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Capillary behavior of binary liquid mixtures near criticality: Rise and kinetics
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In three different phase-separated binary liquid mixtures we have observed stationary capillary
rises in which the meniscus curvature is inconsistent with the sign of the rise. This "inverted-
meniscus" configuration occurs within approximately 50 mK of the mixture's critical temperature
and shows no sign of decay after much longer than the characteristic time for relaxation. We also
report experiments showing that perturbation of the wetting layer inside the capillary tube can
dramatically affect the capillary rise. This motivates three scenarios in which the behavior of the
wetting layer foils an equilibrium capillary rise measurement of the contact angle and produces an

inverted meniscus.

I. INTRODUCTION

The phenomenon of capillary rise has been exploited
by various researchers to investigate the wetting behavior
of near-critical systems. ' These studies usually pit
gravity against surface tension to infer the thermodynam-
ic contact angle as a function of temperature, and thereby
characterize the state of wetting. With refinements in
both technique and sample preparation, capillary rise
should continue to be a powerful tool in the search for,
and study of, exotic wetting transitions, such as the par-
tial drying or continuous wetting transitions (see, e.g. ,
Refs. 7 —10). However, a review of capillary-rise tech-
niques for this purpose has not, to the best of our
knowledge, appeared in the literature. Existing re-
views"' emphasize capillary rise for the measurement
of surface tension rather than of contact angle.

On one level, this paper illustrates the need for a sys-
tematic understanding of the technique and attempts to
serve such a purpose. However, our initial motivation
was to explore and understand a surprising, and highly
reproducible, phenomenon dubbed the "inverted men-
iscus, " which prevents the determination of contact an-
gle from capillary rise. ' We begin by discussing in detail
how the equilibrium capillary rise can be measured with
confidence, and then demonstrate the procedures on
three different binary liquid mixtures. We identify the
time constant for capillary-rise relaxation and measure it
as a function of temperature for two of these mixtures.
Next, we present observations of the inverted meniscus
showing how standard procedures can dramatically fail
to give sensible contact angle results when within roughly
50 mK of the critical temperature T, . Possible explana-
tions are proposed after we show that perturbation of the
wetting 1ayer which coats inside the capillary tube can
significantly affect the capi11ary rise.

II. EXPERIMENTAL MATERIALS
AND PREPARATIONS

The sample cells used for all measurements presented
in this paper are similar to those described in Ref. 4, and
used in Refs. 4—6. They consist of a 12-cm-long glass
cylinder, inner diameter 0.9 cm, whose bottom is fused
shut and whose top can be sealed with a TeAon stopcock
The cells were filled with a critical composition binary
liquid mixture, according to volume fraction, to a total
liquid volume of approximately 7 ml. All reagents were
obtained commercially, '" and were used without further
purification. The critical temperature for each cell was
measured visually to within +2 mK to monitor sample
purity and aging effects. Our thermostat was stable
against temperature drifts to better than 1 mK/day, and
held temperature gradients (measured across 4 cm along
the outside of the sample cell) to smaller than 1 mK/cm.

All capillary tubes used in this study were cut from
borosilicate glass micropipets. ' They had inner radii of
0.134, 0.188, or 0.300 mm, and lengths typically between 4
and 6 cm. The capillaries were held and manipulated in
side the sample cell by a cylindrical TeAon holder which
contained a Teflon-encapsulated magnetic stir bar (see Fig.
2 of Ref. 4). The cleaning procedures for all glass parts
(capillaries and sample cell) were identical, or similar, to
those described in Refs. 4 and 5. The basic procedure is to
sonicate in changes of soap plus distilled water, acetone
methanol, ethylenediamine tetra-acetic acid (EDTA) solu-
tion, ' then 10%%u~ nitric acid, and to flush and sonicate with
distilled water between each step. The cleaning pro
cedures for all Teflon parts (capillary holder and stopcock)
were identical, or similar, to those described in Refs. 4 and
5; i.e., sonication in soap plus distilled water followed by
liberal rinsing, sonicating, and/or boiling with distilled wa
ter. We found that no systematic changes in the wetting
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behavior of clean, hydroxylated, capillaries were produced

by variation of these procedures.
Carbon disulgde plus nitromethane This mixture has a

critical temperature of T =63 C and a critical composi-
tion of P, =0.6014 volume fraction of carbon disulfide. '

This system has T, drifts on the order of +5 mK/day.
Equilibrium capillary-rise measurements have been re-
ported as a function of

~

T —T, ~
and surface chemistry in

Refs. 4—6. Clean, hydroxylated capillaries are complete-
ly wetted by the upper, nitromethane-rich phase and
therefore normally exhibit a negative capillary rise (i.e., a
capillary depression). From 18 to 0.5 K below T„our
complete-wetting rise times radius data (from Ref. 6)
obey the expected power law with amplitude a0=45+3
mm [see Eq. (2) and Sec. III].

