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Analytical equation of state for molecular fluids: Kihara model for rodlike molecules
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We present an analytical equation of state for convex-molecule fluids in any number of dimen-

sions, based on statistical-mechanical perturbation theory for hard convex bodies. The second virial

coefficient is calculated exactly. Two temperature-dependent parameters in addition to the second
virial coefficient arise, an effective molecular volume (or van der Waals covolume) and a scaling fac-

tor for the average contact pair distribution function of hard convex bodies. The equation is tested

against computer simulations and perturbation calculations for the model of rodlike molecules in-

teracting via a Kihara (12,6) potential. This model allows the two temperature-dependent parame-
ters to be calculated from the intermolecular potential by simple quadrature, without further ap-
proximations for averaging over molecular orientations. The agreement is quite good.

I. INTRODUCTION

The calculation of the equilibrium properties of molec-
ular fluids from intermolecular potentials is a basic
theoretical problem of long-standing interest. The most
successful statistical-mechanical theories of molecular
fluids at present are perturbation theories based on refer-
ence systems consisting of hard bodies, ' analogous to
the perturbation theories of simple fluids based on hard
spheres. Two main different methods are used in these
perturbation theories, depending on the type of pair po-
tentials used to characterize the molecular interactions:
the multicenter potential (interaction-site model), or the
Kihara core potential. The respective perturbation
theories employ corresponding fused hard spheres or
hard convex bodies as reference systems. Their main
difference follows from the use of angle-dependent molec-
ular distribution functions in the former and average dis-
tribution functions in the latter when evaluating the per-
turbation terms. Unfortunately, both types of theories
require considerable numerical computation and no sim-

ple analytical equation of state for molecular fluids is
forthcoming.

We present here a simple analytical equation of state
for molecular fluids, using as a reference system a fluid of
hard convex bodies, for which an analytical equation of
state has recently been developed. Although based on
statistical-mechanical perturbation theory, our result
differs from previous theories in two important features:
the treatment of the second virial coefficient, and the
determination of an effective hard-body volume. The
second virial coefficient is calculated exactly rather than
by perturbation theory, so that an accurate description of
the fluid at low densities is automatically obtained. The
effective hard-body volume is calculated according to a
simple algorithm giving it as a function of temperature
alone, rather than as a function of both temperature and
density. It is largely these features that lead to a simple
analytical result for the equation of state.

We compare the present equation of state with results
for a system of rodlike molecules interacting according to

a Kihara (12,6) core model. This model tests the essen-
tials of the theory, with no adjustable parameters as
would be needed for a real fluid. The model also avoids
having to make any additional approximations in
separating the angular and radial parts of perturbation
integrals, since the pair potential depends only on the
shortest surface-to-surface distance of the molecular
cores regardless of their relative orientation. Such addi-
tional approximations are needed in applying the present
theory to real molecular fluids. We compare both with
results from computer simulations and from a previous
perturbation theory.

It is easy to keep the dimensionality d of the problem
arbitrary, at least initially, because the equation of state
for the hard-body reference system has been given for ar-
bitrary d. However, comparisons are possible at present
only for d =3.

II. STATISTICAL-MECHANICAL DERIVATION

The present derivation is similar to that given earlier
for fluids of spherical particles, but molecular fluids are
more difficult to treat because both the pair potential and
the pair distribution function depend on molecular orien-
tations as well as on positions. We begin with the pres-
sure equation under the assumption that the intermolecu-
lar potentials are pairwise additive,

pkT

where p is the pressure, p=N/V is the number density,
kT has the usual meaning, d is the dimensionality, r and
co denote the vectors of relative position and orientation
coordinates, respectively (co is normalized so that

f dc@= l), u (r, co) is the intermolecular pair potential,
and g(r, co) is the molecular pair distribution function.

