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Adhesion of vesicles
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A simple model for the adhesion of vesicles to interfaces and membranes is introduced and

theoretically studied. It is shown that adhering {or bound) vesicles can exhibit a large variety of
dift'erent shapes. The notion of a contact angle governed by tension is found to be applicable only
for a restricted subset of these shapes. Furthermore, the vesicle undergoes a nontrivial adhesion
transition from a free to a bound state. This transition is governed by the balance between the
overall bending and adhesion energies, and occurs even in the absence of shape fluctuations.

Light and electron microscopy have revealed an aston-
ishing complexity of the spatial organization of biological
systems. ' There are two basic problems if one tries to un-
derstand the physical mechanisms behind this complexi-
ty: (i) these systems contain a large number of diff'erent
chemical species, and (ii) they represent dissipative struc-
tures which involve complex patterns of dynamical pro-
cesses. It turns out, however, that one can gain some in-
sight into their spatial organization if one considers very
simple model systems.

Lipid bilayers or membranes probably represent the
simplest models of this kind: (i) they already form in sim-

ple binary mixtures consisting only of lipid and water,
and (ii) they represent thermally equilibrated states while
the number of molecules within the bilayer is (almost)
constant on experimentally accessible time scales. In
aqueous solution, lipid bilayers form vesicles, i.e., closed
surfaces in order to prevent any contact between the hy-
drocarbon chains of the lipid and the water. It is general-
ly believed that this hydrophobic effect is also the main
mechanism behind the formation of vesicles in biological
systems. Indeed, these systems usually contain a large
number of such structures. The most obvious examples
are the big vesicles which represent the boundaries of bio-
logical cells. In addition, smaller vesicles are frequently
used for various transport processes within cells and
across cell boundaries.

Lipid vesicles can be easily isolated and then studied by

a variety of experimental techniques. These studies tend
to confirm the theoretical idea that the shape of a vesi-
cle is mainly controlled by the bending elasticity and thus
by the curvature of the bilayer or membrane.

In this paper, we theoretically study a simple model for
the adhesion of vesicles. In a biological context, vesicle
adhesion represents an essential step for many processes
such as, e.g. , endocytosis and exocytosis, ' that is, the
transport of small vesicles through large membrane sur-
faces. Likewise, the adhesion of vesicles is used in
biotechnological processes such as, e.g., drug delivery by
liposomes.

In our theoretical mode1, we ignore the details of the
molecular structure within the membrane, which is then
viewed as a thin Aexible sheet. We will assume, however,

that this membrane is fluid and thus governed by its
bending rigidity.

For a bound vesicle, the membrane segment adjacent
to the wall can experience a variety of intramolecular
forces, such as van der Waals, electrostatic, and structur-
al forces. In order to have a bound state, the effective in-
teraction potential must exhibit a minimum at a finite dis-
tance zo ~ This potential range is typically of the order of
a few nm. On the other hand, the radius of a vesicle typi-
cally varies from 0.1 to 10 pm. Since we are primarily in-
terested in the overall shape of the vesicle, we will ignore
spatial variations on the scale of the potential range zo.
Therefore we replace the microscopic interaction poten-
tial for adhesion by an effective contact potential.

Starting from a model for fluid membranes which in-
cludes both the bending energy and such a contact poten-
tial, we study the equation for the shape of a bound vesi-
cle which involves a novel boundary condition. Numeri-
cal solutions of these equations reveal a large variety of
different shapes. In addition, we find a nontrivial
adhesion (or unbinding) transition: as temperature or
pressure (or any other macroscopic parameter) is
changed, the vesicle undergoes a transition from a bound
to a free state in the presence of a nonzero contact poten-
tial. This transition is governed by the competition be-
tween bending and adhesion energies.

So far, thermally excited shape fluctuations have been
ignored. As explained towards the end of our paper,
these fluctuations introduce a crossover length R„which
separates two different regimes. For vesicle size R &R„
the unbinding is driven by the energetic mechanism just
described; for R )R„ it is driven by the shape fluctua-
tions and thus by entropy. This latter regime corre-
sponds to the unbinding transition of two roughly paral-
lel membranes as studied previously. " For phospholi-
pid bilayers, we estimate R, =n X(0.2 pm), where n is
the number of bilayers within the vesicle surface.

