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Transient statistics in a CO2 laser with a slowly swept pump
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The near-threshold behavior of a single-mode CO, laser has been investigated by applying a linear
modulation to the excitation current. The associated delayed bifurcation has been characterized in
terms of first-passage-time distributions for different sweep rates. A theoretical model provides
good agreement with the experimental data. In particular, we are able to assign the initial photon
number below threshold.

I. INTRODUCTION

In this paper we report the behavior of a single-mode
homogeneously broadened CO2 laser when the gain pa-
rameter is swept from a negative value (laser below
threshold) to a positive one (laser above threshold), so
that the dynamical system goes through a bifurcation
point. The modulation of the control parameter (gain) is
done by repeatedly applying to the discharge current a
linear ramp, followed by a plateau. As the gain does not
assume at any moment the stationary value associated
with the instantaneous current value, the observed bifur-
cation is delayed with respect to the time at which the
control parameter passes through the instability. The de-
layed bifurcation was theoretically treated by P. Mandel
er al., ' the statistical features of transient behavior have
been studied either by photon counting distributions or
passage time techniques. In the experiment reported
here, we have a combination of delay and transient statis-
tics.

The influence of additive white noise on delayed bifur-
cations in a single-mode class-A (Ref. 4) laser was studied
by Broggi et al. by using a Fokker-Planck formalism.
Van den Broeck et al. and recently Zeghlache et al.
have analyzed this problem by a direct analysis of the
moment equations for the field amplitude, again in the
case of a class-A laser. The validity of these approaches
was confirmed on analog simulations by Mannella et al.
and by Stocks et aL

As for the experimental technique of a swept pump pa-
rameter, preliminary results on transient bistability were
reported by Glorieux et al. and by Arirnondo et a/. ' in
CO2 lasers with a saturable absorber. In that case howev-
er the dynamical behavior was due to the joint interac-
tion of the laser medium and the saturable absorber.
Here we want to characterize the statistical features of
the pure laser under a pump s~eep. The same behavior
was observed by Scharpf et al. " at the threshold of an
Ar+ laser by varying the cavity losses, and by Mecozzi et
aL' in a semiconductor laser by switching the biasing
current. While Ref. 11 does not deal with statistical
features, Ref. 12 indeed tackles our same problem. Hav-
ing scaled however the problem from semiconductor to a
CO2 laser allows to work on a slower time scale and

hence to gather more accurate data, which permit a
quantitative comparison between experiment and theory.

An operational definition of this dynamical bifurcation
point (laser switch-on), delayed with respect to the static
one (gain equal to zero), can be given in terms of a "first
passage time", that is, the time spent by the laser in
reaching for the first time an intensity value significantly
different from noise. The fiuctuations due to spontaneous
emission make the first passage time a stochastic variable,
and consequently a stoichastic treatment of the problem
is needed. A general theory for a class A laser was pro-
vided by Torrent et al. '

For class-8 lasers, ruled by two coupled equations for
field and population, delayed bifurcation phenomena
present features not considered in the above
theories. " ' ' ' In fact, they are sufficient in the linear
regime provided the population is kept constant, that is,
they describe only loss modulation. A deterministic
treatment for class-8 laser with slowly swept loss parame-
ter was recently done by Erneux et al. '

In the case of pump modulation one has to further con-
sider the delayed action of the varying population on the
time dependent gain parameter. For this reason we
present here below a specific stochastic treatment which
is apt for pump modulation. In Sec. II we report the
relevant features of the measuring set up. Sec. III
presents a theory of the delayed bifurcation adapted to a
class-8 laser. In Sec. IV we compare the experimental
data with the theoretical expectations of Sec. III. In the
conclusion we emphasize the relevance of a modified
model to deal with class-8 lasers.