We first separate out the exact second virial coefficient
82, and then rewrite the remaining integral in terms of
the cavity distribution function y (r, ~),
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= 1+8&p+pI,
pkT

where
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(2)

f(s)=o(s+) . (12)

example, molecular-dynamics simulations of g,„(s) for
hard ellipsoids give results much like those for hard
spheres. '

It is interesting to apply Eqs. (2)—(11) to hard convex
bodies, since in this case f (s) is a 6 function,

I(T)= f ff(r, m)[y(r, co) 1—]r drdro,1

2d

%'e get immediately

=1+bpG,
pk1

(13)

f(r, e)) = 1

kT
Bu(r, rsi) —,(, )Ikr

Br
(5) where b is the second virial coefficient of the hard bodies

and

y(r, co)—:e"'" 'I" g(r, co) . (6) G =y,„(0)=g,„(0+)

I(T)=-,' f f(s)[y,„(s)—1]V, +, +,(s)ds,
0

where

f() 1 du(s)u(s)lkT
kT ds

(7)

The integral I(T) is to be evaluated by perturbation
theory. For spherical potentials, the function f(r) is
sharply peaked andy(r} is slowly varying in the vicinity
of the peak, so that the integral of the product f (y —1)
can be split into a product of two terms that are easily
evaluated. But for nonspherical potentials, the angular
part of the integration must somehow be dealt with be-
fore such a split can be made. For general u (r, r0) this re-
quires some sort of additional approximation. A virtue
of the Kihara core model is that it allows the angular in-
tegration to be done exactly, so that the theory can be
tested independently of any approximation for angular
averaging.

The angular integration proceeds as follows for a sys-
tern of convex bodies with the pair potential dependent
only on the shortest surface-to-surface distance. The in-

tegral I(T) is expressed in terms of variables characteriz-
ing convex-body geometries in three dimensions, that is,
two angles 8 and P are used to determine the normal of
the supporting plane between the bodies, angles co are
used to determine the relative orientation of the two bo-
dies, and s is used to determine the shortest surface-to-
surface distance between the bodies. On performing this
coordinate transformation one obtains '

(15)I ( T) =a( T)[G (71 )
—1],

sm du()(s) —uo(s)IkT
a(T) = — f e ' V, +, +z(s)ds, (16)

2kT o ds

where a( T) is a scaling factor that accounts for the soft-
ness of the repulsion and G (g) is the average contact pair
distribution function for hard convex bodies at a density
corresponding to the packing fraction q. The packing
fraction is related to the volume vo of a single hard con-
vex body by

'9=vop .

is the average pair distribution function at contact for the
hard bodies, for which an accurate approximation is
available. '

For convex-molecular fluids other than hard bodies we
can evaluate I( T) by perturbation theory, using the re-
sults of Eqs. (13) and (14) for the reference fiuid. The
physical basis for the derivation is the same as for spheri-
cal molecules, namely, that the structure of the fluid is
largely determined by the repulsive interactions. We fol-
low the same approximations used for spherical mole-
cules because the important features of f (s) and y,„(s)
are similar to those of spherical molecules, and use the
method of Weeks, Chandler, and Andersen' (WCA) in
which u (s) is divided at its minimum into a region of
repulsive force and a region of attractive force. The re-
sult is

y ( S ) e uu( s ) Ik Tg ( S } (9) In Eq. (16), uo(s) is the repulsive part of u (s),

g,„(s)= f f fg(O, p, s, co)r. X
3~]+,+2

uo(s) =
u(s)+E, s (s
0, s&s

X d 0 d (I) d co,

V, +, +2(s)= —,
' f f f r. X dOdgdco .

Br Br

(10) in which c. is the depth of the potential well and s is its
minimum position.

