameter, but a
distribution in the microemulsion particle size.

IV. SAXS EXPERIMENTS

The average intensity of scattered radiation from a sys-
tem of p different types of particles, each with number
density x„ is given by

=I, g (x x )' F (q)F (q)S„ (q),
n, m=i

(15)
iq [R„—R

S„(q)=(x„x )'~ V ' g e
Pl, ftl —[

=6„+(x„x )' J [g„(r)—1]e'q'd r,
V

where q=4~/A. ,sin(0/2) with 0 the angle at which the
scattered radiation of wavelength k, is observed. I, is a

constant factor depending on the experimental setup. It
can be taken to be unity as in general we are not con-
cerned with absolute values of the scattered intensity.
F (q) is the amplitude scattered by the mth particle lo-
cated at R relative to an arbitrary origin and is given by

F (q)= Jp (r)e'q'd r (16)

(1) average diameter of the water core, D

(2) diameter of the AOT head group, th.,

(3) electron density of the head group, pz,

(4) apparent length of the surfactant layer, t, ;

(5) variance of the diameter size distribution, o;
(6) average (apparent) stickiness parameter, r .

The hard-sphere interaction diameter is distributed ac-
cording to the Schulz size distribution with mean value
DHs=D„, +21&+27, and variance o.. We note that the
contribution of the surfactant layer l, to the hard-sphere
diameter has been taken as an adjustable parameter. This
allows us to take into account an overlap (interdigitation)
of the AOT surfactant tails or an oil penetration into the

with p (r) the electron density of the mth particle. The
integral extends over the scattering volume. We have as-
sume here that the particles have a centrosymmetric
electron-density profile. The pair-correlation functions
g„(r) defined above are related by Fourier transforma-
tion to the static structure factors S„(q). It is clear
from Eq. (15) that only the Fourier transforms of the
pair-correlation functions g„(r) are experimentally ac-
cessible. Furthermore, the scattered intensity of a mul-
ticomponent system is given by an average over a matrix
of structure factors each weighed by the form factors
F„(q). This in fact creates the major obstacle in the
analysis of scattering data. The evaluation of Eq. (15) has
been described by us previously.

For a given microemulsion droplet size and droplet
concentration, defined respectively by 8'0 (water-
surfactant concentration ratio) and S0 (oil-surfactant con-
centration ratio), the SAXS intensity is described by the
electron-density profile of the droplet p, (r) and the pair-
correlation function g(r). The latter quantity is obtained
from the PY formalism using the SHS model as described
above. The electron-density profile for a single droplet
used here is based on the chemical structure of the AOT
molecules and essentially consists of a positive electron-
density core relative to the surrounding oil medium. This
core, corresponding to the water droplet, is surrounded
by a shell of the electron-rich headgroups; see Fig. 4.
The surfactant layer, with the AOT hydrocarbon tails
dissolved in the oil medium, has the same electron densi-

ty as the solvent medium and therefore does not contrib-
ute to the scattered intensity of a single particle. Conse-
quently six parameters enter the calculation of the scat-
tered intensities:
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surfactant layer. We note furthermore that the parame-
ters I„and pz unfortunately cannot be determined
uniquely from the experimental data as to a first approxi-
mation only their product enters the calculations of the
scattering curve. However, we have previously shown
from an analysis of the high-angle region of the scatter-
ing, that we can take pz to be a constant with a value of
850 electrons per nm . In order to analyze the SAXS
curves we have minimized the difference between mea-
sured and calculated intensities from the multicomponent
SHS model using nonlinear least-squares fits using the
Levenberg-Marquardt algorithm. The question now
arises as to the correct choice of the weighting of the resi-
dues of the experimental data. Unfortunately, the exact
calculation of the errors propagated during the manipula-
tions of the scattered intensity is too cumbersome. We
have therefore analyzed the experiments weighting the
residues with the square root of the observed intensities.
Ideally the results of the analysis should be independent
of the choice of weights.