Cyclohexane plus acetic anhydride. This mixture has a
critical temperature of T, =52'C and a critical composi-
tion of P, =0.613 volume fraction of cyclohexane. ' Ini-
tial T, drifts were negative, but ceased after a few weeks;
the value of T, was then constant to within k2 mK over
4 months. Equilibrium capillary-rise measurements have
been reported as a function of

~
T —T, ~

and surface chem-
istry in Ref. 5. Clean, hydroxylated capillaries are com-
pletely wetted by the lower, acetic anhydride-rich phase
and therefore normally exhibit a positive capillary rise.
From 40 to 1 K below T„our complete-wetting rise
times radius data (from Ref. 5) obey the expected power
law with amplitude a o

= 13.0+0.6 mm [see Eq. (2) and
Sec. III].

2, 6-lutidine plus water. This mixture has an inverted
coexistence curve with a critical temperature of
T, =33 'C and a critical composition of P, =0.304
volume fraction of lutidine. ' There was no noticeable T,
drift: the value was constant to within k2 mK over 9
months. Equilibrium rise measurements in borosilicate
capillaries have been reported as a function of T —T, and
added salt concentration in Refs, 1 and 3, respectively.
In agreement with these references, we find that
sufficiently clean borosilicate and quartz capillaries are
both completely wetted by the lower, water-rich phase
and therefore normally exhibit a positive capillary rise. '

From 8 to 0.1 K above T, (one order of magnitude closer
than approached in Refs. 1 and 3), our new rise times ra-
dius data obey the expected power law with amplitude
a&=120+10 mm [see Eq. (2) and Sec. III]. Going far
above T„Refs.1 and 3 both found that this system ex-
hibits a transition to partial wetting by the water-rich
phase.

III. EQUILIBRIUM CAPILLARY RISE

The equilibrium capillary rise H, in a tube of inner ra-
dius r of a binary liquid mixture whose two coexisting
phases have density difference hp and interfacial surface
tension cr is given by the capillary-rise formula"'

2o. cosO

Apgr

Here 0 is the contact angle and g is gravitational ac-

celeration. This formula represents the balance of hydro-
static pressure due to gravity and the Laplace pressure
due to the curved interface. It is not valid if the rise is
smaller than, or comparable to, the inner radius of the
capillary. As discussed later, it also fails if the densities
of the two phases inside the capillary are different from
their respective values outside the capillary. References
4—6 demonstrate how Eq. (1) permits the contact angle of
a partially wet capillary to be determined accurately by
the ratio of its rise with that of a complete wet capillary.

Consider the case, as in all measurements reported
here, of complete wetting by one of the phases, such that
~cos8~ =1. The temperature dependence of the capillary
rise is then a power law in reduced temperature
t = ( T —T, ) /T„which follows from the known" power
laws for the interfacial tension o =cro~t~" and density
difference b,p=po~t ~:

H, r =ao~t~" ~, p,
—P=0.936+0.005 . (2)

The value of p —p is taken from the well-established
theoretical exponent estimates p = 1.264+0.002 and
p =0.328+0.004. Note that a o

= 2cr Olpog and is in-

dependent of the capillary radius.
This power-law prediction has been verified experimen-

tally and values of ao, noted earlier for the three binary
liquid mixtures of this study, have been obtained as fol-
lows. After equilibrating the temperature of the sample
cell, the liquid mixture was stirred thoroughly by raising
and lowering the capillary tubes through the length of the
cell. Next, sufficient time was allowed for the rain of
bubbles in each of the phases to reach the bulk meniscus,
leaving two clear coexisting phases of equilibrium compo-
sition. Agitation was often required to dislodge bubbles
inside the capillaries, especially if they happened to be
submerged in the nonwetting phase. Once all bubbles
were gone and the two phases perfectly clear, the capil-
laries were slowly raised through the bulk meniscus.
After the rise inside the capillary reached a stationary
value, it was measured with a cathetometer ' of resolu-
tion 0.01 mm. Note that these procedures ensure that
the liquid phases inside the capillary had the same com-
positions as outside. Several measurements were then
made by repositioning the capillaries with respect to the
bulk meniscus and measuring the rise after reequilibra-
tion. Since the meniscus inside the capillary barely
moves while the capillary is repositioned, the approach to
the new equilibrium position can be chosen as advancing
or receding by either raising or lowering the capillaries,
depending on which phase wets the substrate. For the
case of complete wetting far enough from T, that the rise
is much greater than the radius, we found the same re-
sults for both advancing and receding directions.

Inspection 'of H,qr versus
~
T —T, ~

data in the log-log
plot of Fig. 1 reveals power-law behavior which could be
fitted for exponent and amplitude ao. Instead, the ampli-
tude values quoted earlier were obtained by forcing the
exponent to be p —p=0. 936 and fitting only for ao; these
fits are included in Fig. 1. Note that this method of
analysis is a more stringent test of the predicted power
law (2) than if the exponent were also adjusted. It also
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FIG. 1. Capillary-rise times radius vs temperature for three
binary liquid mixtures: 2,6-lutidine plus water (left set), carbon
disulfide plus nitromethane (middle set), and cyclohexane plus
acetic anhydride (right set). The dashed lines are the fits to Eq.
(2) for amplitude a L keeping the exponent fixed at p —P=0.936.
Open (solid) symbols are for receding (advancing) meniscus
directions; squares (circles) represent 0.134- (0.188-) rnm-radii
capillaries. The right axis shows capillary rise in units of radius
for the larger capillary tube r =0.188 mm.

provides a more reliable value of the amplitude az. As
described in Ref. 6, a correction due to the mislocation of
the bulk meniscus was first performed on our 2,6-1utidine
plus water and carbon disulfide plus nitromethane
capillary-rise data.

