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We simulate two-phase flow in a porous medium, which is represented by random, isotropic two-
and three-dimensional networks containing up to 80000 interconnected pore spaces. The simula-
tions are sufficiently large that macroscopic properties of the flow may be determined. For unstable
viscous floods, we show that the displacements are compact with a fractal interface between the
fluids. The fractal dimension is found as a function of viscosity ratio. For invasion percolation,
where the displacement is controlled by capillary forces, and for viscous fingering, we calculate rela-
tive permeabilities in an averaged two-phase Darcy equation, which we show are functions of mean
saturation. The relative permeabilities also depend on flow rate, which means that the two-phase
Darcy equation is nonlinear, even with microscopic linear Poiseuille flow.

I. INTRODUCTION

Oil in reservoirs occupies the microscopic void space in
porous rock. The pore structure is very disordered, con-
sisting of a labyrinthine matrix of interconnected tubes
and chambers of different sizes. A cross section through
a typical oil-bearing rock is shown in Fig. 1(a). The pore
spaces are approximately 10—100 pm across, and are usu-
ally occupied by water and oil.

Oil reservoirs may be several kilometers in extent. It is
a standard recovery procedure to displace the oil by
pumping in another fluid, usually water.

To decide on the most efficient method to recover the
oil, the fluid flow in the reservoir under different condi-
tions is modeled by computer simulation. It is of consid-
erable economic importance that the predictions are reli-
able and accurate. Even with very large computers, the
simulation can only resolve the reservoir to the scale of
approximately 100 m. A single grid block in the comput-
er model has to represent displacements occurring within
millions of pores. The small-scale physics is represented
by averaged parameters in differential equations. These
parameters are measured experimentally on representa-
tive core samples of rock a few centimeters across.

This paper attempts to bridge the gap between the mi-
croscopic fluid motion in a random medium and the
large-scale displacement behavior. Typical flow rates in
reservoirs are very slow, of the order of a few feet a day.
Hence, on the pore scale the flow is controlled almost en-
tirely by the capillary forces between immiscible oil and
water. However, over large distances viscous and
bouyancy forces dominate. This problem is a sophisticat-
ed and interesting example of the macroscopic averaging
of a disordered dynamical process, where the dominant
physical process depends on the scale over which we
average. An exact theoretical treatment is too complicat-
ed to provide anything other than qualitative results. In
an experimental study, it is difficult to probe precisely a
range of microscopic flow regimes, as well as measure
average properties accurately, especially in a fully three-
dimensional system.

We simulate flow in a computer network model of a
porous medium. Random networks are used to represent
the porous matrix. The small-scale physics is specified
exactly, and for networks containing many thousands of
pore spaces we can find suitable averaged parameters to
describe the macroscopic flow on the scale of centimeters.
For unstable viscous floods we show that the displace-
ments are compact with a fractal surface between the
fluids. We compute the surface fractal dimension as a
function of viscosity ratio. We then show that our results
are consistent with the two-phase extension of Darcy's
law' at a fixed capillary number and we discuss the
effects of competing viscous and capillary forces, and the
circumstances under which the law becomes nonlinear.

Both numerical and experimental network models have
attempted to tackle these issues several times before.
Some of the first work was performed by Payatakes, with
recent research by Koplik and co-workers, ' Chen and
Wilkinson, ' Lenormand et al. ' and Blunt and
King. ' ' However, these studies have been performed
on regular, usually two-dimensional grids, which were
insufficiently large for a conclusive determination of mac-
roscopic parameters to be made. We use random, isotro-
pic, two- and three-dimensional networks containing up
to 80000 nodes, which represent systems several centime-
ters across, from which empirical quantities in Darcy's
equation can be calculated.

II. SIMULATION

The pore space is represented by a random network of
interconnected voids. In two dimensions points are
placed independently at random in a circular region.
These are connected to near neighbors by a network of
triangles, called the Delaunay triangulation. See Fig.
1(b). The points represent large pore spaces, which con-
tain fluid and the connections are thin tubes. Networks
containing up to 80000 pores have been generated.

In three dimensions a dual lattice, or the Voronoi
tessellation is used. Points are placed at random in a
sphere. Polyhedra surround each point, and occupy the
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volume nearer to that point than any other. The vertices
of the polyhedra represent the pores and the edges the
connections between them. Networks containing up to
50000 vertices have been used. A two-dimensional Voro-
noi network is illustrated in Fig. 1(c).