It turns out that the only parameters sensitive to the
choice of weights are ~ and l, . On weighting the residues

microemul sion
droplet

with the intensity we found small systematic errors in the
fits at the low-angle regions of the scattering curves and
these were particularly noticeable at microemulsion con-
centrations greater than 30%. On the other hand, when
weighting with the square root of the intensity, small sys-
tematic errors only occur at the high-angle portion of the
curves over the entire concentration range studied. The
errors found in the high-angle regime are due to the in-
complete description of the electron density profile of the
particle, while the deviations in the low-angle portion
arise from an inaccurate description of the structure fac-
tor S(q). As we are primarily interested in the interac-
tions between the particles, we have used the latter
weighting in the fitting procedures.

A. Relation between particle, hard-sphere, and

water volume fractions

In the foregoing discussion we introduced four
different quantities for describing the size microemulsion
droplets or particles:

(1) water droplets, diameter D
(2) microemulsion droplets, diameter D;
(3) hard spheres, diameter DHs,
(4) conducting spheres, diameter D„.
In this section we shall consider unambiguous

definitions for the corresponding volume fractions.
The volume fraction of water P~, which can be calcu-

lated using the known densities bulk densities of water,
AOT, and solvent is given by

oil M p 'Wo

M p Wo+M p +Mopo S
(17)

p(r)

4(r)

Q !

W!

!

a
I

!
(

I

!
I

I

!

elec tro~ensfty
profile

in terzet ton
potential

eÃg~~~ t~riuy

where p, p„and po are the densities of water, AOT, and
solvent and M, M„and Mo are the molecular weights of
water, AOT, and solvent, respectively. Wo and So are
determined by the known weighed amounts of water,
AOT, and solvent.

On assuming a microemulsion droplet to consist of
only water and AOT we may write analogously for the
volume fraction of microemulsion droplets!I)p

M„p„, 'Wo+M, p,
'

M,p Wo+M p +Mopo So

M, p,
'

M„p 'Wo

(18)

The microemulsion droplets are not all identical but show
a dispersion in size. This polydispersity is conveniently
described with the discrete form of the Schulz size distri-
bution. The volume fraction of water [Eq. (17)] and the
volume fraction of particles [Eq. (18)] are now simply ex-

pressed as

FIG. 4. Model functions representing a rnicroemulsion drop-
let. Electron-density profile p, (r), sticky hard-sphere potential
4(r), and excess polarizability function h(r).

(19)

where & ) denotes averages over the size distribution. As
D is directly monitored in the SAXS experiment, we are
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now able to determine the number density N/V of the
microemulsion droplets by combining Eqs. (17) and (19).
Equations (18) and (19) can be seen as the definition of the
microemulsion particle diameter D . The knowledge of
N/V together with the determination of D„s from the
SAXS curves allows us to calculate the hard-sphere
volume fraction PHs from

&DHs ~

4Hs 4w (20)

The difference between DHs and D represents the size of
the surfactant layer relative to the hard-sphere diameter
and will henceforth be denoted as [see Fig. 4]:

DHs D =2IHS=2(Ih+1i) .

In the calculation of the polarizability and the volume
fraction of conducting spheres P„we denote the
difference between D„and D by 2I„, and use the
definition

to equilibriate at room temperature for more than 24
hours before the experiments. All the samples remained
stable and optically clear over a period of months.
Furthermore, no sample degradation was observed dur-
ing the exposure to the x-ray beam and the results ob-
tained were independent of the history of the sample.

The small-angle x-ray scattering experiments were per-
formed at Daresbury Laboratory, United Kingdom, us-
ing station 8.2 of the SRS with a setup as described in
Ref. 57. Dielectric relaxation experiments were per-
formed using a Hewlett-Packard HP4192A impedance
analyzer in the frequency range 10 kHz to 13 MHz.
Measurements in the 5- to 1000-MHz range were carried
out with a Rohde & Schwarz ZPV vector voltmeter
equipped with a ZPV-E2 tuner unit. The sample cell was
similar to that described in Ref. 21.