IV. KINETICS OF CAPILLARY RISE

FIG. 2. Capillary rise vs time after repositioning for 2,6-
lutidine plus water at T, +20 mK. The relaxations are exponen-
tial, as predicted by Eq. (3). Open (solid) symbols are for reced-
ing (advancing) meniscus directions; squares (circles) represent
the 0.134- (0.188-) mm-inner-radius capillary. Contrary to ex-
pectation, here the receding menisci relax faster than advancing
ones.

versus time after repositioning. For carbon disulfide plus
nitromethane we observed the relaxation in a 0.134-mm-
radius capillary; for 2,6-1utidine plus water we observed
the relaxation in both 0.134- and 0.188-mm-radii capil-
laries, an example of which is shown in Fig. 2. The
lengths were always L =6 crn. In every observation the
relaxation was exponential over the entire range of reso-
lution: tens to hundredths of millimeters. Time constants
were extracted from semilogarithmic plots and are
displayed in Fig. 3. Note that in these experiments the

This section concerns the kinetics of capillary-rise re-
laxation after the repositioning procedure described
above. The purpose is to demonstrate our certainty that
sufficient time had passed before capillary-rise values
were measured. To good approximation, the relaxation
can be described by the %ashburn equation as a balance
of hydrostatic and interfacial curvature pressures with
viscous forces from flow inside the capillary.
Neglecting inertial and entrance e6'ects and assuming
that the viscosities of the liquid phases are well matched
(a good approximation sufficiently close to T, ), we find
that the predicted relaxation is exponential:

H (r) —H, q
~ exp( rlro), —S'IL

Apgr

10 '=

10 2

Ng

p

I

I

Here ~ is time, ~p is the relaxation time constant, q is the

dynamic viscosity, and L is the length of the capillary.
Therefore 'Tpr /L is independent of r and L, and should
have the power-law temperature dependence gati ~, as-
suming that viscosity is independent of temperature.
Note that this prediction is the same for both advancing
and receding directions.

We have examined Eq. (3) experimentally for two
binary liquid systems by measuring the capillary rise
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FIG. 3. Capillary-rise relaxation time vs temperature for
2,6-lutidine plus water (upper set) and carbon disulfide plus ni-
tromethane (lower set). These data are scaled with the radius r
and length L of the capillary according to Eq. (3), and show the
expected power-law temperature dependence (dashed line).
Open (solid) symbols are for receding (advancing) meniscus
directions; squares (circles) represent 0.134- (0.188-) mm-inner-
radii capillaries.
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fluid motion is very slow, as characterized by the
Reynold's number Aa, =prV/rl, where V is the average
flow speed and p is the mass density. The smallest time
constant observed was ~o=31 s for carbon disulfide plus
nitromethane at 684 mK below T, in a 0.134-mm-inner-
radius capillary. From this case, we estimate that
JVR, =O. 1 was the largest Reynold's number attained in
our experiments.

For the carbon disulfide plus nitromethane mixture, a
very good fit to all the relaxation data is given by
d'or /L =(1.13+0.08 scm)X10 ~ti ~, as shown in Fig.
3. At some temperatures, the relaxation in the receding
meniscus direction seems to be faster than in the advanc-
ing direction; however, the difference is not much larger
than our estimated uncertainty.

For the case of 2,6-lutidine plus water, the time con-
stants for different radii tubes collapse according to Eq. (3),
but we could not obtain a fit to the appropriate power law
of comparable quality to the previous mixture. Again
fixing the value of P, we obtain ror /L =(31+5
scm) X10 gati ~, as shown in Fig. 3. The failure to ob-
tain an excellent fit over the entire temperature range may
be due to the decrease of viscosity with increasing temper-
atures (consistent with the systematic deviation seen at
large T —T, in Fig. 3). Just as for carbon disulfide plus ni-
tromethane, at most temperatures we find no significant
difference between advancing and receding directions.
However, contrary to the prediction of the Washburn
equation, at T —T, =20 mK we find a smaller time con-
stant for the receding case to well within our uncertainty.
This can be readily seen in Fig. 2. To repeat, near T, a
receding meniscus relaxes faster than an advancing men-
iscus. The wetting layer structure near the moving men-
iscus might be reponsible.