On combining Eqs. (2) and (15) we obtain an equation
of state of the form

Here g,„(s) is the average pair distribution function and

V, +, +z is the volume of a body outlined by the center of
molecule 2 when it is moved around molecule 1 with con-
stant surface-to-surface distance s. " The behavior of
g,„(s) as a function of s is similar to that of the radial dis-
tribution function g(r) of spherical-molecule liuids. For

=1+Bop+ p[aG(g) —1],
pkT

(19)

which contains the two temperature-dependent quantities
Bz(T) and a( T), and the still unspecified quantity Uo, the
effective volume of a single nonhard convex molecule.
The functional form of G(g) must also be determined.
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1 —yln+y292
G(ri) =

(1—i) )
(20)

where y1 and y2 are chosen to reproduce the correct
third and fourth virial coefficients, B3 and B4, respective-
ly, of the hard convex bodies (HCB}:

y, =d —2 F,B3
(21)

HCB

Notice that a( T} is just the contribution of the repulsive
forces to B2(T); in this sense Eq. (19) is valid for any
dimensionality, although the particular coordinate trans-
formations of Eqs. (10) and (11) that involve V, +, +2 are
specific for d =3.

It remains to specify G (7)) and to choose an algorithm
for deterinining uo. For G(r)) we adopt our equation of
state for hard convex bodies in any number of dimen-
sions,

plicated) to calculate the dimensionless coefficients F, y„
and y2 from the first three virial coefficients of the corre-
sponding hard convex bodies, via Eqs. (21)—(23). The
real potential is then used to calculate the second virial
coefficient B2(T) via Eq. (3), the repulsive contribution
a(T) to the second virial coefficient via Eq. (16), and the
effective molecular volume uo(T), or equivalently the
effective covolume b(T), via Eqs. (24) or (25). This com-
pletely defines the equation of state, Eq. (19), with G(i))
given by Eq. (20}.

III. COMPARISONS

Although the foregoing results should be applicable in
any number of dimensions, results for comparison are
available only for d =3, for a Kihara (12,6) core poten-
tial,

y =—'d(d —1)—2 d2 2
b HCB

u (s) =s Sm
12

Sm—2
s

6

(26)

+22(d —1) 4B
b

F2
HCB

(22)

The shape of the convex bodies is contained entirely in y,
and y2, inasmuch as g depends only on the volume but
not the shape. The second virial coefficient b and the
shape factor F are related to the molecular volume by

b=2" 'vo (23)

so that F is unity for spheres. Thus the hard-body refer-
ence fluid requires knowledge of its first three virial
coefficients in order to characterize the size and shape of
its molecules.

The statistical-mechanical derivation does not give a
definite prescription for the determination of the effective
volume vo, but it suggest limiting behaviors at low and
high temperatures from which a suitable algorithm for
the calculation of vo as a function of T alone can be de-
vised. This algorithm is most conveniently expressed in
terms of an effective value of ~, which plays the role of a
van der Waals covolume, and has the same appearance as
for spherical molecules:

Vi+, +2 —uo, +u(i2+S(R2+S2R(+(S +iS +i8nR, R ) 2s
+4m.(R, +R2)s + ', n.s— (27)

The second virial coefficient b is determined by a single
dimensionless combination of v o, S, and R,

y =RS/3vo,

which is unity for spheres. Then b and F are given by

(28)

The available results include computer simulations, and
a previous perturbation theory that gives numerical
rather than analytical results. Comparisons can be made
not only with the equation of state itself, but also with the
internal energy and the Helmholtz free energy.

We deal first with the geometrical part of the calcula-
tion, involving the first three virial coefficients of the
effective hard convex body. In three dimensions a hard
convex body can be characterized by its volume vo, its
surface area 5, and an integrated mean radius of curva-
ture R." In terms of these quantities the volume V1+, +2
1s

b(T) =2 'vo(T)F =a+ T
dT

(24)

b =(1+3y)uo,

F =(1+3y)/4 .