The complex permittivity e(co) is expressed as

(23)

(D3) ' (21)

I represents the contribution of the polar part of the
AOT molecule to the conducting sphere and has been
taken to be 0.6 nm in accordance with molecular models
of the molecule, see Fig. 4.

The area per surfactant molecule at the water interface
is simply given by

(D.' &

X, =6Wov (22)
D

where v (=0.03 nm ) is the volume of a HzO molecule.
X, plays an important role in the theory of micelle and
microemulsion formation. ' ' ' Equation (22) has been
derived on assuming that all the AOT molecules are ab-
sorbed at the water-oil interface. This assumption is
justified as the AOT concentrations used in our experi-
ments exceed the critical micelle concentration by at least
an order of magnitude. '

where co is the radial frequency, ~ the dc conductivity,
and e„ the absolute vacuum permittivity (e„=8.854
X 10 ' F m '). All other permittivities reported here
are relative permit tivities. Within our experimental
frequency range we always observed a frequency-
independent portion of the real part of the permittivity at
low frequencies. This value will be referred to henceforth
as the low-frequency permittivity of the microemulsion.
The dc conductivity ~ was determined from the measured
co

' dependence of the imaginary part of the permittivity
at low frequencies (co & 500 kHz). We note here that the
dielectric behavior is described by a complex permittivity
e(co) [Eq. (23)] with real e'(co), e"(co), and a..

For the calculation of the volume fractions of solvent,
water, and AOT the following bulk densities were used:
water (0.998 g cm ), iso-octane (0.692 g cm ), n-decane
(0.73 gcm ), n-heptane (0.690 gcm ), and n-hexane
(0.66 gem ). The density for AOT in solution was tak-
en as 1.138 gem

B. Materials and methods V. SAXS RESULTS

The surfactant Aerosol-OT [AOT, sodium di(2-
ethylhexyl) sulfosuccinate] was obtained from Fluka
Chemic AG, purity & 98%, and was purified according
to Tavenier. Iso-octane (2,2,4-trimethyl pentane), n

hexane, and n-heptane were purchased from Merck and
n-decane was obtained from Fluka Chemic AG. All or-
ganic solvents were analytic grade and used without fur-
ther purification. The water used was deionized and qua-
druple distilled in a quartz still.

For each solvent a concentration series of samples with
constant water-surfactant ratio Wo (=25) and increasing
So was prepared. In a single series a stock microemul-
sion solution with the lowest So was prepared by dissolv-
ing a weighed quantity of AOT in the appropriate
amount of solvent. Water was then added to establish
the desired value of 8'o. The So values were increased by
dilution of the stock solution. The samples were allowed

Typical scattering curves obtained from microemul-
sions at a constant Wo (i.e., constant droplet size), are
shown in Fig. 5 for oil-surfactant ratios So varying from
5 to 500. The absence of any modulations in the scat-
tered intensity at these angles is a strong indication of a
polydispersity in the particle size. The superposition of
scattering curves from particles of different sizes, each
with a characteristic modulation, results in a smooth de-
cay of the observed intensity curve. The continuous lines
in Fig. 5 represent the best fits using the SHS multicom-
ponent model [Eq. (15)]. The broad peak at q & I nm
typical of microemulsion scattering which appears at
high water concentration arises from interference effects.
It is well described by the structure factors calculated
from the polydisperse macrofluid model.

The average diameter of the water core of the mi-
croemulsion particle D obtained from the analysis of the



4828 C. ROBERTUS, J. G. H. JOOSTEN, AND Y. K. LEVINE

10 '-

10

T = ztk' ( ), aW (- --)

oq q= zs (~ ), as (o)

10 =.