V. INVERTED MENISCUS

The procedures developed and followed above for
measuring the equilibrium rise of a binary liquid mixture
inside a capillary tube can be used with confidence
suSciently far from T, . Nevertheless, in this section we
present a series of observations on three different mix-
tures near T, in which these same procedures dramatical-
ly fail. We consistently observed an "inverted-meniscus"
phenomenon in which the sign of the capillary rise con-
tradicted the meniscus curvature. As T, was ap-
proached, the equilibrium capillary rise at first decreased
in accord with Eq. (2). Then sufficiently close to T„we
found that the capillary rise could change sign even
though the curvature of the meniscus did not. This
configuration is a blatent violation of the usual equilibri-
um achieved by a balance of hydrostatic and capillary
pressures, represented by the capillary-rise formula (1),
yet it persists much longer than the characteristic time
for relaxation. We call such an observation "stationary, "
but cannot conclude that the configuration is truly steady
state. For clarity we depict normal- and inverted-
meniscus configurations in Fig. 4. In Fig. 5 we display a
photograph of an inverted meniscus at T, —35 mK inside
a 0.188-mm-inner-radius capillary tube containing carbon

(a) (b) (c) (ci)

normal meniscus inverted meniscus

FIG. 4. Schematic of (a) and (b) normal and (c) and (d) in-
verted meniscus configurations. (a) and (c) for carbon disulfide
plus nitromethane, the upper, nitromethane-rich, phase wets
glass. (b) and (d) for 2,6-1utidine plus water, the lower, water-
rich, phase wets glass. (b) and (d) for cyclohexane plus acetic
anhydride, the lower, acetic anhydride-rich, phase wets glass.
Note that the wetting layer thickness has been greatly exag-
gerated for clarity.

disulfide plus nitromethane: the capillary rise is positive
even though the curvature clearly indicates wetting by
the upper case. This photograph was taken long after a
stationary value of the rise had been reached. Note that
the extreme flatness of the bulk meniscus simplifies obser-
vation of the inverted meniscus.

Our experience was that very near T, an inverted men-
iscus usually appeared. Occasionally, however, the in-
verted meniscus was not found, either because it was ob-
scured by the bulk meniscus or because it was too fiat to
ascertain its curvature. We have never observed its cur-
vature to change sign with respect to its value further
from T, . In Fig. 6 we present both a typical observation
and nonobservation of an inverted meniscus at 20 mK
into the two phase region of a 2,6-lutidine plus water
mixture inside a 0.188-mm-inner-radius capillary. As
also seen further away from T„the meniscus curvature
indicated wetting by the lower phase. At time zero the
capillary tube was raised through the bulk meniscus and
the height of the meniscus inside the capillary was moni-
tored as it receded down toward, and then through, the
bulk meniscus. A stationary inverted meniscus was at-
tained by 100 min and persisted unchanged for the dura-
tion of the observation. Next, time was reset to zero and
the capillary was repositioned a few centimeters lower.
The meniscus inside the capillary was then monitored as
it advanced upward and disappeared into the bulk men-
iscus. This represents a null observation of the inverted
meniscus for the advancing meniscus direction.

Figure 7 presents observations of the inverted meniscus
in a third mixture: cyclohexane plus acetic anhydride.
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FIG. 6. Capillary rise vs time after repositioning for 2,6-
lutidine plus water at T, +20 mK inside a 0.188-mm-inner-
radius capillary (these data were shown earlier in Fig. 2). Note
that in the receding case (open circles) the rise reached a sta-
tionary negative value even though the observed curvature indi-
cated wetting by the lower phase: this is an inverted meniscus.
For the advancing meniscus (solid circles) the rise became ob-
scured in the bulk meniscus: this is a normal meniscus. The
dashed lines indicate the range over which curvature of the bulk
meniscus may interfere with observation.

FIG. 5. Photograph of the inverted meniscus in a 0.188-mm-
inner-radius capillary at 35 mK below the critical temperature
of a carbon disulfide plus nitromethane mixture. 0 (I) indicates
the outer (inner) wa11 of the capillary tube; BM and IM indicate
the respective bulk and inverted meniscus positions; and s is the
capillary rise. Note that s is positive even though the meniscus
curvature is clearly visible and implies wetting by the upper
phase.

Here we tracked the capillary rise in four capillaries
versus time for 114 h. The meniscus curvatures in this
mixture indicated wetting by the lower phase, so the neg-
ative capillary rise implies an inverted meniscus. This
figure again shows that the inverted meniscus can exist in
different mixtures, and that it truly persists for times
much greater than the characteristic time for capillary-
rise relaxation (equal to aproximately 10 min here). For
the carbon disulfide plus nitromethane mixture, our long-
est observation of an inverted meniscus was 21 h for
receding initial conditions, and 5 h for advancing.

It is also interesting to note in Fig. 7 that the scatter in
the data is strongly correlated for all capillaries. This
suggests that some external condition, such as mechani-
cal vibrations or temperature fluctuations, can influence
the capillary rise. The latter possibility will be examined
in later sections.