(29)

(30)

This expression holds for arbitrary d; the explicit expres-
sion for d =3 is

A single parameter y is not sufficient to determine 83
and 84 uniquely, but for the present purposes adequate
approximations exist. They lead to the following expres-
sions for y, and y2:

1 m ~o(s} —u&(s)lkTb(T)=—,uo(s) e ' V+, +,(s}ds .
2(kT)~ o ds

1+6y+ 3y
1+3y

2+ [21 (B4/v o )Hs]—y+ 7yy2=3-
1+3y

(31)

(32)

This complete the specification of the equation of state.
To summarize, once the shape of the convex molecules

is given, it is only an exercise in geometry (perhaps com-

where (B4/vo)Hs=18. 36. . . is the fourth virial coeffi-

cient for hard spheres. The resulting expression for G (il)
1s
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(1+3y)—(2+3y —3y )r)+ [1+[(B,/Uo )Hs
—12]y —7@2)i)2

G(7))=-
(1+3y)(1—i))

(33)

This completes the geometric part of the problem involv-
ing the hard-body cores.

A. Equation of state

Vega and Frenkel have carried out Monte Carlo simu-
lations for a system of rodlike molecules interacting via
the Kihara (12,6) core potential of Eq. (26), in order to
test the perturbation theory of Boublik. They chose the
core to be thin rods of length L. For this model we can
calculate exact values of Bz(T), a(T), and b(T) from
Eqs. (3), (16), and (25), respectively; after integration by
parts the formulas become

I

for a spherical (12,6) potential if L =0.
Rather than calculate third and fourth virial

coefficients to determine G (il), we use the approximation
of Eq. (33); this requires the choice of a reference system
of hard convex bodies in order to determine the parame-
ter y. Following Boublik and Vega and Frenkel, we
choose the reference system to be hard prolate sphero-
cylinders of length L and diameter 0., where 0.=s /2'
is the parameter of the (12,6) potential such that
u (cr)=0. Then y is given by

[1+(L/o )[2+(L/o )]
2+ 3(L /o. )

B2(T)=2'f (1—e " "
) +Ls+s ds,—u/kT L

0 8
(34)

and the packing fraction g by

g=U0P =bP/4F
S L2

a( T) =2' f (1—e '
) +Ls +s ds,

0 8
(35) 277P rrt ~ 0 —

uo lkT
e1+3y 0 kT

b(T)=2m J 1 — 1+ e
kT

L
X +Ls +s2 ds .

8
(38)

L
X +Ls +s ds,

8
(36)

where uo(s) is the repulsive branch of u (s) as defined in
Eq. (18). Notice that these expressions reduce to those

Vega and Frenkel carried out simulations for both the
repulsive potential uo(s) and the full potential u (s). For
the repulsive potential we have B2( T) =a( T) and Eq. (19)
reduces to

Po = 1+apG(i) ),
pkT

(39)

10) i i

L//cr =0.2

kT/a=1.
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FIG. 1. Compressibility factor as a function of reduced den-
sity for rodlike molecules interacting via a Kihara (12,6) repul-
sive potential. The curves are a priori calculations from the po-
tential and the points are computer simulations. The dashed
curve for L/o. =0 corresponds to a Lennard-Jones (12,6) repul-
sive Quid. The reduced temperature is kT/v=1 for L/o. =0
and 1, and kT/c =1.075 for L/cr =0.2899.
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FIG. 2. Compressibility factor as a function of reduced den-
sity for the full Kihara (12,6) model for rodlike molecules. The
curve is an a priori calculation from the potential, the squares
are Monte Carlo calculations (Ref. 7), and the triangles are
perturbation-theory calculations (Ref. 4).
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FIG. 3. Excess Helmholtz free energy as a function of re-
duced density for the same system as in Fig. 2.

where p0 represents the pressure associated with uo. The
comparison of the results for the repulsive potential with
the present equation of state are shown in Fig. 1 for tem-
peratures near kT/e= l. The agreement is comparable
to that found previously for the spherical (12,6) repulsive
potential, which corresponds to L /0 =0.