8 18

1.0
q ( nm-')

0/
45
40
85

5

Z. O

0.30.0 O. Z 0.4 0.6
hard -sphere densi ty

wS

FIG. 7. Area per surfactant molecule X„see caption of Fig.
FIG. 5. SAXS intensities from an AOT —H20 —iso-octane mi-

croemulsion concentration series with Wo=25 at T=25'C.
Line through datapoints represents best fit.

scattering curves is shown in Fig. 6 as a function of the
hard-sphere volume fraction for two microemulsions with

Wo =25 and 35 at two different temperatures. It appears
that the average size of the water core in both mi-
croemulsion systems is virtually independent of the com-
position and temperature of the system within experi-
mental error. This finding is in good agreement with the
observation that the single particle polarizability u& is in-

dependent of temperature and volume fraction. '

The average area per surfactant molecule X, calculated
from Eq. (22) for these systems is shown in Fig. 7. It can
be seen that X, increases slightly, by less than 10%, over
the range of volume fractions studied as well as on in-
creasing Wo from 25 to 35. This is consistent with the
modified Porod behavior reported by us previously
from the analysis of the high-angle portions of the curves
only. A somewhat smaller increase is observed on in-
creasing the temperature at a constant Wo. It is impor-
tant to note here that the changes in X, described above
result from subtle changes in the polydispersity and aver-

age particle size in the microemulsion. This may be
caused by an increase in mobility of the surfactant tails at
higher temperatures inducing a less dense packing of sur-
factant molecules in the interface or a change in the cur-
vature of the interface itself.

6.

The contribution to the hard-sphere diameter l„s and

the apparent stickiness parameter ~ are given in Figs. 8

and 9, respectively, as a function of the hard sphere
volume fraction for two microemulsion systems at
different temperatures. For clarity we have shifted the
plots in Fig. 9 of the Wo =25 microemulsion one order of
magnitude.

A systematic increase in the stickiness is observed on
increasing the temperature at volume fractions below 0.3.
This corresponds to an increase in the clustering of the
droplets at higher temperatures, in accord with dielectric
permit tivity measurements. ' The formation of large
clusters of droplets on increasing the temperature is
surprising. Interestingly, only a hard-sphere interaction
potential is needed for the description of the SAXS
curves obtained at volume fractions greater than 0.3.

The variation of lHs between 1.5 nm at low P and 0.6
nm at high P indicates that oil is absorbed at the surfac-
tant layer at the lower particle concentrations. Conse-
quently as the volume fraction increases with a concomi-
tant decrease in the distance of separation between the
microemulsion droplets, the oil is expelled from the sur-
factant layer. The limiting value of 0.6 nm at high P is
about 0.15 nm smaller than the length of the tails of the
AOT molecules calculated from their density, 1.14

g cm . This calculation assumes an area per surfactant

14 -- ——
. T = za'c ( ), art' (---)

IY&
—— zs (c ), as ( o)

q= as (o, ~)
z.o — q = zs (a, i)

~ 10-
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0
e
0

0
0

k

o ~ +~ ~ ~
0

.0 O. Z 0.4
hard- sphere densi ty
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0.6 0.60.0
0.0 O. Z 0.4

hard- sphere densi ty
HS

FIG. 6. Diameter of the water core D„, vs hard-sphere densi-

ty P„s of the AOT —HzO —iso-octane microemulsion with
WO=25 (triangle) and W0=35 (circle) at T=28 C (solid sym-
bols) and T=37 C (open symbols).

FIG. 8. Contribution (I, +I), ) to the hard-sphere diameter of
the surfactant layer of the AOT —H20 —iso-octane microemul-
sion with W0=25 (triangle) and Wo=35 (circle) at T=28'C
(solid symbols) and T=37 C (open symbols).
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FIG. 9. Stickiness vs hard-sphere density in AOT —H, O —iso-
octane systems with Wo=25 and W0=35 at temperatures be-
tween 25'C and 37'C.

molecule of 0.55 nm . We therefore expect the surfactant
tails of different particles to interdigitate at the highest
concentrations.