In Fig. 8 we return to the carbon disulfide plus ni-
tromethane mixture and look for a systematic depen-
dence of the inverted meniscus upon i T —T, ~

and the ra-

dius. There is large scatter in the stationary values of the
capillary rise, but in most observations it was either posi-
tive, and hence, inverted, or else hidden by the bulk men-
iscus. In a few exceptional cases we could not ascertain
the curvature of the meniscus. The rise of the inverted
meniscus seemed to increase for small ~T —T, ~, but we

E —0. 1

m, hydroxylated
m, hydroxylated
m, silylated
m, silylated

U

'a.—0.3
0
(3

0 24 48
Time (h)

72

FIG. 7. Inverted meniscus height vs time for cyclohexane
plus acetic anhydride at 45 mK below T, ; the final data points
(not shown) were collected at 114 h. Inner radii and surface
chemistry are as specified. The silylated capillaries were reacted
with the vapor of hexamethyldisilazane according to the pro-
cedures of Ref. 5. Note the strong correlation of fluctuations in
these data.
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inner-radii capillaries.
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distinguish no systematic dependence on the capillary ra-
d1us.

VI. TEMPERATURE PERTURBATION EXPERIMENTS

FIG. 9. Stationary capillary rise vs capillary tube position in
carbon disulfide plus nitromethane at 20 mK below T, for ini-
tially advancing meniscus direction. Same symbol convention as
in Fig. 8. In spite of the large scatter, it is possible to conclude
that the rise increases with l2, the length by which the capillary
extends into the lower, nonwetting, phase.

observed no particular trend versus capillary radius.
Note that these observations were made for both advanc-
ing and receding initial conditions.

Continuing with carbon disulfide plus nitromethane,
we look for a systematic dependence of the inverted men-
iscus upon the position of the capillary tube with respect
to the bulk meniscus in Fig. 9. This was performed at 20
mK below T, for two diFerent radii capillary tubes. We
denote the capillary tube position by 12, the length by
which it extends into the nonwetting phase. We find
much scatter in the data, but Fig. 9 suggests an increase
of the eFect with l2. These data cannot, however, unam-
biguously rule out the possibility of no dependence upon
l~.

In Fig. 10 we repeat the previous experiment for the
mixture cyclohexane plus acetic anhydride at 45 mK
below T, . Now we clearly observe a dependence of the
stationary rise on the position of the capillaries. As I2 is
increased, a normal meniscus is turned into an inverted
meniscus, which then continues to increase. We find that
the meniscus position seems to vary linearly with l2.

To conclude this section, we have consistently ob-
served the inverted meniscus close to T, in all three
binary mixtures examined. This configuration is station-
ary in that it persists without any sign of decay for much
longer than the time ordinarily expected for capillary-rise
relaxation. The size of the eFect seems to increase with
Iz, the length by which the capillary extends into the
nonwetting phase, and with decreasing i T —T, i. We can

In Ref. 25 it was reported that a temperature perturba-
tion as small as a few millikelvin at 15 K below T, (i.e.,

0.1—
inner radius:
& 0.134 mm
o 0.188 mm

N
0.0

0
'CL —0. 1
U

—0.2 I I

10 20
E2 (mm)

30 40

FIG. 10. Stationary capillary rise vs capillary tube position
for cyclohexane plus acetic anhydride at 45 mK below T, for in-
itially receding meniscus direction. Since the meniscus curva-
ture indicated wetting by the lower phase, this figure shows that
the menisci became inverted as the extension of the capillary
into the nonwetting phase 12 increased. The total length of the
capillary tubes was 50 mm. The dashed lines indicate the range
over which curvature of the bulk meniscus may interfere with
observation. Squares (circles) represent 0.134- (0.188-) mm-radii
tubes.
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0.01%%uo) can cause the wetting layer thickness to change
temporarily by more than 10% before relaxing back to
the same equilibrium value. It was observed that a tem-
perature "quench" (further into the two-phase region)
causes the wetting layer to thicken, and that a "burn"
(toward T, ) causes the layer to thin down. Equation (2)
of Ref. 25 predicts that the change in wetting layer thick-
ness 5 resulting from a small temperature change AT will
be

1.0

0.5—

(D
K 0.0

inner radius:

& 0.134 rnrn

o 0.188 rnm

PAT doBV
2(T —T ) o Bz

(4)

U
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FIG. 11. Effect of a temperature jump on the capillary rise of
carbon disulfide plus nitromethane. At time zero the tubes were
moved into position and their rises subsequently recorded as a
function of time. After about 25 min the rises had long reached
a stationary value and a large temperature jump was applied,
producing the dramatic results shown. In these observations
the meniscus curvatures always indicated wetting by the upper
phase, even after the rise changed sign. Squares (circles)
represent 0.134- (0.188-) mm-radii tubes.

where P=O. 328, do equals approximately one-sixth of the
correlation length, cr is the interfacial surface tension,
V(z) is the effective interface potential, and z, is the
equilibrium thickness of the wetting layer. This implies
that the sensitivity of the wetting layer to temperature
perturbations should become even greater near T, .
Therefore it is prudent to consider how close one can ap-
proach the critical temperature before the small tempera-
ture variations due to the surrounding bath begin to
influence the measurement. In this spirit, we now investi-
gate the effect of temperture perturbations on the capil-
lary rise.

