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It is usually assumed that a balanced homodyne detector measures a variable called the
quadrature phase amplitude of a signal field. We examine this assumption by obtaining analytic
expressions for the probability statistics for the output of such a detector for a single mode
signal with both signal and local oscillator treated quantum mechanically. We investigate the
conditions under which the statistics of the quadrature phase are reproduced in the actual output
of the detector. We show that the most obvious condition —that the number of quanta in the
local oscillator be much larger than the number in the signal —is not su%cient to ensure that
a balanced homodyne detector acts like an ideal detector of quadrature phases. Furthermore,
we obtain the explicit conditions that are necessary and sufficient to reproduce the interference
features in the homodyne statistics of a superposition of coherent states.

I. INTRODUCTION

The homodyne detector is a fundamental device for
measuring phase-sensitive properties of optical fields. Its
phase sensitivity comes from beating a signal field against
a local oscillator, which acts as a phase reference. Re-
cently, the quantum limits of measurement have been
probed using these devices in optical experiments~ in-

volving squeezed statess of light. It is usually assumed
that the observable measured by the homodyne detector
is one of the quadrature phase amplitudes; this is strictly
true in the limit that the local oscillator's amplitude is
taken to infinity. In this paper we investigate the effects
of a finite-amplitude fully-quantum-mechanical local os-
cillator.

The electric field of a near-monochromatic plane wave
can be written

j(kx-At) + f -i(ks-At)"2."
= ai cos(At —kz) + az sin(At —kz),

simplified treatment the homodyne detector's output is
a continuous variable; it is continuous in the sense that
the observable can take on a continuum of values. Such
a device with a truly classical local oscillator could be
thought of as an ideal detector of quadrature phase am-

plitudes.
A quantum treatment of the local oscillator in the

balanced homodyne detector is shown schematically in

Fig. 1. The signal a and local oscillator 5 fields combine
at the 50-50 beamsplitter to give the sum and difference
fields c and d in the two arms of the detector. These com-
bined fields are incident on a pair of ideal photodetectors
that in each counting interval will yield a photocurrent
proportional to the number of quanta counted, i.e. ,

I) oc c~c

Iz oc dtd

Er,o = 2lELo l cos(At —kz), (1.2)

where a = ai + iaz is the annihilation operator for
this plane-wave mode, and ai and a2 are the Hermitian
quadrature phase amplitudes. If we were to visualize the
electric field E of Eq. (1.1) plotted on a complex plane
then we would see that ai and a2 are analogs of the po-
sition and momentum of a mechanical oscillator. For a
classical local oscillator of the form

photodetector 1

a

50-50
be~m sPlitter

I, oc c~c

I2 oc d~d ]i

photodetector 2

ID = II —I2

the beating between E in Eq. (1.1) and E&o (averaged
over several optical periods) has its only significant con-
tribution from the term

IELo lai

This term is, apart from a scale factor involving the local
oscillator amplitude, the quadrature phase aq. In this

FIG. 1. Schematic of a balanced homodyne detector. The
signal and local oscillator combine at a 50-50 beam splitter to
give the sum and difference amplitudes c = (a+ b)/~2 and
d = (a —h)/ J2, respectively The dete.ctor's output is given

by the diR'erence photocurrent between the two detectors—
which are assumed to have equal gains.
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where II. STATISTICS OF HOMODYNE DETECTION

a+b
C =

7

a —b

The normalized current from each will be a non-negative
integer. Now, with the gains of the photodetectors equal
(for the balanced configuration) the difFerence photocur-
rent has the form

1
P(N) = dk —y(k) exp( —ikN) .

2x
(2 1)

In quantum theory the characteristic function is de-

fined in a manner analogous to the way it is defined clas-

sically, so we have

In this section we will calculate the probability statis-
tics for a balanced homodyne detector. We shall de-
termine the probability statistics for the difference pho-
tocurrent atb+bta to take the value N by first calculating
its characteristic function, g(k). This probability distri-
bution will then be given by

ID = I, —r, ~ bta+ atb, (1.6) g(k):—tr {j,j t, exp [ik(a t b + bt a)]}, (2.2)

which unlike Eq. (1.3) is not a continuous observable. It
should be noted that throughout this paper the terms
"homodyne statistics" and "probability statistics of the
difference photocurrent" are used interchangeably.