The observed effects of the oil medium on the mi-
croemulsion droplet interaction is not included in the
SHS model which implicitly assumes that the droplets are
dispersed in vacuum. As the solvent appears to play a
role in the clustering of the droplets, we expect the mi-
croemulsion properties to be influenced substantially by
solvents of different chemical structures. This point will
be treated in detail elsewhere.

The decrease of the apparent stickiness with increasing
volume fraction P, follows closely that of 1Hs [Figs. 8 and

9]. We believe that this correlation arises from the nature
of the SAXS experiments. It has been shown that the
structure factor in SAXS experiments is mainly deter-
mined by the second virial coefficient of the equation of
state of the fluid system. For the SHS fluid this
coefficient is a function of both the hard-sphere diameter
and the stickiness parameter v. We therefore cannot rule
out that separate P dependence of r and 1Hs in our
analysis arises from a deficiency in the description of the
actual functional dependence of the second virial
coefficient on ~ and on 1Hs.

VI. CALCULATION OF THE POLARIZABILITY

We have noted in Sec. I that the most remarkable
finding from the dielectric experiments is that I2 is in-
dependent of the volume fraction of the dispersed parti-
cles. We have argued that this behavior can be rational-
ized by assuming a decrease of the stickiness parameter v.

with P. This prediction is indeed in good agreement with
the observed P dependence of the stickiness parameter
obtained from the analysis of the SAXS intensity curves
[Fig. 9]. Moreover the increase of the stickiness with
temperature also accounts for the observation that I2 is
an increasing function of T.

Interestingly, we find that the apparent stickiness in
the 8'0=25 microemulsion is systematically higher at
temperatures below 31'C than that for the system with
8'0=35. The trend, however, is reversed at higher tem-
peratures. This is again in qualitative agreement with the
results of dielectric relaxation experiments which show

FIG. 10. Calculated (solid symbols) and measured (dashed
line) (Ref. 19) polarizabilities a/P vs the volume fraction water

of the AOT-H, O—iso-octane microemulsion with Wc=35
at T=25 C (circle) and T=37'C (triangle).

that below 34'C, I2($, T ) for the Wo =25 microemulsion
is larger than that for the 8'0=35 systems, while the op-
posite is true at higher temperatures.

The dielectric polarizability a of the microemulsion
system can be calculated from Eq. (3) using the structural
parameters extracted from the analysis of the SAXS in-
tensity curve. In particular, four quantities enter the cal-
culation: (l) the average diameter of the water core D,
(2) the total length of the surfactant layer contributing to
the hard-sphere diameter 2(1„+1,), (3) the apparent stick-
iness parameter r and (4) the volume fraction of the
dispersed particles P„.

The calculated n are shown in Figs. 10 and 11 as a plot
of ale versus P at two different temperatures for the
8'o=35 and 8'o=25 microemulsion, respectively. In
Fig. 10 we have taken the experimental data from Ref. 19
for the same system.

As can be seen from Figs. 10 and 11 a reasonable
agreement is found between the calculated polarizabilities
and the experimental permittivity data at low volume
fractions. The calculations also reproduce the observed
increase in the polarizability on raising the temperature.
However, the calculations underestimate the polarizabili-
ties at high volume fractions. We do not believe that the

4.0

37 C

L

4 ~ 0 0
0

g.0- ~' ~ ~ 0 Z5 C

0 0
4

iso —octane
Fo = Z5

0.D 0. f O.Z 0.3
volume fraction mater

FIG. 11. Calculated (solid symbols) and measured (open sym-
bolsl polarizabilities a/P vs the volume fraction water P of
the AOT —H20 —iso-octane microemulsion with Wo =25 at
T =25 C (circle) and T =37 'C (triangle).
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discrepancies found between the experimental and calcu-
lated values are caused by the choice of the SHS model in
the analysis of the SAXS experiments. Rather, we attri-
bute this disagreement to the simplified model for the ex-
cess polarizability, Eqs. (3), (4), and (6). It must be real-
ized that this equation was derived by taking into ac-
count only the pair excess polarizabilities. The break-
down may therefore be caused by the neglect of the mul-
tiplet excess polarizabilities arising from clusters involv-
ing more than two droplets.
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APPENDIX: THE STICKY HARD-SPHERE
PAIR-CORRELATION FUNCTION