II. KXPKRIMKNTAL SETUP AND RESULTS

The experimental setup is shown in Fig. 1. It consists
of a CO2 laser tube, with Brewster angle windows, placed
inside a resonator 1.5-rn long. One of the reAectors of the
laser cavity is a grating mounted in autocollimation
configuration, in order to select the P(20) line at 10.6
pm. The other is a partially reflecting Ge mirror
(R =95%) with a 3-m radius of curvature. The coupling
mirror is mounted on a hollow cylindrical piezoelectric
translator (PZT) in order to control the detumng between
the center of the molecular line and the frequency of the
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TABLE I. Mean value {( t ) ) and standard deviation (5t ) of
first-passage-time distributions as a function of the slope 0 of
the linear ramp.

HVPS

LSG

scapE

8 (A/s)

0.323
0.470
0.589
0.738
0.812
0.959
1.070

(r*) (ps)

1271
943
809
700
644
581
541

5t (ps)

16.3
11.4
94
8.1

7.4
6.8
6.3

CLUCK

FIG. 1. Experimental setup. LT, laser tube; G, grating; M,
coupling mirror mounted on a piezo translator; HVPS, high
voltage power supply; OCI, optically coupled isolator; CR,
current regulator; LSG, linear sweep generator; ETC, electronic
time counter; TC, trigger circuit; 0, Hg-Cd-Te detector; A,
low-noise amplifier; R, precision resistor.

cavity mode. The inflow CO2 laser is pumped by means
of a dc discharge. The power supply is current stabilized
to better than 0.05%. The discharge length is 0.8 m and
the gas mixture is composed of CO& (15.4%%uo), H2 (2%), N2
(14.2%), and He (68.4%) at a total pressure of 20 Torr,
measured at the gas inlet of the laser tube. The electronic
circuit for the current regulation is externally modulated
by a linear ramp followed by a plateau. The mean value
of the discharge current is measured on a precision resis-
tor R. The current is directly monitored by means of an
optically coupled isolator in series with the regulator.
The laser output intensity is detected by a liquid-N2-
cooled Hg-Cd-Te detector with a rise time ~ ~ 10 ns. The
photodetector signal is amplified and sent together with
the current signal to a digital oscilloscope to monitor the
temporal evolution.

An electronic time counter measures the time interval
between the start of the linear ramp and the laser switch-

on spike. The counter repeats a sequence of 1000 mea-
surements and displays the mean value and the standard
deviation of the first-passage-time distributions.

In Fig. 2 we report the time evolution of the laser in-
tensity and the corresponding current modulation. Ex-
perimental evidence of the delayed bifurcation at the
threshold of a CO2 laser (also reported in Ref. 15) is

clearly shown here, as the laser switch-on and switch-off
take place for two different values of the discharge
current.

By setting the zero of the time scale at the start of the
linear sweep (delayed by 100 ps with respect to the TTL
clock signal due to the bandwidth of the electronic sys-
tem}, we define t' as the time at which the laser switches
on. In Table I we report (t" ) and the associated stan-
dard deviations 5t as a function of the slope 8 of the
linear ramp.

III. THEORETICAL ANALYSIS
A. Deterministic treatment

Our results can be explained in terms of the class-8
laser model which consists of two rate equations describ-
ing the photon number n and the population inversion 6
between the two resonant levels as follows:

Gnh
ri =2 —kn+

2

b, = —y„(b, —bo) —26nb, . (2)

4,0

3.0

2.0

1.0

1 vs

TIME

k and
y~~

are the decay rates of field and population
inversion, respectively, 50 is the population inversion
provided by the pump mechanism, and
6=2ck /8mVr, y~=5 3X10 s ' . is the field-matter
coupling constant [V=34.4 cm is the mode volume,

@~=mdiv, =4.4X10 s ' is proportional to the collision-
al broadening, and ~, =3.33 s is the spontaneous radia-
tive lifetime of the P(20} transition]. Since the excitation
pump current is linearly modulated, we assume 40 as a
linear function of time, that is,

6o= 6o( r ) =Bo+Pr

FIG. 2. Time evolution of both laser intensity and excitation
current which displays the linear ramp and the two plateaux.

