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Heat transport in dielectric crystals at low temperature:
A variational formulation based on extended irreversible thermodynamics
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We propose a variational principle applicable to the heat-transport equations derived some years

ago by Guyer and Krumhansl [Phys. Rev. 133, 1411 (1964); 148, 766 (1966); 148, 778 (1966)] to de-

scribe heat-wave propagation in dielectric crystals at low temperature. The variational principle ap-

pears as a generalization of Prigogine s minimum-entropy production criterion. The analysis is

based on extended irreversible thermodynamics, which is used to derive the Guyer-Krumhansl

equations from macroscopic arguments.

I. INTRODUCTION

In this paper, it is shown that the basic equations pro-
posed by Guyer and Krumhansl' to describe heat-wave
propagation in dielectric crystals at low temperature may
be derived from a variational principle and are compati-
ble with irreversible thermodynamics. The Guyer and
Krumhansl equations are of primary importance because
they exhibit the existence of a second sound. The interest
in second sound started with the early works of Tisza
and Landau on liquid helium II. In contrast with ordi-
nary sound wave, second sound is a temperature wave; its
propagation in He II has been verified experimentally by
Peschkov. It must however be stressed that second
sound is not only detectable in He II. Ward and Wilks
showed that the existence of second sound depends only
on the presence of a phonon gas. Since the latter exists in

any solid, second sound should be detectable in any ma-
terial. Theoretical work by Tsai and MacDonald about
propagation of heat pulses in metal at high temperature
exhibits also heat waves moving at high velocity. In-
teresting review papers on heat waves have recently been
published by Joseph and Preziosi. '

The problem raised by the existence of a second sound
is of fundamental essence and cannot be interpreted from
the classical Fourier law of heat conduction

q= —AVT,

which relates the heat Aux vector q to the temperature
gradient VT, A, represents the heat conductivity which
may depend on the temperature. By combining the
Fourier law (1.1) with the energy balance equation

will have an instantaneous effect on any point inside the
body or, otherwise stated, that perturbations propagate
at infinite velocity. To circumvent this disadvantageous
property, Cattaneo proposed to replace the Fourier
steady constitutive relation by the rate equation

& q+q= —XVT,aq
at

(1.4)

wherein ~ designates a relaxation time. Elimination of q
between (1.4) and the energy balance (1.2) yields the hy-
perbolic telegraphist equation

rc, +c =AV T,"at-' '
at

to which corresponds a finite phase velocity given by
]/)

U=
C7

(1.5)

For r=0, Cattaneo's law (1.4) reduces to Fourier's law
and the phase velocity becomes infinite.

Chester' was the first to use the Cattaneo equation to
study second-sound propagation from a phonon gas mod-
el. He was able to give a quantitative estimate of the re-
laxation time ~ in terms of k, c, and the phonon velocity
in the medium.

The dispersion relation for second sound in solids was
derived by Guyer and Krumhansl' who based their
analysis on Boltzmann equation. Neglecting thermal en-

ergy transport by free electrons, which is a reasonable as-
sumption for dielectric crystals, Guyer and Krumhansl
obtained the following equations for the temperature and
heat flux fields:

aT
c = —V-q,

at
(1.2) aT=c = —V-q

at
(1.7)

wherein c denotes the positive heat capacity per unit
volume, one obtains for a constant A. aq +,cc,2VT+ 1

at

c 2

q=r~. (V q+2VV. q) . (1.8)

—gV2 T'at
which is a partial differential equation of diffusive para-
bolic type. It follows that any temperature perturbation

c, is the mean speed of the phonons, ~~ a relaxation time
for the momentum nonconserving resistive processes, the
so-called umklapp processes, and ~z the relaxation time
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associated with the momentum preserving processes.
Equation (1.7), is the well-known energy balance while

(1.8) is the evolution equation for the heat flux; it reduces
to Cattaneo's relation (1.4) when rz is zero. However, in

contrast with Cattaneo's equation, expression (1.8) does
not reduce to Fourier's law in steady conditions.