Further details on how the networks are generated are
given elsewhere. ' The Delaunay triangulation of ran-
dom points is a straightforward and consistent method
for producing a disordered isotropic lattice.

In the model porous medium the nodes of the network
represent pore spaces of equal volume. The connections
are thin tubes of an uncorrelated radius r chosen uni-
forrnly from the interval [ro(1 —A. ), ro(1+A, )], where
l &k&0.

Fluid How in the network

We model the flow through the networks using the fol-
lowing assumptions.

(a) All the Auid is considered to be contained in the
pores or nodes, but all the pressure drops occur in the
tubes between them.

(b) The tubes are filled totally with either invading or
displaced fluid, but the pores may contain both fluids.

(c) The two Auids are immiscible. The invading Auid is
nonwetting.

(d) The capillary pressure difference across an interface
between the two fluids at the entrance of a tube is inverse-
ly proportional to the tube radius. The nodes are so wide

FIG. 1. (a) A cross section through an 011-bearing sandstone magnlfied 80 times. The pore spaces {dark) ln the solid matrix form
isordered, interconnected pathways through the rock (light). A typical channel width varies from 10—100 pm. (b) The Delaunay

triangulation of 500 points placed at random in a circle. In the simulations a network with 80000 points is used. The points
represent pore spaces and the connections the tubes between them. This network captures the topological disorder of a real porous
material, shown in (a), but is not intended as an exact replica. (c) The Voronoi tessellation about 500 points placed in a circle.

ree-dimensional analogs containing up to 50000 vertices were used in the simulations. The vertices represent pore spaces and the
edges narrow tubes between them.
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that the capillary pressure drop in a node is negligible.
(e) There is Poiseuille flow down each tube.
(f) The fluids are incompressible.
Poiseuille's law for the flow rate Q;1 between the tube

connecting nodes i and j with no fluid interface in the
tube is

(a)

A (p, —
pJ. )r,J

lJ

for some constant A, where p is a nodal pressure, r, . and

I, are the radius and length, respectively, of the tube, and

p is the viscosity of the fluid in the tube. In a single node
the pressure of the injected and displaced phases are the
same and from assumption (b) we model the tubes as be-
ing entirely filled with either displaced or injected fluid.
If an interface were present in the tube this would intro-
duce a jump in pressure, which would modify Eq. (1).
This expression gives a flow rate which is proportional to
the local pressure gradient and inversely proportional to
the fluid viscosity.

If the fluids are incompressible then Q~Q;~=0. This
enables us to solve for the pressure field p; using succes-
sive over relaxation

(2)

where the sum over j accounts for all nodes connected to
node i The rela. xation parameter p is set to 1.7.

We use Eq. (1) to update the volume of injected fluid in
the nodes. In a time At, a nodal saturation s; (t) becomes

s, (r+br)=s, (r)+dr gQ, ,
J

(3)

where the sum only includes bonds connected to node i
which contain invaded fluid. At is chosen so that only
one node in every time step becomes completely filled.

When s, does reach 1, then bonds connected to node i
full of displaced fluid ("empty" bonds) may become full
of invaded fluid. An empty bond of radius r, is filled
with invaded fluid if

Pl PJ PC i lJ (4)

where p, /r, represents the capillary pressure jump
across the fluid interface in a tube, which is inversely pro-
portional to the tube radius. As stated earlier p, ~ 0: the
invading fluid is nonwetting. If p +p, /r; )p; p then
the interface is frozen by capillary pressure and no fiow
occurs across it until p,- increases, i.e.; the conductivity,

g, in Eq. (1) is zero. This is illustrated in Fig. 2.
In some nodes s,- may decrease. If s, reaches zero, a

bond is filled with displaced fluid if p, p . . Notice that if
p, =0 the displaced and invaded fluids are treated
symmetrically.

Viscous forces control the fluid fluxes between nodes.
The fluid in a tube only changes if the saturation in a
node to which it is connected (at either end) rises to 1 or
falls to 0.