In Fig. 11 we show the response of the capillary rise of
a phase-separated carbon disulfide plus nitromethane
mixture, initially equilibrated at T, —165 mK, to a 50-
mK burn. After liquid equilibration, the capillaries were
positioned through the bulk meniscus. The meniscus in
each tube then advanced to its equilibrium position in
less than 10 min. At about 25 min the temperature burn
was started; 5 min later the temperature restabilized 50

—1.
—0.8 —0.6 —0.4
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FIG. 12. Effect of successive temperature jumps on the capil-
lary rise of carbon disulfide plus nitromethane. First the liquids

were equilbrated at 0.581 K below T, and the equilibrium rise
was measured (solid symbols). Next the temperature was in-

creased slightly; after several minutes the capillary rise stopped
changing and was recorded. Continuing in this manner succes-
sive temperature jumps were performed, with the results collect-
ed here for 0.134- and 0.188-mm-radii capillaries (CI and O, re-
spectively). The dashed curves show the temperature depen-
dence of the expected equilibrium capillary rise:

i
T —T, i" ~.

mK closer to T, . The response of the rise in two capil-
laries to this perturbation is dramatic, and larger for the
smaller radius capillary. The meniscus in each capillary
receded toward, and then through, the bulk meniscus all
the while neUer changing its curvature. After several
minutes the rises stabilized far above the bulk meniscus,
as shown, convincingly mimicking an inverted meniscus.
Presumably if we had then waited a diffusion time for the
entire sample, the system would have reequilibrated ac-
cording to Eq. (1) such that the rise in each tube would
again be negative, but closer to the bulk meniscus. We
contend that the effect demonstrated in Fig. 11 is due to
the sensitivity of the wetting layer inside the capillary
tube to temperature perturbations. This will be discussed
after presentation of further experiments.

In Fig. 12 we show the effect of successive temperature
perturbations on the capillary rise of carbon disulfide plus
nitromethane. First the equilibrium rise was measured at
581 mK below T, for two different radii capillaries. Next
a small temperature burn was applied and the restabilized
value of the capillary rise was recorded. Continuing in
this manner further temperature jumps were applied and
the restabilized rises were found as shown. As in Fig. 11,
note that the response is greater for the smaller radius
capillary tube.

In Fig. 13 we compare the effect of successive tempera-
ture burns on the rise inside the 0.134-mm-inner-radius
capillary for two different positions with respect to the
bulk meniscus. Similar to the inverted meniscus of Sec.
V, we observe that the effect of a temperature perturba-
tion is greater roughly in proportion to I2, how far the
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FIG. 13. Successive temperature jump experiments per-
formed as in Fig. 12. Shown here are results for two runs in

which the same capillary tube is positioned with respect to the
bulk meniscus as indicated. Note that the response of the tube
inserted further into the nonwetting phase (larger 12) is some-
what less than twice as great as that of the other. The solid
symbols indicate equilibrium capillary-rise measurements.

capillary extends into the nonwetting phase.
The final temperature perturbation experiment is

shown in Fig. 14, again using the mixture of carbon
disulfide plus nitromethane. There we equilibrated at
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FIG. 14. Effect of a small temperature oscillation on the
capillary rise of carbon disulfide plus nitromethane in a 0.134-
mrn-inner-radius capillary tube. At time zero the tube was
moved into position and its rise subsequently recorded as a
function of time. After 20 min the rise had long reached a
steady value and a 2-rnK-temperature oscillation was applied
(the smooth curve through the temperature data represents the
controlling voltage). Throughout these observations the men-
iscus curvature always indicated wetting by the upper,
nitromethane-rich, phase. The dashed lines indicate the range
over which curvature of the bulk meniscus may interfere with
observation.

34.5 mK below T, and positioned the capillary through
the bulk meniscus. The meniscus inside the capillary ad-
vanced toward the bulk meniscus and stopped moving
within 10 min. It was suSciently close that the bulk
meniscus partially obscured the meniscus inside the capil-
lary; but the rise seemed to stop at a positive value (and is
therefore another observation of the inverted meniscus).
At 20 min a sinusoidal temperature oscillation was ap-
plied with a 2-mK amplitude (slightly larger than the pre-
cision of our temperature control). The capillary-rise re-
ponse is evidently large, being somewhat larger than typi-
cal inverted-meniscus heights. This demonstrates that in
the region near T, where an inverted meniscus is ob-
served, the sensitivity of capillary rise to temperature per-
turbations is great enough that fluctuations due to the
surrounding water bath could have some effect. In par-
ticular, it suggests that imperfect temperature control
should be considered in the search for an explanation of
the inverted meniscus.

VII. GENERALIZED CAPILLARY-RISE FQRMULA

In the experiments of Sec. VI, the wetting layer coating
the inside of the capillary tube must decrease in thickness
following the temperature burn. The wetting layer ma-
terial shed during this process will diffuse to the interior
of the capillary, thereby slightly changing the average
density of the liquid inside the tube. The resulting effect
on the hydrostatic force balance may explain our temper-
ature perturbation experiments.