Baxter ' developed a method to solve the PY equa-
tion for a system of identical spheres interacting through
the so-called sticky hard-sphere potential [Eq. (7)]. Due
to Baxter's factorization, the correlation functions h (r)
and c (r) can be expressed in terms of a new function q(r)
given by

q(x)= —(x —1)+b(x —1)+c for 0&x &1
a
2

with

1+2/ A,P —3P
( I -((})' (I —4)

'
(1—y)'

c =A, /12 .

(Al}

x is the reduced distance r/D, p is the volume fraction of
dispersed particles. A, is the solution of the quadratic
equation

i2—
12

In terms of this function the Ornstein-Zernike relation
for c (x) and b (x) is given by

h(x)= —1+ 5(x —1 ) for x &1.
12

(A5)

1xe(x)= —q'(x)+12/ f dt q'(x —t)q(t),
0

xh(x)= q'(x)+12/ f—dt (x —t)h(~x t~}q(t), (A4)—

Z(x)=12/ f dy q(x —y)Z(y)
x —

1

+12/ f dy q(x —y)Z(y)

+ 12$f dy q (x —y)Z (y) . (A6)
1+a

Of these three integrals the first two can be evaluated in a
straightforward manner as the integrand is known and
result in a polynomial in the fourth degree in x so that

Z(x)=P(x)+12/ f dy q(x —y)Z(y)
1+a

with

'P(x)= —(x —12x +16x)+b(2x —6x +8)
2

+6c(x —2x }+A,
—(x —2x)
2

+b(x —2)+c

The last integral can be evaluated in a similar fashion as
Perram and Barker and Henderson ' have done for
the HS correlation function. Differentiating Eq. (A7)
three times with respect to x results in an inhomogeneous
differential equation in Z (x):

Z Z dZ=12/ ax+b —(a/2+b —c) +b +aZ
dx dx dx

(A8)

with boundary values

Z(1)=P(1},

+ 12gq (0)Z (1),
(A9)

d Z(1) d P(1) +12$q(0) dZ(1) +12$q, (0)Z(1)
dx dx

d Z(1) d P(1) +12 d Z(1) +12, dZ(1)

+12$q "(0)Z(1),

where q(0)= —a/2 b+c, q'(0)=b,—and q"(0)=a. The
solution for Z now has the form

Z(x) = —x+a, e" +e~"[a~cos(gx)+a3sin(gx)], (A10)

where a1, a2, and a3 are obtained by the boundary value
equations, p, g, and g are determined by the roots of the
characteristic equation of the homogeneous part of the
differential equation:

A +(a /2+6 —c )A —b A —a =0 . (A 1 1)

To obtain an explicit expression for h (x) at values
1 &x & 2 the integration range of Eq. (A4) is divided into
three parts. To simplify the equations we define the func-
tion Z (x) =xh (x), and change to the integrating variable

y =r —t. e is taken to be arbitrarily small;

This equation always has three roots of the form

Ai=p, Aq=r)+i(, A3=rt ij . —

Equations (A5), (A10), and (Al 1) give explicitly the solu-
tion for g (x) for 0 &x & 2. From here on a stepwise solu-
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tion for g (x) can be made to obtain the function over the
successive intervals 2 & x (3, 3 (x (4, etc. The algebra
however becomes rather cumbersome. In this paper we
have only need for the expression for Z(x) the range
0 & x & 2. However we point out that because g (x) and

its derivatives are well behaved (piecewise continuous) for
x )2 it is possible to apply the efficient algorithm pro-
posed by Glandt and Kofke. This makes use of succes-
sive applications of the trapezoidal to solve Eq. (A7) for
Z (x) to any required accuracy.
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