Initially the network is full of displaced fluid. Nonwet-
ting fluid is injected through a central node. The pres-

FIG. 2. Diagram showing the saturation update in a single
node. (a) Injected (black) fluid is displacing clear fluid. Any
pressure jump across the interface in a node is neglected. (b)
The node is filled with injected fluid. In viscous fingering any
tubes connected to this node will become full of invading fluid,
if there is a favorable pressure gradient across it. In invasion
percolation only the widest available tube will be filled. The in-

terface in all the other tubes will be frozen.

sure at this node is chosen at each time step so as to
maintain a fixed flow rate. Fluid escapes through the
outer boundary of the network, which is held a constant
pressure. The scheme is then as follows.

(a) Solve for the pressure p;, using Eq. (2).
(b) Calculate a time step b, t such that only one node is

filled at a time.
(c) Update the saturations, using Eq. (3).
(d) If the saturation in a node reaches 1 or 0, alter the

nature of the fluids in the bonds connected to that node,
as described above. The conductivities g, are recalculat-
ed from Eq. (1), or set to zero if the fluid interface is
frozen by capillary pressure.

(e) Repeat from step (a).
The balance of viscous to capillary forces is determined

by a capillary number N, . We define N, to be the ratio of
a typical viscous pressure drop across a single tube near
the injection site hp„ to the capillary force p, lr From.
Eq. (1) it can be seen that viscous flows, with a large value
of N„occur at high flow rates, while at low rates the dis-
placements are governed by capillary forces.

In Ref. 18 this model is used to investigate the flow at a
variety of capillary numbers in two-dimensional net-
works. In this paper three-dimensional results are
presented in two extreme limits: viscous fingering when

p, =0 or N, = ~, and invasion percolation, when X, =O.
For invasion percolation the algorithm above reduces to
simpler growth rules, first described by Chandler et al. ':
at each time step fluid passes through the one available
tube with the largest radius and fills up the pore connect-
ed to it. An available tube is a tube connecting a pore full
of injected fluid to one full of displaced fluid. Since the
fluids are incompressible, the flow cannot invade a region
of displaced fluid which is completely surrounded and
trapped by injected fluid.

III. DISCUSSION OF RESULTS

In viscous fingering capillary forces are neglected. If
we inject with a fluid whose viscosity is negligible com-



42 MACROSCOPIC PARAMETERS FROM SIMULATIONS OF PORE. . . 4783

pared with the other fluid, a very tenuous, wispy pattern
is produced. The equations of flow and the structure pro-
duced are similar to that found in some aggregation pro-
cesses. The displacement is extremely ramified and has
a fractal geometry. ' However, at a finite viscosity ratio,
which is, of course, the case in all but specially contrived
experimental systems, pressure gradients in the injected
fluid force the displacement to fill in and a compact struc-
ture results, as first shown by Sherwood and Nittmann.
The interface between the two fluids is still unstable,
however, and a well-developed displacement through a
random matrix has a highly convoluted, rough boundary.
A measure of this roughness is given by the surface frac-
tal dimension d, . A smooth surface has a dimension of 2,
whereas a fractal is more space filling and has a dimen-
sion between 2 and 3. A three-dimensional fingering pat-
tern in a spherical region containing 20000 nodes is illus-
trated in Fig. 3(a).

To find the fractal dimension we cover the patterns
with a cubic grid of spacing e. A grid block is considered
to be occupied if it contains any injected fluid and is emp-
ty otherwise. On a cubic lattice each grid block has six
nearest neighbors. We compute the number, N(e), of
empty grid blocks which have one or more occupied
nearest neighbors. N(e) is a measure of the apparent sur-
face area of the displacement at a resolution e. We calcu-
late N(e) as we vary the grid spacing e and find that

N(e)-e ' with some noninteger power d„which is the
fractal dimension of the fluid interface. The fractal di-
mension is a characterization of the geometry of large
patterns. ' See Fig. 4(a). We can confirm that the bulk of
the displacement is compact. As the displacement devel-

ops we find the total volume of fluid injected V against
the root-mean-square radius r of the pattern. We find
V-r, as expected for a filled-in three-dimensional ob-
ject, Fig. 4(b). Only for displacements at an infinite
viscosity ratio is the interior of the displacement frac-
tal, ' ' ' ' which means that a negligible fraction of the
pore space is swept out by the injected fluid. Figure 5

gives approximate values for the surface dimension d, as
a function of viscosity ratio M in two and three dimen-
sions. The results are averaged from three different
fingering patterns containing 20000 nodes of injected
fluid at each value of M. Unfortunately, these simula-
tions are insufficiently large for accurate determinations
of d, to be made, since the graphs in Fig. 4 are linear only
over a small range of length. In two dimensions the com-
putations of d, are slightly lower than results on hexago-
nal networks, ' ' although they are consistent to within
numerical error.