The distinction between these two different unbinding
regimes should be important both for experiments and
for computer simulations of such adhesion phenomena.
Consider, e.g. , a surface or wall with a potential strength
8 and vesicles characterized by a bending rigidity ~. If
the length scale R, =(2~/8')' satisfies R, &R„ the
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vesicle should unbind for energetic rather than entropic
reasons. In this case, the size distribution of bound vesi-
cles is predicted to exhibit a lower cutoff -R„which
should be accessible to various experimental techniques.
A single vesicle, on the other hand, which adheres to the
wall, could now unbind as the temperature is decreased
since its linear size shrinks as the result of the relatively
large thermal area expansivity of the bilayer.

It is interesting to compare the shape of a bound vesi-
cle with the shape of a liquid droplet adhering to an inter-
face. Such a droplet has a well-defined contact angle as
given by the Young-Dupre relation in terms of the vari-
ous interfacial tensions. The work presented below im-
plies that such a relation does not exist, in general, for
adhering vesicles. ' In fact, in the presence of a nonzero
bending rigidity, the contact potential no longer deter-
mines the contact angle (which is always equal to tr) but
the contact curvature. However, we also show that the
concept of an effective contact angle is useful provided (i)
the pressure inside the vesicle exceeds the outside pres-
sure, and (ii) the bending rigidity is sufficiently small.

Our results are obtained by minimizing the free-energy
functional F,

C*, = (2W/~) '~ (2)

Strictly speaking, this relation loses its meaning for any
a&0 since g=m. as discussed above. However, for small

where C*, denotes the principal curvature along the meri-
dian of the vesicle at this point. This equation determines
the contact curvature in terms of the contact potential
W; it holds for any value of Co and X irrespective of the
chosen ensemble. ' Numerical solutions of the shape
equation with the boundary condition (2) lead to a large
variety of shapes, some of which are shown in Fig. 1.

For ~=0, minimization of the free energy as given by
(1) leads to the Laplace equation with the Young-Dupre
equation as a boundary condition. The latter equation
determines the contact angle g via

W=X(1+cosg) .

F=F,+Fr+Fr, +F~

=(lc/2)It) dA(C, +C, —Co) —WA'+P f dV

+X It) dA .

The first term F, is the widely accepted expression of
Helfrich for the curvature energy, which depends on the
two principal curvatures C I and C2, on the spontaneous
curvature Co, and on the bending rigidity Ir. (We assume
a fixed spherical topology of the vesicle and thus do not
include the Gaussian curvature. ) In the second term,
8'~ 0 denotes the contact potential for adhesion and A '
is the contact area. The last two terms in (1) refer to the
constraints for the volume and the area of the vesicle.
These constraints depend on the physical situation and
define different statistical ensembles. On short time
scales, the enclosed volume is essentially constant. The
Lagrange multiplier P must then be adjusted in order to
ensure this prescribed volume. If one allows for changes
in the volume, e.g., by a different osmotic pressure inside
and outside the vesicle, P denotes this difference
P =P,„,—P;„,. Likewise the parameter X is either a
Lagrange multiplier to ensure a fixed total area A or
represents a lateral tension thus allowing for nonconstant
total area.

In the absence of the contact term F~, minimization of
the free energy as in (1) leads to the shape equation for
free vesicles. We consider axisymmetric shapes for which
the shape equation is given by a system of nonlinear ordi-
nary differential equations. These equations remain
valid for bound vesicles since the adhesion term F~
enters only as a boundary condition at the contact point.
First, the contact angle P is always given by f=rr, since
any other contact angle implies an infinite curvature en-
ergy. Second, variation of the contact point yields the
novel boundary condition'
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FIG. 1. Shapes of bound vesicles which all have the same
area A =4~: (a) for reduced pressure p =0, and reduced con-
tact potential m=2. 0,2.9,4. 1,6.4, 10.2 with increasing contact
area 3 *. Shapes for p & 0 look similar; (b) {p, tL) )