Our aim in this paper is twofold. Our first purpose is
to derive the Guyer and Krumhansl results (1.7) and (1.8)
from macroscopic bases. This is achieved within the
framework of extended irreversible thermodynamics
which has proven recently to be a useful tool for describ-
ing material systems out of equilibrium. " ' The second
objective of this work is to show that the Guyer and
Krumhansl relations may be recovered from a variational
principle stating that steady states are characterized by a
minimum of dissipated energy. This criterion was origi-
nally proposed by Prigogine' who derived this result
within the context of classical irreversible thermodynam-
ics. Prigogine s formulation concerned the minimum en-

tropy production and was subordinated to some condi-
tions like linear constitutive equations of the Fourier type
and was unable to cope with Guyer and Krumhansl equa-
tions. We show here that the steady Guyer-Krumhansl
equations can be recovered from the principle of
minimum dissipated energy at the condition to work
within the framework of extended irreversible thermo-
dynamics. This result is important as it asserts the physi-
cal background of this formalism.

The structure of the paper is as follows. In Sec. II, it is
shown that the Guyer and Krumhansl fundamental rela-
tions can be derived from extended irreversible thermo-
dynamics whose basic tenets are briefly recalled. In Sec.
III, a variational principle is proposed: it is seen that the
stationarity conditions to be satisfied in order for the dis-
sipated energy to be minimum yields, as Euler-Lagrange
equations, the steady parts of Guyer and Krumhansl rela-
tions. It is also indicated how to modify the criterion to
include the unsteady contributions. Conclusions are
drawn in Sec. IV.

II. EXTENDED THERMODYNAMIC DERIVATION
OF GUYER-KRUMHANSL EQUATIONS

FOR SECOND SOUND

Extended irreversible thermodynamics (EIT) is at the
present time recognized as an important branch of ther-
modynamics. To briefly summarize its contents, consider
the problem of heat conduction.

In classical irreversible thermodynamics, ' the sin-

gle independent state variable is the internal energy per
unit volume u (or equivalently the absolute temperature
T) which satisfies an evolution equation of the form

From now on, unless otherwise stated, the heat capacity c
and the heat conductivity A, are assumed to be constant,
i.e., temperature independent. Combination of (2.1),
(2.2), and (2.3) leads to the classical parabolic equation
(1.3) for the temperature.

The philosophy behind EIT is completely different
from that of classical irreversible thermodynamics. First-
ly, the space of state variables is enlarged to include, be-
sides the classical variable u, the heat flux vector q and
the flux of the heat J~. The variables u (or T), q, and J~
are on the same footing and are supposed to obey evolu-
tion equations, respectively given by (2. 1) and

(2.4)

Jqg+BJ~
' Bt

(2.5)

where r and r are relaxation times. Observe that (2.4)
and (2.5) have strictly the same form as (2.1) in that they
contain both a flux term and a source term. The fluxes J
and J~~ are second- and third-order tensors, respectively.
The source o~ is a vector and 0.~~ a second-order tensor.
To solve the problem, it is necessary to formulate consti-
tutive equations for the unknown quantities appearing in
(2. 1), (2.4), and (2.5), namely u (or T), J«, rr, and o «. In
the forthcoming, we use T as independent variable and p
as dependent quantity. Moreover, we restrict the analysis
to linear developments and assume that the quantities u,
J ~, o ~ and 0. depend linearly on the variables T, q, and
J~. We do not alter the generality of the formalism by
supposing that J~ is symmetric. It is also convenient to
introduce the notation

where V is the whole set of variables in the curly brack-
ets.

General (linear) constitutive equations are given by

u =cT,
J«= 3 3 (qI )',
o.~= —

q

cr ~ = J~+ ( B, ( T ) +B—t rJ )I .

(2.6)

(2.7)

(2.8)

(2.9)

All the coefficients are constants except B, which may
depend on the temperature. The notation is classical: I
designates the identity tensor, tr the trace, qI the dyadic
product, and the superscript s symmetrization; later on
we shall also utilize the double scalar product
L:M=L, M, After subst"itution of (2.6)—(2.9) in the
evolution equations (2.1), (2.4), and (2.5), one finds

()u = —V.q+r,
at

(2.1) (2.10)

wherein r designates a source of heat. To solve (2.1), one
needs constitutive relations expressing u and q in terms of
T, for instance,

(2.2)