There is a difficulty with Eq. (1.4) that is worth
mentioning. a If the signal and local oscillator are com-

ing in a continuous stream, then it will be difficult to sep-
arate the counting intervals so that quanta are counted
from distinguishable spatial modes. One way around this
problem is to use a pulsed scheme with signal and lo-

cal oscillator fields strongly overlapping spatially within
the detectors. A study of this, however, would require
a broadband analysis which is outside the scope of this
paper.

The quantum nature of the local oscillator has been
investigated by several authors. 0 iz In each case, how-

ever, only corrections to the first and second moments of
the difference photocurrent have been calculated, and no
attempt has been made to see how closely the discrete
output from the quantum device approximates the "con-
tinuous" output expected of an ideal detector of quadra-
ture phase amplitude.

In Sec. II of this paper we develop a general formalism
for calculating the probability statistics of the difference
photocurrent, Eq. (1.6), and we obtain closed-form ex-
pressions for the cases of a coherent local oscillator and

signal either in a coherent state or in a superposition of
coherent states.

VVe analyze the asymptotic limits of these expressions
in Sec. III (not just a few moments) as the amplitude of
the local oscillator tends to infinity, to see how the whole

distribution of the difference photocurrent varies.
There is an obvious condition to ensure that the statis-

tics of the balanced homodyne detector can reproduce the
details of an ideal detector of quadrature phase: that the
number of quanta in the local oscillator is much larger
than the number in the signal field. We show, in Sec. IV,
that this condition is not suFicient. We go on to de-
rive explicit conditions for a homodyne detector to ap-
proximate an ideal detector of quadrature phase statistics
when the signal is either in a coherent state or a super-
position of coherent states, and the local oscillator is in
a coherent state.

where p, and py are the states of the signal and local
oscillator, respectively. In order to obtain a general ex-

pression for this characteristic function we shall represent
the density matrices in terms of a c-number distribution
called the positive-P representation. Thus,

Pg = d Q']. G Q'2
2 2 +1 2 P (ni »')

0!2 Q'y
(2 3)

for the signal, where lni) and lnq) are coherent states for
the signal with respective amplitudes nq and a2, and

P~(ni, n2) is a positive-P representation of the signal
state p . Similarly, a positive-P representation for the
local oscillator yields

pb = d pld p2 Pb(pl p2) '
Ipi)(pzl

2 i
(2.4)

where

'
(n2lni)

'
(p~ Ipi)

X P (nl. n2)+b(pl p2)X21 (2 5)

/9i = (n2, Pel exp[ik(a b+ b a)]lniyi, Pi) . (2.6)

In order to calculate y2q we need only place the expo-
nential operator in Eq. (2.6) in normal order; this step
becomes easy if we rely on the theorem

(1 —A)' ' =: exp( —Rata):, (2.7)

In Eqs. (2.3) and (2.4) we have used a convention of
writing nz for nz and Pz for Pz simply for the conve-

nience of notation. We note that this representation is

completely general, assuming only that the signal and
local oscillator are initially uncorrelated. Thus, the ex-
pressions we obtain can be applied to nonclassical states
such as sub-poissonian, squeezed, and superposed coher-
ent states. Indeed, the discussion of Sec. IV is mainly
concerned with the homodyne detector's ability to re-
produce the interference features seen in the quadrature
phase statistics for coherent superpositions.

In terms of these distributions the characterist, ic func-
tion of Eq. (2.2) may be written solely in terms of coher-
ent state matrix elements,
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where the colon bracketing:: means to place the en-

closed operator in normal-order form without regard to
operator algebra; e.g. ,

D (x atI5+ jta ctc dtd (2 9)

To use Eq. (2.7) we need only recall that the difference
current may be written

: ata:=: aat:= ata . (2.8) so that

gag
—(n2, Psl: exp[—(1 —e'")ctc —(1 —e '")dtd]: lag, Pg) .