Let pc and pz be the densities of the bulk carbon
disulfide —rich and nitromethane-rich phases, respective-
ly, and call the change in wetting layer thickness 5 (nega-
tive for the decrease in thickness now being considered).
Assuming that the shedded material goes to the interior
of a capillary of radius r, the new average density of the
carbon disulfide —rich phase inside the capillary will be

pc &pc such that

PcgI2+P v gI I PNg (I 1

20
r

—peg(lq+H)=0 .

Here g is gravitational acceleration, I, and l2 are the
vertical circuit lengths defined in Fig. 15, H is the capil-
lary rise, and o. is the interfacial surface tension; the case
of complete wetting by the upper phase is assumed. In
keeping with our earlier definition, Iz is the length by
which the capillary extends into the nonwetting phase.
Equation (6) can be solved for 0, yielding a generalized
capillary-rise formula:

pc pc
hp

where hp =pc —pz. The effect on the hydrostatic bal-
ance, which determines the capillary rise, can be found
by balancing the pressure changes around the closed cir-
cuit shown in Fig. 15. Starting at the lower left corner of
the circuit and proceeding clockwise, the sum of pressure
drops must be zero:
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able to reequilibrate at the same temperature and apply
temperature jumps of various sizes, rather than perform
successive jumps. It may be necessary to refine the model
by including the dependence of the wetting layer thick-
ness, and its sensitivity to temperature perturbations,
on height along the capillary tube.

VIII. POSSIBLE EXPLANATIONS
OF THE INVERTED MENISCUS

I

::Pc

~ ~ ~ ~ ~ ~ ~ ~ ~

FIG. 15. Schematic of capillary rise H inside a tube of radius
r. p& and p& are the two bulk liquid densities, and p& is the
liquid density of the lower phase inside the capillary tube. l&

and 12 indicate the size of the circuit in each phase as used to
derive an expression for H; the circuit is taken such that 1z is
the length which the capillary tube extends into the nonwetting
phase. H is measured from the bulk meniscus and is taken to be
negative for the capillary depression shown here. After a small
temperature "burn" toward T„wetting layer material will be
expelled to the interior of the capillary causing the density
change p~ —pc &0; this causes the meniscus to recede upward.
Note that the wetting layer thickness has been greatly exag-
gerated for clarity.

Pc Pc
t

2cr

b p' b,p'gr ' (7)

where bp'=—pc —p~. Note that if pc =pc, then the first
term vanishes and the usual capillary-rise formula (1) is
recovered. Using Eq. (5) and making the approximation
bp'= b,p, Eq. (7) becomes

25l2H=— 2'
hpgr

This simple model, that the wetting layer response to a
temperature perturbation results in a capillary-rise
change given approximately by Eq. (8), can be compared
with our experiments. We first note that several qualita-
tive trends are consistent. A temperature burn (quench)
will cause a negative (positive) 5, and consequently Eq. (8)
predicts that the meniscus will move in the receding (ad-
vancing) direction; this agrees with Figs. 11—14. Also
consistent with these observations is the prediction of Eq.
(8) that the response will be greater for larger tempera-
ture changes, larger 12, and smaller r. In fact, the ratio of
1.6+0.3 observed in Fig. 13 for the response for two
different values of 12 is very close to the prediction of Eq.
(8): 4.4 cm/2. 4 em=1.8. Remarkably the observed
response (about 1 mm) is only one order of magnitude
larger than the prediction of our simple model: for
&=100 nm, ' i&=4.4 cm, and r =0.134 mm, Eq. (8)
gives a capillary rise change of 2512/r =0.07 mm.

To test the model more thoroughly, it would be prefer-

We now present scenarios by which the wetting layer
inside the capillary tube could invalidate the usual capil-
lary rise formula (1) and produce an inverted meniscus.
We first note that Ref. 2 previously found that a wetting
layer can influence the capillary rise. There, the layer
acted to reduce the capillary separation and caused a
larger rise than would otherwise be expected. However,
this effect changes the rise in the wrong direction to ex-
plain the inverted meniscus. W'e next note that since the
inverted meniscus has been observed in three different
binary liquid mixtures (one with wetting by the upper
phase and a positive T, drift; one with wetting by the
lower phase and an initially negative T, drift; and one
with wetting by the lower phase, no T, drift, and an in-
verted coexistence curve), it is unlikely that temperature
gradients, T, drifts, or exotic substrate-liquid interactions
are responsible (nevertheless, these possibilities might be
interesting to pursue). Rather, we speculate that a sta-
tionary inverted meniscus could occur suf5ciently close to
the critical temperature of any binary mixture. Three
possible explanations will now be outlined, all inspired by
our previous conclusion that a change in wetting layer
thickness can affect the hydrostatic balance and perturb
the capillary rise.