(2.11)

aJ~ = —3 [(V q)I+2(Vq)'] —J~+(B&+BztrJ~)I .
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AV—T q—+ A V q+BV(V q),Bq
at

(2.13}

wherein the coefficients A, and 8 are defined, respectively,
by

From now on, it is assumed that ~ is negligibly small.
Deriving J~ from (2.12) and substituting in (2.11), one ob-
tains the following equation:

s =s(V), J'=J'(V),

it is an easy matter to calculate the entropy production cr'

by performing the operations indicated in the left-hand
side of (2.15). Since T has been selected as variable, it is
natural to work with the Helmholtz free energy

f=u —Ts as a potential function. Up to second-order
terms in the fluxes, f and J' are given by

1 —3Bq r)T
'

1 —3Bq

f=fi+ ,'f~q -q+ ,'f3J-':J'

J'= y'q+ y', J'q+ y,'(trJ')q,
(2.17)

(2.18}

Clearly, expressions (2.10) and (2.13) are the same as
Guyer and Krumhansl's equations (1.7) and (1.8) at the
condition to omit the source term in (2.10) and to per-
form the following identifications:

8=23 . (2.14)

Bs +V.J'——=o'
t T

(2.15)

A first derivation of Guyer-Krumhansl equations from
EIT was proposed in a previous work. ' However, the
procedure followed in this work was completely different
from the present approach as it postulated the existence
of mechanical stresses induced by heat flux gradients as
well as a generalized Gibbs equation. Here, there is no
need to appeal for such extra relations but in contrast, we
introduce the flux of the heat flux as additional variable.

Moreover, since we have in mind the formulation of a
variational principle, the expression of the entropy pro-
duction generated by the propagation of second sound in
crystals is now calculated. Therefore, we postulate the
existence of an entropy function s (Refs. 11—16) per unit
volume, obeying the balance equation

wherein all the coefficients may depend on T. On the
other side, EIT (Refs. 11—16) predicts that f~ and f3 are
proportional to the relaxation times w and ~ as
confirmed later on by equation (2.24a) for the coefficient

fz. After elitnination of J between (2.12) written in the
approximation r =0 and (2.18), the entropy flux can be
expressed in terms of the heat flux alone, namely,

J'=yoq+y, (Vq)'q+yz(V q)q, (2.19)

wherein yp, y „and y2 stand, respectively, for

8) 38'+
1 —3B ~'+

1 —B2 2

yi= —2Ayi

A(1+B~)
y2

1 38 y1 18r2
2 2

Eliminating the source term r between the energy balance
(2.1) and the entropy balance (2.15), one obtains the fol-
lowing expression for the dissipated energy, which is
equal to the entropy production times the temperature:

with a non-negative production term Tcr'= —s — —V q+TV J') 0 .
dT df
Bt Bt

(2.20)

~$) 0 (2.16)

Assuming that s and the entropy flux J' are given by the
constitutive equations

Using the chain derivation rule to calculate df Idt and
the relations (2.13), (2.17), and (2.19), expression (2.20) be-
comes up to second-order terms in the heat flux

TO
Bf r)T 1 pp+s ——fzq ( AVT q+ AV —q+BV—V q}—V q+T VT q+yoV qdT dt BT

+Ty, (Vq:Vq +q V q)+Ty~[(V q)(V.q}+q V(V q)])0 . (2.21)

It is important to stress that (2.27) is linear in the derivative dT/dt Following a p.rocedure classical in rational thermo-
dynamics, ' this quantity can be assigned arbitrary values because there is an energy supply r that ensures that the ener-

gy balance is satisfied. Therefore the positiveness of o could be violated except the coefficient of BT/Bt is zero, from
which follows the classical result

C}

aT
+s=o .

In view of this result and after grouping the various second-order terms, inequality (2.21) reduces to

(2.22)

BypTo'= —fzq. q+ fz+ T q.VT — f&
—Ty, q V—q ——fz —Tyz q.V(V.q)—

T 1 BT

+Ty, Vq:Vq +Ty, (V q)(V q) —V q(1 —Tyo))0 . (2.23)
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moreover, they have to comply the inequalities

2
&0, r, &0, r, &0.