Figure 2 shows results for the full Kihara (12,6) poten-
tial, including both the computer simulations and the
perturbation calculation by Boublik based on the WCA
method. The comparisons are again comparable to those
found previously for the spherical potential (L/o =0).
Notice that the present equation of state is slightly better

1.0

FIG. 5. Excess internal energy as a function of reduced den-
sity for the same system as in Figs. 2 and 3 {full Kihara poten-
tial). The squares are Monte Carlo calculations, and the trian-
gles and circles are perturbation-theory calculations.

than the perturbation calculation at low densities, and
slightly poorer at high densities. This is the result of our
treating B2 exactly, but taking b to be a function only of
T rather than of both T and p.

B. Helmholtz free energy

Once the equation of state is known, one can easily cal-
culate the density dependence of the thermodynamic
functions. For T and p as independent variables, the fun-
damental thermodynamic function is the Helmholtz free
energy A = U —TS. The excess free energy, relative to
the ideal gas at the same temperature and density, is
found by integration of the equation of state,

A '"(7) )

NkT Xk J." '""'"'
4(B2 —a)F

b

0,5
4aF t2 (I+1'I )n —r2(2 —3') ]n

b 2(1—g)

—@~in(1 —g) (40)

0.0

I I I I I I I I I I I [ I I

Although there are no computer simulations for 3'", re-
sults are available from the perturbation calculation of
Boublik. The comparison with the results from the
present equation of state is shown in Fig. 3. The agree-
ment is comparable to that found previously for the
spherical (12,6) potential.

0.2 0.4 0.6
C. Internal energy

FIG. 4. Excess internal energy as a function of reduced den-
sity for the same system as in Fig. 1 {Kihara repulsive potential).

The excess internal energy can be found by
differentiation of Eq. (40):
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U'"(g)
NkT

4F a,F [2—(1+@t )vl Y2(2 —
3sl )]'rl

T g+4 1 — g+yzln(1 —g)—
b dT b 2(1 —g)2

4aF dbT y2ln(1 —g)+dT
(3—y, )ri —(I+y, )g +@2(2 5r—i+5' )rl

2(1 —q)
(41)

Comparisons are shown in Fig. 4 for the repulsive poten-
tial uo, and in Fig. 5 for the full potential u. The agree-
ment is again comparable to that for a spherical poten-
tial.

IV. CONCLUSIONS

The present equation of state, Eq. (19), represents a
first step towards the realization of the old van der Waals
dream of a general analytical equation of state for real
fluids that is based on fundamental theory. It is a first
step because the evaluation of the quantities a(T) and
G(ri) has been carried out here only for the Kihara core
model of the molecular interactions. The good agree-
ment with both computer simulations and perturbation
calculations for rodlike Kihara-model molecules indicates
that the approximations of the statistical-mechanical
theory underlying Eq. (19) are accurate.

Application to real molecular fluids requires further
approximations for averaging over molecular orienta-
tions, and is considered in the following paper. ' The im-
portant point is that the Kihara model tests the present
theory in a form uncontaminated by such further approx-
imations.

There are some inherent restrictions on Eq. (19), which
can be summarized as follows.

(1) Repulsion forces dominate the structure of the
dense fluids: this is the fundamental assumption of the

I

theory.
(2) The intermolecular potentials are pairwise additive:

no explicit account is taken of many-body forces.
(3) The repulsive molecular core is convex; if it is not,

we do not have a suitable general representation of G (ri).
(4) The fluid must remain isotropic: the theory does

not describe liquid-crystal phases.
(5) No freezing transition is predicted: at best, Eq. (19)

continues smoothly into the metastable liquid region.
(6) The entire pair potential must be known to evaluate

the parameters 82(T), a(T), and b( T). The relaxation of
this restriction for real molecular fluids is taken up in the
following paper. '

Finally, we note that the mathematical form of Eq. (19)
is, after clearing fractions, a quintic polynomial in the
density for three dimensions (generally a polynomial of
order d +2), the same as for spherical molecular fluids.
As such, it exhibits a first-order phase transition (on ma-
ing the Maxwell construction through the van der
Waals —like loop), and a critical point. Although these
features were not investigated here for the Kihara model,
they are considered for real molecular fluids in the fol-
lowing paper.
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