This matrix element can now be evaluated immediately to give

x2& = ex& [—(I —e'")c2c~ —(I —e '")~2d~l(» l»)(»IPi)
where

o~+ Pc .
1 2 d

(s —P~)
)

(2.11)

(2.12)

Because y2q alone in Eq. (2.5) depends on the Fourier variable k, this part of the integral may be performed
separately:

f 1
x» exp(-i&N) = (»l»)(P~IP~) exp(-c2c& d2d~)2'

c&cq
"

d2dq 1
x), ,

dk exp[ik(n —m —N)] .
~ ~

n, m

(2.13)

The integral over k is seen to lead to a sum of Dirac b functions, which spike at integral values of N. This stems from
using a continuous form of the Fourier transform. We may reduce this expression to a more standard discrete form

by integrating about small intervals at integral values of N In this w. ay Eq. (2.13) becomes

t'c', c, 'I
(o'sl~x)(PslPs) exp( —czcz —dzdi) I d, d I I~ps~(2/czcidzdq),

d~d) j (2.14)

where I~(z) is the modified Bessel function of integral order. ~4 Care needs to be taken in choosing the square-root
branches when Eq. (2.14) is evaluated; for instance, one could take the square roots of each term c2cq and d~d&

separately, thus ensuring a consistent choice of branch cut throughout.
Combining these results gives the discrete form for the distribution in Eq. (2.1) as

N(2
PN —— d'aid'e2d' ld' 2P. el e2 Pb 1 2 exp-c2cl —

2 1 d' II% 2 c2c1d2dl (2.15)

For the remainder of this section we shall concentrate on some specific choices for the states of the signal and local
oscillator. In particular, we shall for the rest of the paper consider the case of the local oscillator in a coherent state
py = IP)(PI, in which case Eq. (2.15) can be reduced to

NI2
PN —— d e1d a2P n1, n2 exp —o'za& —

d, d II,N~ 2 c&csd2d (2.16)

With py —p2 —p.
For the signal also in a coherent state lo)(ol the homodyne statistics of Eq. (2.16) reduces to

(2.17)

with the special case of the signal in vacuum IO)(0I being given by

(2.18)

There is one last case for which we write down the explicit form of the exact homodyne statistics: when the signal
is in the superposition state

W[cos OIo, ) + (sin e)e*'I~,)], (2.19)
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where

2= 1

1+ sin(28)Re(e'&(ni Ia2))
(2.20)

In this case the homodyne statistics are

PN = A' (cos' &) «p( —Ia'i I' —IPI') I)N((la'i + Pllai —PI)

N

+(»n'II) exp( —I»l' —Ipl') I~N~(1~2+ pll» —pl)Q'2—

r —ip (c2ci l N/2

+sin(28)Re e ' (a2lai) exp( —c2ci —d2di) I, I I(N((2+c2cid2di)
qd2di 9

(2.21)

where c; and d; are defined in Eq. (2.12).
In the next section we shall consider the asymptotic

forms of the above expressions as the local oscillator am-

plitude grows large.

III. ASYMPTOTIC FORMS

In the preceding section, we obtained exact expressions
for the probability statistics in direct-counting experi-
ments from a balanced homodyne detector.

The coherent state is the quantum state that most
closely resembles the classical description of a harmonic
oscillator. This resemblance becomes exact as the exci-
tation of the coherent state tends to infinity. Thus, one
could think of the process of taking a coherent state' s

excitation to infinity as the classical limit for that state.
This line of reasoning will also hold for coherent states

of light representing individual modes of an electromag-
netic field; whose equations of free evolution are just
those of a harmonic oscillator. Thus, the classical limit of
the local oscillator's coherent state IP) will be approached
as phoo.

We shall now repeat the calculations of Sec. II to ob-
tain asymptotic expansions of the homodyne statistics as

IPI is taken to be large. We could perform asymptotic ex-

pansions of our results in Sec. II by applying the known
asymptotic expansions of the modified Bessel functions;
we shall instead take a more general approach and per-
form the asymptotic expansion of the homodyne statis-
tics directly.

VVe wish to expand the operator

0—:(pl exp[ik(a b+ b a)]lp), (3.1)

to O(IPI 2) about the classical result. To do this we first
expand

X- = (Pl(a'b+ b'a)" IP) (3 2)

to O(lpl" ). Using a shift operator we may write
Eq. (3.2) as the vacuum expectation:

X„=(Ol [(a P + aP') + (at b + ab )]"I0)

where

= ( 'P+ P')" + s-+ o(IPI" '),

S- -=(oIS[(a'b+ ab')'(a'P+ aP")" 'llo) (3 4)
P

is the second term in the binomial expansion of X„; the
symbol S reminds us to symmetrize among the bracketed
factors following it S„ma. y be evaluated by writing it
explicitly as

n —2 n —2-1
(-tp+ -p*) -t(-tp+ -p. )n- —-m-(-tp+ -p*)m

l=p m=0
n —2 n —2—t

= ) ) [at(atp+ ap*)" a+ mpat(atp+ ap')" + Ip'(atp+ ap')" a+ Imlpl (atp+ ap*)" ]
l=o m=0