In the first scenario, the imperfect temperature control
provided by the experimental thermostat produces an in-
verted meniscus through a pumping action. When the
temperature wanders toward T, the meniscus recedes to-
ward an inverted configuration, just as in the temperature
jump experiments. Deficit wetting layer material is then
partly replenished by flow along the wall of the capillary
so that temperature fluctuations back away from T, do
not draw as much material out of the interior of the
capillary. A steady state may eventually be reached in
which wetting layer material is continually pumped into,
then slowly diffuses out of, the nonwetting phase inside
the capillary tube, making it rich enough in wetting layer
material to cause an inverted meniscus.

Another scenario in which imperfect temperature con-
trol may produce an inverted meniscus arises from a pos-
sible asymmetry between advancing and receding contact
line motion (as seen near T, in Fig. 2). As the sample
temperature fluctuates, the resulting change in wetting
layer thickness gives rise to a randomly fluctuating hy-
drostatic force on the meniscus inside the capillary. If
there is less friction when a contact line moves in the
receding direction, the random force will produce a net
displacement in the capillary rise in the proper direction
for an inverted meniscus. Contrary to the first scenario,
here the average densities of the liquid phases inside the
capillary are equal to the average densities outside.
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We have thus imagined two scenarios in which random
temperature perturbations are rectified by the system to
produce a net displacement of the interface and, possibly,
an inverted meniscus. The temperature oscillation exper-
iment of Fig. 14 was conceived to test the hypothesis of
rectification, but none was observed. This tends to rule
out these two scenarios; however, our perturbation was at
such low frequency that the wetting layer response was
large and in phase with the temperature. Another experi-
mental test would be to increase the amplitude of the
driving temperature while keeping its frequency spectrum
equal to that which normally occurs in the thermostat.

The third scenario does not depend on the rectification
of temperature perturbations. Here we propose that the
hydrostatic balance may be altered due to a nonequilibri-
um wetting layer thickness left after the contact line trav-
els inward from one end. For the case of a receding men-
iscus, the flow could leave behind a wetting layer whose
thickness is too great. It would subsequently thin
down, changing the liquid density inside the capillary in
the proper direction for an inverted meniscus. For the
case of an advancing meniscus, a precursor film exists
ahead of the traveling interface. In order to explain the
inverted meniscus, its thickness would have to be greater
than that of the equilibrium wetting layer.

A dimensional measure of interface motion of speed V
is the capillary number JVc, =ri V/o. For the exponential
relaxation of Eq. (3), it is given by

IH (r) —&,q )»
JVc,(r) = (9)

eq

Even though such flows have small Reynold's numbers,
as discussed earlier, their capillary numbers can become
large near T, as the surface tension vanishes. Equation
(9) shows that very large JVc, (of order unity) are attained
if the distance from equilibrium is comparable to L and if
the equilibrium rise value is less than the radius. For
Ac, )10, viscous forces near the wall are already
strong enough to change the shape of the interface, pro-
ducing a dynamic contact angle which significantly
differs from the static value. 7 29 30 During our large-JVC
small-JVR„ flows, we noticed that the meniscus became
very flat in the center of the capillary for both advancing
and receding cases. When such a flow stops, it is conceiv-
able that the wetting layer will have a thickness other
than its equilibrium value. Note that this scenario would
imply a history dependence which could explain the
scatter found in Figs. 8 and 9.

Contrary to the rectification scenarios, here the invert-
ed meniscus is a not steady-state phenomenon. It would

persist up to a diffusion time for the length of the capil-
lary tube: L /D where L =6 cm in our experiments and
D is the diffusion constant. Far from T„where D is on
the order of 10 cm /s, this time is already about 40 d.
Near T, this can become even longer due to critical slow-

ing down. ' For carbon disulfide plus nitromethane at 30
mK below T„we have D =2 X 10 cm /s and
I. /D =2100 d. Our experiments were of insufficient
duration to test this scenario.

Finally, it is worthwhile to emphasize that in the above
scenarios, the capillary rise deviates from the usual
capillary-rise formula, Eq. (1), in response to a change in
hydrostatic conditions, not due to a change in contact an-
gle. Therefore the standard methods of direct visual obser-
vation of the contact angle are, in principle, applicable
even under conditions that an inverted meniscus is ob-
tained.

IX. CONCLUSIONS

Capillary-rise experiments for the purpose of determin-
ing contact angles should be performed with a given
capillary only sufficiently far from T, that the rise is
much greater than the radius. To study wetting phenom-
ena closer to T„asmaller radius capillary tube must be
used. In order to make acccurate measurements, it is im-
portant to determine the characteristic relaxation time
and to check that the same capillary rise is obtained for
advancing and receding conditions and for different posi-
tions of the capillary with respect to the bulk meniscus.
Close enough to T„for a particular capillary, (i) these
checks will fail, (ii) the relaxation time will grow long, (iii)
the measurements will be sensitive to small drifts or per-
turbations in the temperature control, and (iv) an invert-
ed meniscus may appear. The origin of (iii), and possibly
(iv), is that a wetting layer thickness change can affect the
hydrostatic force balance which determines the capillary
rise.
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