Invasion percolation is the opposite limit: the advance
of the fluid interface is controlled entirely by capillary
forces. ' ' Here the injected fluid advances through
pathways of wide tubes, bypassing blobs of displaced fluid

(b)

FIG. 3. (a) A three-dimensional viscous fingering pattern. Fluid is injected into the center of a spherical region containing another

fluid 100 times more viscous. The contour of 50% saturation of injected fluid is shown. The pattern has been cut through the plane

x =0 and the colors represent the saturation contours at values greater than 50%. (b) Two-dimensional invasion percolation in a ran-

dorn network of 80000 nodes.
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of all sizes, Fig. 3(b). The process simulates the capillary
displacement of a nonwetting fluid at a fixed rate. When
the interface first reaches the edge of the network, the
displacement pattern is a mass fractal. Unlike a viscous
displacement, the pattern is very wispy and does not fill

space. The number of grid blocks of size e, X(e), con-
taining injected fluid scales as e with some noninteger

i.-g P;1 &

7 0

FIG. 5.. The dimension of the fluid interface as a function of
viscosity ratio M for unstable viscous displacements. The size
of the octahedra indicate the statistical error in the computation
from different simulations. The triangles represent the calculat-
ed dimensions at infinite viscosity ratio, when the displacement
is also a mass fractal.
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FIG. 4. (a) A doubly logarithmic plot of the apparent surface
area N(e) against grid size e for the fingering displacement illus-
trated in Fig. 3(a). The graph is an approximate straight line of
slope d, =2.26+0.05, which is an estimate of the surface dimen-
sion of the fluid interface. (b) A doubly logarithmic plot of the
volume of injected fluid against root-mean-square radius for the
pattern in Fig. 3(a). Here the points lie on a straight line of
slope approximately equal to 3, consistent with a compact
three-dimensional object.

power D. D is less than the dimension of space. We find
D =1.82+0.01 in two dimensions and D =2.44+0.05 in
three dimensions. The results are averages from 50 simu-
lations in networks containing 80000 and 50000 nodes in
two and three dimensions, respectively. These values are
consistent with experimental measurements" and numer-
ical calculations on regular lattices. 192425 The 1

tion of invasion percolation continues beyond the time
when the invading fluid first reaches the edge of the net-
work (breakthrough) until no further displacement is pos-
sible (the terminal point). This occurs when all the dis-
placed fluid is trapped in blobs completely surrounded by
injected fluid. In three dimensions this occurs when a
finite fraction of the network has been filled by the in-
vader: in two dimensions, however, the breakthrough
and terminal times are the same for very large net-
works. '

Capillary displacement for fluids with a variety of con-
tact angles, 8 (8= 180' is nonwetting and 8=0 is strongly
wetting) has been simulated in two dimensions by Ci l k

26
ie pa

and Robbins and investigated experimentally by Stokes
et al. in two and three dimensions. ' They find an in-
vasion percolation like displacement for large contact an-

g es, ut show that there is a crossover to a macroscopicles b
frontal advance at a critical contact angle 8„when the
fluid is partially wetting. In two dimensions the simula-
tions give a fracta1 dimension D =1.9, for 0= 180, which
is larger than our value. Their simulation models the dis-
placement at constant pressure, which leads to smaller
trapped regions Of defending fluid from those seen in in-
vasion percolation, which is a model of a constant rate in-
jection, where the injection pressure may fall if the inter-
face explores regions containing large pores and throats.
This could explain why their estimate of D is larger than
ours and consistent with D measured from capillary ad-
vance without trapping of the defending fluid.

At intermediate capillary numbers, we expect capillary
forces to be important at the scale of individual tubes.
However, over larger distances, the total viscous pressure
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drop will exceed the capillary force and the pattern will

look fingered. Invasion percolation is an appropriate
model for the microscopic advance, while simulations of
viscous fingering indicate the larger structure of the dis-
placement.