After performing these elementary sums we find

n n —1X = (a P+ aP')" + a (a P+ aP*)" a
2

+"'" '"" "[p.t(.-tp+.-p )- +p-.-(.-tp+.p)---]-
6

IPI'( tP .P')"-' o(IPI"-')

(3.5)

(3.6)
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This expression allows us to obtain the asymptotic form for Eq. (3.1) directly from a power series expansion of the
exponential

(ik)"X„
n?

n=O

= E+ ' "«+ ' P"E+/3"Eu]+ I@I'&+o(IPI ')
6 24

(3 7)

where E is just the version with a classical local oscillator; that is, the classical limit:

E —= exp[i&(atP+ aP')] . (3 8)

The probability statistics of Eq. (2.1) may now be obtained by substituting Eq. (3.7) into Eq. (2.6), (recalling that in
this section we treat the local oscillator as a coherent state) to get

1 -ikNP(N) = f d daazzP (az, az) dk- e '
( [az[8)a.z

(a2iag)
' ' '

22r

The integral over k in Eq. (3.9) may be performed yielding

P(N) = f d azd az P, (az, az)exp[ —(N —z) /2]
2x

'

(3 9)

x 1+ ' '
[(N —z)' —1]+ (N —z)[(N —z)' —3]2IPI' 6I&l'

+„,[(N - )'-6(N - )'+3]+o(IPI-'), (3.10)

where

(3.11)

and

(&gP+ oiP')
(3.12)

are just scaled variables appropriate for the output of a homodyne detector with a local oscillator of amplitude IPI.
It is instructive to look at some special cases of Eq (3.10).. For the signal in a vacuum the homodyne statistics

asymptotically approach

(3.13)

For the signal in a coherent state In)(ni they become

P(N) exp[—(N —z) /2] 1 + [(N —z) —1] + (N —z) [(N —z) —3]
~22r 2IPI' 6IPI'

[(N —~)' —6(N —~)'+ 3] + o(IPI-')
24IPI2

(3.14)

where

c2P' + o"P
IPI

(3.15)

is just the scaled quadrature phase variable of the homo-
dyne detector.

We could similarly write down the asymptotic form for
the superposition of coherent states in Eq. (2.19); this is
easy enough given Eq. (3.10), however, so we shall not

I

write out the result explicitly.
The general result given by Eq. (3.10) allows us to

check previous calculations of corrections to the moments
of the quadrature phase amplitudes as seen by the homo-
dyne detector. We find

(3.16)
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(3.17)

and

+o(lpl-'), (3.18)

therefore

(3.19)

where Ai is the uncertainty of the scaled quadrature
phase amplitude

much greater than the number in the signal.
There is, however, another mode of operation: namely,

to obtain a histogram of the statistics for the photocur-
rent. Ideally this would reproduce the statistics of the
quadrature phase, however, as we have seen in the pre-
vious sections this is only strictly achieved for a classical
local oscillator. We shall show by example that the con-
dition of Eq. (4.1) is not sufficient.

let us first consider an example for which the condi-
tion of Eq. (4.1) does work well; the case where the sig-
nal is in a coherent state. The exact statistics are given

by Eq. (2.17) and the asymptotic form by Eq. (3.14).
Since the statistics are only significant near the bell of the
Gaussian, the corrections due to a quantum-mechanical
local oscillator in Eq. (3.14) are small provided

and

ap'+ atp

Ipl
(3.20)

(3.21)

(4.2)

Further, if we assume that the local oscillator has more
than a few quanta this relation reduces to

(4.3)

is the number of quanta in the signal. The re-
sult of Eq. (3.19) is in agreement with previous
calculations'0 i of the fluctuations of a homodyne de-
tector's output.

IV. CONDITIONS FOR AN IDEAL
HOMODYNE DETECTOR

which reproduces Eq. (4.1). There is one thing we must
check, and that is that the discrete nature of the ac-
tual detector does not miss any details of the quadrature
phase statistics, The discreteness limits N to consecu-
tive values differing by 1/IPI, but the scale of significant
changes in the homodyne statistics of a coherent state is
the width of the Gaussian distribution of Eq. (3.14), and
this gives the supplementary condition that

In this section we discuss the conditions needed for
a homodyne detector to mimic an ideal detector of
quadratic phase amplitudes. We shall restrict our at,-
tention to explicit conditions for the cases of the signal
in a coherent state or a superposition of coherent states;
again we assume in this section that the local oscillator
is in a coherent state.