=(14.6,2.0), (14.0,6. 1),{14.1, 12.9) with increasing A *;and (c)
(p, m ) = ( —386.5, 375.2). This shape has a reduced tension
rr =265 3and an etfe.ctive contact ang1e @=65.5' in agreement
with (3).
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p =PR /s, —w= WR /i~, o =XR "/~, (4)

with A:—4m R
'-. For reduced contact potential w )w, (p)

the vesicle is bound to the wall, while for w (w, (p) it is
free even in the presence of an attractive wall. The char-
acter of the adhesion (or unbinding) transition between
both states depends crucially on the value of p. Several
cases must be distinguished: (i) For p (pi, with p, =4
(p, =4—2COR for general Co), and especially whenever
the pressure inside is higher than outside, the phase
boundary (C, ) represents a continuous transition at

w, =2 or, equivalently, at R, =(2a/W)' . Thus, for
fixed ~ and 8', small vesicles with radii R &R, are free,
while the larger ones are bound within the above model.
For these bound vesicles, the contact area 3 * vanishes as
3*-R Aw/~inlaw~ with bw =w —2 at (C, ). The ener-

gy difference AF between the bound and the free states
scales as

AF-ii(hw) /~inlaw
~

at C„.
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FIG. 2. Schematic phase diagram for Col=0. Above the
phase boundary (C„S,, D,'",S, ,D"') the vesicle is bound, below
it is free.

~, the bound vesicle becomes a spherical cap for P &0,
which exhibits a rounded contact region on the length
scale R, =(2a/W)' . The effective contact angle ij'j,s of
the spherical part with the wall as indicated in Fig. 1(c)
indeed obeys the Young-Dupre equation (3) with /=it, ff.

Note that this effective contact angle is only defined in
the limit where the length scale R, is small compared to
the linear size R =—& A /4m of the vesicle.

Although the shape equation and hence the shapes do
not depend on the choice of constraints for 3 and V, the
phase diagram does, because the relevant free energies for
the free and adhering solution depend on this choice.
For a fixed total surface area A and a given pressure
difference P, this free energy is the enthalpy
F +Fgr +Fp. The free solution has no contribution to
F~ but typically a lower bending energy F,. The com-
petition of Fii. and F, (and Fp) leads to nontrivial phase
transitions. A typical phase diagram is shown in Fig. 2
for Co=0 and fixed area. The phase diagrams for CoWO
and other choices of constraints exhibit similar features
as will be discussed elsewhere.

The phase diagram in Fig. 2 is basically divided into
tv o parts which may be characterized by means of the re-
duced variables

The limit b w ~0 is singular since C*, =2/R +0(hw/R),
while C, =1/R for the free spherical vesicle. (ii) For
p, &p &p„with p2 ——11.4, the free spherical vesicle coex-
ists with a bound state of finite A *, corresponding to a
discontinuous transition (D,' ). (iii) The phase boundaries
C, and D, meet at the special tricritical point (Si ). At
S, , we find A* —R b, w and bF-ir(bw) . The phase
boundary (D,'~) is given by b, w ——exp( —const/hp )

where bp =p —p, and 3 '-R exp( —const/Ap) along

D,'~. (iv) At P =@2, the free spherical vesicle undergoes a
first-order transition (Df ) to a prolate ellipsoid. This
leads to a change in slope of the phase boundary at the
triple point (Sz). The curve D~' denotes the coexistence
curve between the bound state and the free prolate shape.
(v) Within the region of the phase diagram where the free
prolate ellipsoid represents the stable state, the vesicle
undergoes transitions between different metastable states.
In Fig. 2, these transitions are displayed by dashed lines.
The phase boundary (D,'") is continued into this metasta-
ble region. At the critical end point (S3) with p3 =12
(p3=12 —2COR for COR & —1.2), the free sphere loses
its metastability and undergoes a continuous transition
(Cf ) to an oblate ellipsoid. For p )P3, the curve (D; )

denotes the coexistence between this oblate ellipsoid and
a metastable bound state. At the azeotropic point (S„),
with p4-—13.7 for Co=0, the curvature of the bound
vesicle vanishes at the top and bottom while the contact
area A* vanishes as A*-R w' . For p )p4 the phase
boundary increases again, separating free and adhering
metastable shapes which are concave at the top; see Fig.
1(b). (vi) These transitions between metastable states be-
come transitions between stable states for COR & —1.2.
In this case, the free spherical vesicle undergoes a first-
order transition (Df ) to an oblate ellipsoid at p =@2.
Consequently, the adhesion transition (D," ) separates a
stable bound state from this stable free oblate shape.