IV. MACROSCOPIC PARAMETERS

k„,(s)
q, = —K Vp;, (6a)

k„d(s)
qd= —K

p
Vpd, (6b)

where the subscripts i and d label the injected and dis-
placed Auids, respectively. The saturation s is defined as
the fraction of the total void space occupied by the inject-
ed Auid in the volume over which we take the average.
This volume is a small section of a larger displacement,
but is still of macroscopic size. Through it run fluxes of
both injected and displaced fluids. If there are no capil-
lary forces p, =pd, otherwise p, =pd+P„where P, is a
macroscopic capillary pressure. In this paper we will

only present calculations of relative permeability and
leave a discussion of this capillary pressure for further
studies.

On the microscopic level the Auids occupy separate in-

terpenetrating networks, with flow in tubes between the
two Auids inhibited by capillary pressure. Hence the Aow

rates are reduced from the single phase value by a factor
k„which is called the relative permeability. The relative
permeabilities depend on which portions of the void
space are occupied by the two fluids. At low flow rates,
the flow is dominated by capillary forces and the nonwet-
ting fluid occupies the wider tubes, while much of the dis-
placed fluid resides in disconnected blobs, which do not
contribute to the Aow. At higher flow rates or if we aver-
age on large scales, the advancing front of injected fluid is
affected by viscous forces, and k, takes account of finger-

ing on the averaged fluid velocity. This may be the case

We have given a quantitative description of the
geometry of the displacements. This characterization
does not lead easily to a complete and useful description
of the dynamics of large floods. For this, another, more
conventional, approach is needed. First we consider the
flow of a single fluid in a porous medium. If we have
Poiseuille fiow through each channel, then from Eq. (1)
we see that the flow rate is proportional to the pressure
gradient and inversely proportional to the Auid viscosity.
We would expect the same qualitative behavior if we
averaged the flow rate in a representative volume con-
taining many individual pore spaces and connections.
This leads to Darcy's law

Kq= ——Vp,
p

where q is a flow velocity, and K is the absolute permea-
bility.

If there are two fluids fiowing, we need a generalization
of the Darcy law above„which was first proposed by
Muskat

C)S +V q, =o.
Bt

(7)

For a viscous flood (N, = ~ ), q, =F(s)q, . Then we take
the annular average of Eq. (7), so that the saturation s is a
function of r and t only:

Bs(r, t ) 1+ ——[qoF(s(r, t))]=0 .
at r ar

(8)

Equation (8) can be written in terms of the single variable
U =r/(3q, t)'":

in some experimental measurements on rock samples,
and is certainly true for relative permeabilities which are
used in reservoir simulators. Here more of the channels
are accessible to Aow and less displaced fluid is bypassed
completely.

Three major assumptions have been made to introduce
these equations.

(1) That for an experiment with fixed physical proper-
ties, such as the capillary number N, and viscosity ratio
M, the relative permeability is a function only of the satu-
ration s. However, k„could depend on the overall size of
the displacement or be largely independent of an average
saturation and be controlled by pore-scale properties.

(2) That this computed relative permeability should im-

ply the same saturation profile as the saturations actually
observed.

(3) It is often considered that k„does not depend on

N„orthe length scale I over which we take the average.
However, we will show that k„is a function of capillary
number. Experimentally relative permeabilities are usu-

ally measured at very low flow rates. At higher capillary
numbers, where viscous forces become important, the rel-
ative permeability is known to change. "

As well as the relative permeabilities, we calculate the
fractional flow, F, which is the fraction of the total flow

q, =q;+qd carried by the injected fluid. For a purely
viscous fiood, F=p kd„(s)l[p;k„(ds)+pkd„,(s)], which is

assumed to be a function of saturation only.
Our microscopic simulation can be used to test the va-

lidity of the three assumptions outlined above.
The average pressures, saturations, and Aow rates are

computed at various times throughout the simulation in
forty annular regions dividing our spherical and circular
networks. This represents an average between 500 and
2000 individual pore spaces. Example results for a purely
viscous displacement are shown in Fig. 6, where the frac-
tional flow calculated at over ten times during the growth
in three different simulations is plotted against the mean
saturation. Notice that the points lie on a single curve,
which is required by the empirical description, although
it is not imposed by the pore-scale physics. This verifies
the first assumption we made above.