7
(2.25)

In terms of the notation introduced by Guyer and
Krumhansl [see relation (2.14)], the results (2.24) are
written as

3 3 +N
f2 2& Yl

CCs cT
(2.26)

In view of the inequalities (2.25) and the general result
c & 0, it is inferred that

&Op 7Q &0 (2.27)

To our knowledge, it is the first time that it is proved
on macroscopic grounds that the relaxation times ~~ and

rz are positive. The results (2.26) are also worth to be
mentioned as they indicate that the coefficients f2, y„
and r2 are no longer undefined quantities but are related
to the basic physical parameters c, c„v~, and ~~. The
final expressions of To' and J' are thus given by

The positiveness of 0' allows us also to identify the
coefficients f2, yo, y„and y2 as

5f opdV=O, (3.l)

wherein 5 is the usual variational symbol, d V an elemen-
tary volume element, and o z the entropy production per
unit volume derived from classical irreversible thermo-
dynamics; for heat conduction, one has" '

o-p=q. V T (3.2)

Prigogine's principle is only applicable to processes
governed by Fourier's law with a heat conductivity X

varying like T . In the case of A, proportional to T
Prigogine's principle must be changed into

5$p(T) =0

with

Pp(T)= f TcrpdV .

(3.3a)

(3.3b)

It is a simple exercise to check that the corresponding
Euler-Lagrange equation is

A. Steady state

A variational principle meeting the above properties is
Prigogine s minimum-entropy production principle ex-
pressing that purely dissipative processes (without con-
vection) evolve in such a way that in the steady state, the
total entropy production is stationary, truly a minimum.
Mathematically, this is expressed by

3 3 +N
q q+ — [Vq:Vq +2(V q)(V q)],

7g CCs

V.q=0 . (3.4)

J'=~+ — [(Vq)' q+2(V q}q] .3 ~N

T 5

(2.28)

(2.29}

Compared to classical irreversible thermodynamics, Tcr'
and J' contain supplementary terms arising from the
presence of the "normal" relaxation time ~z.

It is now shown that the minimum dissipated energy
principle still holds for describing the Guyer-Krumhansl
steady equations. The difference with Prigogines cri-
terion is that the expression of the dissipated energy to be
used is not that derived from classical irreversible ther-
modynamics but rather expression (2.28) of the dissipated
energy obtained in the context of EIT. Moreover, a look
at the Guyer-Krumhansl steady equations

III. A VARIATIONAL FORMULATION

V q=0
2

3 s Nq+ 'cc VT=rz —(V q+2V V q}

(3.5)

(3.6)

Variational principles have always played a privileged
role in physics. This is justified because a variational
criterion presents the advantage of concision: a single
equation stands for a set of differential equations, initial
and boundary conditions. From a practical point of
view, variational principles provide specific methods, like
the Rayleigh-Ritz method, for solving the differential
equations governing the physical process. Besides their
power of synthesis and their utility in numerical analysis,
variational formulations are also frequently interesting
from a physical point of view because in many problems,
the functional submitted to variation possesses a physical
meaning.

indicates that the energy balance equation (3.5) may be
considered as a constraint to be satisfied by the heat flux
vector whose behavior is governed by Eq. (3.6). Equation
(3.5) plays a role similar to the incompressibility condi-
tion in fluid mechanics.

The heat flux that satisfies the Guyer-Krumhansl equa-
tion is the one corresponding to the minimum of dissipat-
ed energy:

5f To'dV=O .

To prove the stationary character, we shall introduce a
Lagrange multiplier r. Consider the variational integral

3 3 +N
p(q)=f,q.q+ [Vq:Vq +2(V q)(V q)] dV f y V qdV—

2~„cc,'
(3.8)
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and determine the necessary condition for P to be stationary under arbitrary variations of q, admitting that q takes
prescribed values at the boundaries:

5q=O (at the boundaries) .

Calculation of the first variation of (3.8) and use of the divergence theorem leads to

3 3 +N

, q —— [V'q+2V(V. q)]+Vy 5q —(V q)5y dV.
7RCCs 5 C

(3.9)

(3.10)

Clearly, 5/=0 under the conditions that

V q=0

and

(3.11)

The physical meaning of the function P is thus clear as
it represents the dissipated energy calculated in extended
irreversible thermodynamics.