In the linear regime, where we limit our observations, the
photon number n is smaller than the saturation value

n, =y~~/26=4. 7X10' so that the last term in Eq. (2)
can be neglected. In this case the solution, with the ini-
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tial condition

h(t =0)=bo=Bo,

is given by

5(t )=Bo+Pt —(1—e
—rr

~ll

Equation (1) can be now rewritten as

n =2nI"{t),

where I'(t ) is the total photon gain

I {t)=ao+at—

ln
n

no
L

=2 ao — t+txt + (1—e i ) .
a 2 2a —yt

~ll

Assuming yt~
—-5X10 s ' (Ref 16) an. d t &500 ps, the

~IIterm e ll is less than 0.08 and it can be neglected with
respect to unity. Finally, inverting Eq. (6}we have

'2
ao 1 ao 2+

yll
2

1/2
1+—lna no

This relation expresses the time t at which there are n

photons in the laser cavity as a function of the initial con-
ditions no and ao and of the s~eeping rate a.

B. Stochastic treatment

A more accurate description of the laser threshold in-
stability requires the addition of a stochastic term in the
field equation which takes into account the spontaneous
emission fluctuations:

6E= kE+ Eb, +g(t) .— —
2

The function g(t) represents a Gaussian white noise with

with A o
= I ( t =0)= —k + ( 6 /2)B o (0 and a = ( G /2 )P.

ao represents the total initial gain and it has obviously a
negative value (laser below threshold), while a is the
sweeping rate.

The solution of Eq. (3) is

n(t}=noexp 2f I {r)dr (5)
0

We define t as the time at which I (t ) =0 and t ' the time
at which, during the exponential amplification, the pho-
ton number reaches a certain threshold value below the
saturation one. From Eq. (5) we have t' & t because for
any t &t

f 'r(~)dr (0,
0

so that the delay at the bifurcation is the time necessary
to overcome the stability accumulated in the interval
[O, t]. Solving Eq. (5) we obtain

zero mean value and 6-correlated

(Pt)&=0,
(g(t), g(t')&=s&(t —t') .

The field solution is given by

1 I 2

P(h }=
2 exp —

z (10)

the variance of h (t ) =no(t ) is'

(h'(t) & =(no(t ) &

I

+ef exp 2f—I'( )ed~ dt'
laos o . o

where the first term represents the initial noise and the
second the noise contribution along the interval [0,t ].

The photon number equation [corresponding to Eq.
(5)] is

n(t)=no(t)exp 2f I'(r)dr
0

(12)

This equation shows that at time t, the laser intensity is
proportional to the noise no{t) through an exponental
amplification coeScient.

%hen the laser intensity reaches the threshold value
we have

n(t )/no(t) =exp 2f I (r)d~ &&1
0

and we can approximate

h(t }=I(~ ), no(t)=no( ~ ),

(h'(t) & =&h'(~) &, &no(t) & =&no(~) &,

so that the solution of Eq. (12) is given by Eq. (7) with no
replaced by no( ~ ) [from now for simplicity we consider
no( oo ) =no and (no( ~ ) &

= (no &].
In order to obtain the moments of the passage time dis-

tribution we introduce the generating function

W(A)=(e '&= f e "'P(t)dt, (13)
0

where P{t ) is defined as

P(t)= f 6(t —t(no})P(no)dno

and, from (10),

E=h(t)exp f 1(r)dr
0

where
r I

""I=~o+I ti& I'~ p 'xl'r(~)dT dt
0 0

I'(t)= —k+ b(t)—.G
2

Since in our notation the variable F is dimensionless,
h (t) represents the noise photon number. Assuming
that the below-threshold field amplitude E(0) has a
Gaussian distribution
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1
P(nz)=

( )
exp

n0

(n, )

1.5

In this way, the probability to observe a certain passage
time t (corresponding to n photons) depends on the prob-

ability that the noise amplitude is n Q.

Finally, taking into account that

1,0—
M
C

A

0,5—

W(A, ) = f exp[ —At(no }]P(nz)dnt),

(t ) = — in[ &(A)]l)
d

(bt ) = In[W(A, ))i

(13')

(14)

(15}

0, 0

0.2 0.6 1,0

0. (109 s ~)

1.4 1.8

and with the approximations
n

n ))nc, P(nc }ino
-—1,

0

we obtain

FIG. 3. Switch-on times (t*) vs the sweep parameter a.
The crosses denote the experimental points; the solid line

represents the theoretical best fit with the present theory.

a 0

a

2
a0

—(bt )z (14')

2 1 n+—ln
y2 a (n )

1/2

L =1.483 X10',

a0= —2. 11X10 (16)

where P(1)=—0.577 is the digamma function. ' The
last two terms in the square root are the stochastic
corrections to the deterministic expression given in Eq.
(7).