The adhesion transitions just described are driven by
the overall curvature of the vesicle. If the gain in
adhesion energy does not overcome the cost in bending
energy, the vesicle unbinds from the wall. In real sys-
tems, these transitions are preempted by thermal activa-
tion since the vesicles have a finite size and thus a finite
contact area. Indeed, in the presence of a large amount
of water, any bound vesicle will unbind on sufficiently
large time scales of order -exp(

~
AF /T) where b,F is the

difference in free energies of the bound and the free state.
Close to an adhesion transition, this free-energy
difference becomes small. At the transition C„ for exam-

ple, the behavior of b,F as given by (5) leads to the esti-
mate that such an activated unbinding process dominates
for 5w =b w.„,= ( T /ir )

' ~ with hw = w —2. For fiuid bi-

layers at room temperature, one has K = 10 ' J,
Troom 4 + 10 ' J, and thus Awact

The theory presented here does not yet include the
effect of thermally excited fluctuations about the extremal
vesicle shape. Such fluctuations can, in fact, be observed
by optical methods both for free' ' and for bound' vesi-
cles. They will lead to an entropic contribution to the
free energy' and should increase the tendency of the
vesicle to unbind. For an investigation of this effect one
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has to use a more microscopic model in which the adja-
cent segment of the vesicle experiences an interaction po-
tential V(z) where z denotes its distance from the wall.
The attractive part of V(z) is given by
V„(z)=—U(zo/z)", where U &0 may be identified with
the contact potential W of the coarse-grained description
in (1). As long as r ~2, which includes the important
case of van der Waals forces, an infinite membrane un-
binds at a finite value U, of the amplitude U. Above
this transition, the free-energy density f scales as
f—U,"(U/U,"—l) . Consequently, a finite membrane
segment of linear size R will unbind via thermal activa-
tion at U, (R)= U, +a&(TU,")'~ /R, where a& is a nu-
merical coefficient of order unity. Equating U, (R) with
W, (R) yields the crossover radius R, =(2tc/U, ")' for
the phase boundary C„which is then given by
W, (R) =2tc/R for R ((R, as in the absence of fiuctua-
tions and by W, (R)=U, (R) for R ))R, . A numerical
estimate of R, may be obtained from Monte Carlo data, '

which yield for a square-well potential with range zo the
critical depth U,

"=0.2T /(tczo). For zo=3 nm,
T=4X10 ' J, and a single bilayer with v=10 ' J, we
find R, =0.2 pm.

In these estimates of the fluctuation effects, we did not
include the overall constraint arising from the closure of
the membrane. This constraint presumably leads to an
effective tension. As shown in Ref. 12, a lateral tension
acts to reduce the amplitude of the shape fluctuations and
thus to increase the tendency for adhesion. In the
present context, the effective tension arising from the clo-
sure constraint must vanish for large vesicle size R. For

small R, on the other hand, the relevant contact potential
W= W, (R)=w, tc/R' is large and thus is hardly renor-
malized by the shape fluctuations. Therefore the possible
influence of such an effective tension should be restricted
to intermediate R values.

In summary, we have introduced and studied a simple
model for the adhesion of vesicles that leads (i) to a
variety of different shapes for bound vesicles and (ii) to
nontrivial adhesion transitions between bound and free
vesicle states. Our estimates indicate that these phenom-
ena should be accessible to experiments using standard
optical methods, such as, e.g. , phase contrast microcopy.

Our theory can be extended in several ways. Adhesion
to a curved wall, mutual adhesion of vesicles, and the
influence of long-ranged adhesion potentials can be treat-
ed within the same theoretical framework. Likewise, we
could include additional elastic terms into the free energy
in order to study the adhesion of vesicles composed of
crystalline or polymerized membranes. A more elaborate
problem is a local stability analysis of bound vesicle states
which will presumably show the importance of nonax-
isymmetric shapes for certain regions of the phase dia-
gram. Finally, one may study the effect of an attractive
wall on the topology of vesicles. Indeed, we have found
that adhesion can change the topology since it can in-
duced vesicle fusion. '
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