If one is only ever interested in using the homodyne de-
tector to measure uncertainties in the quadrature phase
amplitudes then Eq. (3.19) is all that is required, and we

require

(4.1)

i.e. , the number of quanta in the local oscillator must be

(4.4)

which is contained already in Eq. (4.2). Thus, the ho-

modyne statistics of a coherent state closely follow the
quadrature phase statistics so long as

(4 5)

A/[cos eloi) + (sin 8)e'~ln2)j . (4 6)

The density matrix of this state can be written as the
sum of three terms

We now present an example for which the condition of
Eq. (4.1) is not sufficient in general. We consider a signal
in the coherent superposition

&'[c»'~I~i)(~il+»n'01~2)(~2l+sin0 cose(e' l&2)(»I+e 'l~i)(~21)l, (4.7)

each of which will contribute independently to the homodyne statistics. The first two terms (the diagonal terms)
will give a contribution to the homodyne statistics that reduce to the quadrature phase statistics respectively when

(n~)» 1~iI' a«(n~»& 1~2l'.
However, the most important features, which should be carefully reproduced, are the interference eA'ects. The

ofF-diagonal terms in Eq. (4.7) give a contribution that can be read oK directly from Eq. (3.10) as being
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sin(2()) Re (ayIni) e' exp[—(N —z) /2]
27r

x 1 + [(N —z) —1] + (N —z) [(N —z) —3] + [(N —z) —6(N —z) + 3]
2IPI' 6IPI' 241PI'

+o(IPI ') (4.8)

Now if either ni or cr2 is larger than about 2, this expression reduces significantly when the interference terms are

biggest, i.e. , when z is purely imaginary, we get

sin(28)Re (cr2Icri)e'~ exp[—(N —z) /2] I
1 — + O(z /4IP I) I

( (z4 —4n2niz')
8IP'I

(4 9)

The correction terms in Eq. (4.9) are insignificant pro-
vided (nb)» (4.11)

lz' —4~5~iz'I lzl'
nb )) (4.10)

which is already contained within Eq. (4.10).
There are two special cases of the state in Eq. (4.6)

that are worthy of note. Firstly, consider the case
There is one thing left to check in the above condi-

tions, and that is that the discrete nature of the homo-
dyne statistics is capable of showing the fine interference
pattern. Since the distance between fringes is 2r/Izl, we

will require ~~ = -~+e, lel & 1/l~l.

(4.12)

Q. l.g I I I I'5

(b)

Q, l

C

0,05-- /
L
I

0.0

-10

DifFerence Photocurrent

-20

I))fFerence I ])oto( urrent,

0.00S "

-' I).()()0-

r.

(}.()0-)-

Q.002-

0.0
-150 l.i0

DifFerence Photocurrent

odyne statistics (solid line) and the quadrature phase statistics (dmh d 1' ) fo th
( I ) + sin HI~)), with 8 = 10', (n ) —4.2, and (a) (nb) = 9, (h) (n ) = 225, d ( ) (" ) = 36o0.
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In this case, the first condition of Eq. (4.10) may be
dropped, and the second condition reduces to

( s)»(.) (4.13)

The other extreme case is when

ng —0,
(4.14)

In this case, the first condition of Eq. (4.10) dominates,

yielding

(rit) » (n.)'
8 8sin 8

(4.15)

To demonstrate this result we show both the homodyne
statistics (solid line) and the quadrature phase statistics
(dashed line) in Fig. 2 for the state

V. CONCLUSION

The balanced homodyne detector is the paradigm of
phase-sensitive detection schemes in quantum optics. We
have studied the effect of a quantum local oscillator in a
coherent state for this detector when it is coupled to a sin-

gle signal mode. We have calculated explicit general ex-
pressions for the output statistics of the difference current
of this detector (applicable even to nonclassical states),
and have compared them to the statistics of the variable
called the quadrature phase amplitude. We have shown
that the simplistic condition that the number of quanta
in the local oscillator be much larger than the number in
the signal is not sufficient, to ensure that the homodyne
detector approximates an ideal detector of the quadra-
ture phase amplitude. Furthermore, we have derived ex-
plicit conditions for this approximation to be achieved
when the signal being detected is a coherent state or a
superposition of coherent states.

JV(cos 8~0) + sin 8 ~cx)), (4.16)
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