IV. INTERPRETATION OF DATA

As shown above the expression for the mean time ( t )
involves (nc) which, in turn, is a complicated function

depending not only on a0 but also on a. If we set the ini-

tial value of the gain a0 so close to threshold that the
noise along the interval [O, t'] is negligible with respect
to the initial noise, (no) can be considered independent

of a. Moreover, as the population inversion b,o(t) and

the discharge current I(t) are proportional for small

modulation amplitudes, it is convenient to rewrite

I (t) =pb, ,(t ) =pB, +p13t =Ic+8t,
where Ic =pBO (I& =3.23+0.03 ma) is the current corre-

sponding to the lower plateau and 8=pP is the slope of
the linear ramp. These two parameters are measured by
using the response curve of the optically coupled isolator.
If we now introduce the parameter L =G/2p, e and aQ

can be expressed in terms of the measurable quantities IQ

and 8 as follows:

TABLE II. Delay at the bifurcation ((t') t) as a function-
of the sweeping rate a.

a(10 s '3 ( t * ) t (IMs)—

The agreement between the experimental points and
the fitted curve, shown in Fig. (3), is within 2%. The er-

ror bars associated with the experimental points, evalu-

ated by the corresponding standard deviations, are negli-

gible.
An accurate calibration of the laser power output

determines the value of the photon number n at which we

have performed the measurements (the threshold for the

trigger circuit was settled at 50 mV which corresponds to
a laser power output of 3.16 mW). As the mirror
transmission is 5% the photon number is given by
n =3.16 mW/[fi~(c/I )0.05]=1.65X10' . This implies
[from (16)] a mean photon number below threshold

( no) =220, in agreement with previous results on a CO&

laser with fast loss switching. '

As G =5.3 X 10 s ' the factor (p V) ' relating the
population inversion density b,c/V to the discharge
current is

+=LB, aQ= —k+LIQ .

Assuming yll-—5X10 s ' and k=5X10 s ' (which cor-
responds to a total transmission coefficient of 10%), we

are able to fit the unknown constants of Eq. (14'} (with

plus sign) obtaining the following values, L in (A s) ' and

a01ns

0.479
0.697
0.873
1.094
1.204
1.422
1.587

639
458
392
340
306
276
256
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A

V

O

bQ
0

—3,0

—35

—4,0

s lope =—i.07

slope=-0, 76

10

and I., we are able to determine the time t at which the
total gain I (r), given by Eq. (4), is equal to zero. In
Table II the bifurcation delay time ( t * ) —t is reported as
a function of the parameter a. In Fig. 4 the same relation
is shown in a log-log scale which displays a power-law be-
havior as

The corresponding class-A laser behavior (Ref. 13) gives
a slope —1.07 (dashed line).

V. CONCLUSIONS
Log (0.)

FIG. 4. Delay time (t ) t vs —the sweep parameter a in
log-log scale. The crosses denote experimental points, the solid
line denotes present theory, and the dashed line denotes class-A
theory.

1 = 1.63 X 10' ( mA cm )
pV

This value agrees with that obtained by studying fast cav-
ity loss modulation. '

By using the values of the other two fitted constants ao

The near-threshold behavior of a CO2 laser with slowly
swept pump has been investigated by means of first pas-
sage time statistics. At variance with loss modulation,
pump modulation is a sensitive test of the time scale of
the molecular decays, so that the class-8 laser model is
needed. The linearization of Eq. (2) and the assumption
of a linear modulation of the pump leads to an exact solu-
tion of the differential equation for the laser intensity,
which implies the observed delay at the bifurcation. In
the stochastic description the solution for the mean first
passage time ( t ) is in good agreement with the experi-
mental data and permits an evaluation of the laser mean
photon number below threshold.
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