We will now demonstrate that this fractional flow is
consistent with the observed average saturation profile,
the two-phase Darcy equations, and the conservation of
Auid for viscous Aoods in three dimensions. For in-
compressible fluids conservation requires that V q, =O.
For simple radial Aow the solution is q, =qo/r, where r
is the distance from the injection site. The conservation
equation for the injected Auid is
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FIG. 6. The fractional flow of injected fluid as a function of
local mean saturation. The points are direct calculations in for-
ty annular regions of the network taken at over ten stages dur-

ing the flood from three different simulations of three-
dimensional viscous fingering with M=10. Notice that the
points all lie on a single curve. The solid line is the fractional
flow, which from the solution of the two-phase Darcy equations
would give the average saturation profile which is actually ob-
served.

ds 3 dF(s)
dv ds

Hence once s (v) is known, the consistent fractional flow
is simply

F(s)=I v (s)ds .
0

(10)

The computed saturation profiles s are functions only of v

for fixed M and N, . Equation (10) is used to find F(s)
which is the solid curve in Fig. 6. Our two independent
deterininations of F(s) yield the same function. This sup-
ports assumption (2).

Figure 7 shows fractional flow curves for a variety of
viscosity ratios. The larger the viscosity ratio M, the
greater the degree of fingering and the fractional flow
departs further from the near linear function seen for
M=1. The fractional flow is not exactly F(s)=s for
M=1 since the network is inhomogeneous. There is
some irregularity in the fluid interface, and a small frac-
tion of the displaced fluid is trapped in small blobs con-
taining one or two nodes. We have verified that F(s)
determined from Eq. (10) and the directly computed
values are consistent for each value of M.

The relative permeability can also be found directly us-
ing Eq. (6), and example curves for purely viscous and
purely capillary floods in three dimensions are shown in
Fig. 8. Notice that for the capillary flood, the relative
permeability of the displaced fluid reaches zero when
only 36% of the pores are filled, which means that 64%
of them are occupied by trapped, immobile regions sur-

FIG. 7. Fractional flow curves for three-dimensional viscous
fingering. The viscosity ratio M is indicated on the figure. The
curves are obtained from integrating the mean saturation profile
as described in the text.

rounded by the injected fluid. In the viscous displace-
ment a much lower fraction of displaced fluid is bypassed.

The relative permeabilities in Fig. 8 are not the same
and hence k„is a function of capillary number. Assump-
tion (3) is not correct. In dynamic situations the relative
permeability depends on the microscopic balance of
viscous to capillary forces, which controls the network of
pores and throats through which the fiuids fiow. k„may
also be affected by the total viscous pressure drop across
the volume over which we average, since this determines
the overall movement of the displacement. Thus relative

1.0—

0, 8
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0
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0 00 0 0. 2 0 4
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0.6 1 0

FIG. 8. Relative permeabilities as a function of saturation
computed on a three-dimensional network. Crosses, injected
fluid; triangles, displaced fluid. The curves to the left are for
capillary dominated flows and on the right are for a viscous
fingering pattern with M=10. The relative permeability is an
empirical macroscopic function, which controls the motion of
large displacements through the Darcy equation.
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permeabilities measured at low flow rates on small core
samples may not be the same as those which will govern
the macroscopic behavior in oil reservoirs, where viscous
forces are significant. The appropriate manner in which
relative permeability should be used in the prediction of
the flow in large systems, or in cases with different capil-
lary numbers, should be the subject of further work. The
concept of relative permeability is subtle, but still of con-
siderable use for the description of large displacements.

Relative permeabilities are measured experimentally in
systems where the microscopic flow mechanisms are not
known. We have been able to derive a macroscopic com-
putation in a system where the microscopic physics is
precisely specified. This demonstrates that the simple
physical mechanisms of pore-scale movement are con-
sistent with an averaged Darcy law description at a fixed
capillary number. Despite several analytical ap-
proaches, this has not been achieved directly before.

three dimensions. We described the fracta1 geometry of
viscous and capillary dominated floods.

The linear microscopic flow dynamics in our model is
well defined. The macroscopic displacement behavior is
conventionally described by the two-phase Darcy law,
which introduces empirical relative permeability and
fractional flow functions. We computed these quantities,
showed that they are functions of local saturation, and
demonstrated that they are consistent with the observed
radial saturation profile. The model can be used to iden-
tify the physical parameters on which the relative per-
meability depends. We have shown the relative per-
meabilities for extremely high and low flow rates. In a
flow with competing viscous and capillary forces across
the length over which we take the average, the relative
permeability will lie between these extremes, and will be a
function of both flow rate and length scale, which leads
to a nonlinear averaged Darcy equation.
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