3 3 7N

, q+Vy —— (V'q+2V(V q))=0,
7RCCs 5 c

(3.12)

which are nothing other than the Guyer-Krumhansl
equations after that the Lagrange multiplier has been
identified with the absolute temperature T. The
minimum property of the variational principle (3.7) is evi-
dent as the dissipated energy (2.28) is a quadratic form.

B. The nonsteady evolution

It should also be added that there is no problem to ob-
tain from a variational equation the complete Guyer and
Krumhansl equations with the unsteady contributions
"r)T /Bt and Bq/Bt. The variational principle whose
Euler-Lagrange relations are the Guyer and Krumhansl
unsteady expressions is

—&T(x, &)o ' +q(x, t)oVT(x, t)+ —,'cT( x, 0)T( xt) —cT (x)T(x, t)+ q(x, r)o
BT(x, t ) 3 8 (x, t)

CCs

3
1+

2 q( xt)&&q( xt) + [—,'q(x, O) q(x, t) —qo(x) q(x, t)]
2CCs &R CCs

3 +N+ [ V(qxt): VOq( tx) +2V q( xt)oV q(x, t)] dVdt=O,10 c (3.13)

wherein the o denotes the convolution product

u(x, t)~U(x, t)= J u(x, t t')U(x, t')dt' . —(3.14)
0

To(x) and qo(x) are the initial values of T(x, t) and

q(x, t), respectively. Of course, it would be illusory to try
to assign a physical signification to the principle (3.13).
Nevertheless, such a result may be useful for solving
practical unsteady problems.

IV. SUMMARY AND FINAL REMARKS

In the first part of this work, the basic equations
governing heat waves propagation in dielectric crystals at
low temperature are established within the framework of
a macroscopic theory: extended irreversible thermo-
dynamics. In this formalism, the heat flux q and its flux
J~ are considered as independent variables just like the
absolute temperature T. It is shown that the evolution
equations derived for T and q are the same as those ob-
tained by Guyer and Krumhansl, at the condition to let
the relaxation time associated to J~ tend to zero. The
corresponding entropy flux and entropy production are
also calculated. With respect to their classical expres-
sions derived in classical irreversible thermodynamics,

the entropy flux and the entropy production contain ad-
ditional contributions due to the nonzero relaxation time
of the phonon momentum preserving processes. It
should be observed that all these results are obtained in a
straightforward way following strictly the line of thought
of extended irreversible thermodynamics. In particular,
the basic eoefticients appearing in the formalism are well
defined and expressed in terms of the heat capacity c, the
sound velocity c„and the relaxation times ~N and ~R as-
sociated to the normal and nonconserving momentum
processes: these four quantities represent the four pa-
rameters of the theory.

The second original contribution of this paper con-
cerns a variational formulation of the Guyer and
Krumhansl equations. A first variational principle is pro-
posed whose Euler-Lagrange equations are the steady
Guyer and Krurnhansl equations. The functional submit-
ted to variation possesses the interesting property to be
interpretable in physical terms as it represents the dissi-
pated energy resulting from the heat-wave process in the
crystal. This variational criterion provides a generaliza-
tion of Prigogine s celebrated minimum entropy produc-
tion principle which was formulated some years ago in
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the context of classical irreversible thermodynamics. %e
have also constructed another variational principle appl-
icable to the unsteady heat propagation. Its mathemati-
cal structure is more complicated as it involves convolu-
tion products; moreover, we were unable to give it a
physical interpretation. Nevertheless such a formulation
remains useful for solving numerical problems via varia-
tional methods, like the Rayleigh-Ritz method, which are
appreciated for their simplicity and their powerfulness.
Finally, it should be recalled that most of the variational
principles found in irreversible thermodynamics, like the
Prigogine principle of minimum entropy production at
fixed Auxes, ' Glansdorff-Prigogine local potential,
Biot 2s Gyarmati, Rosen, Lebon-Lambermont, and

Ziegler criterions have been classified as quasivariation-
al principles. ' This means that during the variational
procedure some quantities are frozen, i.e., not submitted
to variation; of course such a procedure is completely ad
hoc. It is worth to mention that the variational principles
derived in the present work do not pertain to the class of
so-called quasivariational principles: in contrast they are
"true" variational principles because the variation is tak-
en with respect to all the variables.
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