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Steady and oscillatory convection in a binary fluid mixture heated from below is considered.
Stress-free and Axed temperature and concentration boundary conditions are used at the top
and bottom, with periodic boundary conditions in the horizontal. A minimal Galerkin trun-
cation is constructed such that the local branching behavior near both the steady state and
Hopf bifurcations is correctly determined. To do this, modes generated through fourth order
i'n perturbation theory must be retained. The properties of the steady states and standing,
traveling, and modulated traveling waves in the resulting system are systematically analyzed.
Broad agreement with the results of an analysis of a codimension-two bifurcation with O(2)
symmetry is found.

I. INTRODUCTION

Convection in a binary fluid mixture exhibits a rich
variety of dynamical behavior that has been extensively
studied in recent years. At the same time a theory ex-

ploiting the presence of an approximate O(2) symmetry
has been found to account for some of the observed be-
havior. A brief review of these developments is given in
Ref. 1.

The equations describing two-dimensional convection
in a binary Quid mixture of infinite horizontal extent
and homogeneous boundary conditions are equivariant
under the group E(1) of translations. In addition they
are equivariant with respect to reQections in a vertical
plane. In the presence of periodic boundary conditions in
the horizontal the full symmetry E(l) x Z2 reduces to the
subgroup O(2) of rotations and reflections of a circle. The
theory2 4 points out that owing to the symmetry there
are two solution branches which bifurcate simultaneously
from the conduction solution at a Hopf bifurcation. One
branch, corresponding to standing waves (hereafter SW)
arises already in the absence of translation symmetry,
i.e. , when no horizontal flux boundary conditions are im-
posed on impenetrable vertical sidewalls. We refer to
this as the Zp-symmetric problem. The second branch,
corresponding to traveling waves (hereafter TW), occurs
only in the presence of translation symmetry and peri-
odic boundary conditions permitting the propagation of
disturbances. The theory establishes conditions under
which either branch is locally stable, and has been found
to be in complete agreement with numerical simulation of
thermosolutal convection. Likewise, the study of a par-
ticular multiple bifurcation, the Takens-Bogdanov (here-
after TB) bifurcation has been successful in accounting
for much of the behavior associated with the interac-

tion of the SW branch with the branch of steady over-
turning convection (the steady-state or SS branch) in
Zz-symmetric thermosolutal convection. s 7 This analysis
has recently been extended to the O(2)-symmetric TB
bifurcation, s and the question naturally arises as to the
extent to which it can be used to understand the dynam-
ics observed in the O(2)-symmetric system.

In the present paper we construct a system of ordinary
diAerential equations describing convection in a binary
fluid mixture. We seek a system that is as small as possi-
ble so that it can be investigated in some detail without
undue expense. We demand, however, that it correctly
predicts the local bifurcation behavior of the partial dif-
ferential equations near both the Hopf and steady-state
bifurcations from the conduction solution. The system so
constructed is minima/ in that only those modes which
enter into the determination of the directions of branch-

ing are retained. Since it is well known that with the
boundary conditions we use (stress-free boundaries at top
and bottom, and fixed temperature and concentration)
the bifurcation to TW is degenerate it is irronediately
clear that the minimal system must include modes gen-
erated through fourth order in perturbation theory. It
turns out, however, that not all such modes are required,
so that the resulting system consists of a rather modest
nine (complex) equations. We discuss here the properties
of this system, and compare them with the analysis of the
TB bifurcation. s We find that the latter provides the cor-
rect qualitative description of the dynamics of the model,
including secondary branches of modulated waves (here-
after RIW), for a wide range of parameter values. The
one qualitative diA'erence we have been able to pinpoint is
the presence, under appropriate circumstances, of a new

type of global bifurcation with which the MW branch
terminates. In addition, we find that the interaction of
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the traveling waves with a saddle-node bifurcation on the
steady-state branch, a prominent feature of the present
system) can be understood in terms of a rather simple
three-dimensional vector field derived from the normal
form for a degenerate TB bifurcation. Owing to the suc-
cess of a similar procedure in describing the dynamics of
the partial differential equations in Z2-symmetric ther-
mosolutal convection we surmise that the model system
provides a similarly good model of the O(2)-symmetric
partial differential equations, at least for moderate am-
plitudes. These conclusions also apply to thermosolutal
convection with O(2) symmetry, stress-free boundaries
and fixed temperature and concentration at the top and
bottoms since the two problems can be transformed
into one another. i

This paper is organized as follows. In Sec. II the min-

imal system is constructed. The results of a systematic
numerical exploration of this system are presented in Sec.
III. A theoretical analysis of some of these results is de-

scribed in Sec. IV, and is based on a normal form derived
in the Appendix. The conclusions follow in Sec. V.

provided

(1+ r)(l y cr)(r + o)
II+ (I+~)l

—r2(1+ o) 4o+ r(1+ r)(1 4- o) '

and loses stability at a steady-state bifurcation when R
reaches

S&S, =

R R + ~2RTW + 4RTW + (6a)

Rss =—
1

Ro. (5)r+ 1+r
Here RD = ps/kz, p—:k2 + z ~, is the Rayleigh number
for the onset of Rayleigh-Benard instability with hori-
zontal wave number k in a pure fluid. It is minimized

by k = )r/~2, a value of k used for the computations
described in Sec. III.

As discussed in the Introduction, the bifurcation at
RHQpf gives rise to branches of traveling and standing
waves which we may write in the following form. For
TVV,

II. THE MINIMAL SYSTEM
C = CO + Q C2 + $ C4 + ''

)

The basic equations describing two-dimensional
Boussinesq convection in a binary fluid mixture heated
from below can be written in the nondimensional form

1 2—P7 Qg+ J(Q, V' Q)] = RH +RSE +9' @,

and for SW,

2RSW + 4RSW +

2 SW+ 4 SW+

(7a)

(7b)

~c + J(0,~) = 0* + 7'~

(la)

(Ib)

Here s is the amplitude of motion, c is the phase velocity
of the TW, while cu is the frequency of the SW. Similarly,
the bifurcation at Rss gives rise to a branch of steady
overturning convection:

@ = @„=0 on z = 0, 1. (2a)

In addition, we assume that both the temperature and
concentration are Axed on the boundaries,

0 =E =0 on z=0, 1. (2b)

This choice of boundary conditions has the advantage
that only a finite (and small) number of modes enter
into the determination of the local branching behavior
of the solutions. Consequently the minimal system we

construct below has a well-defined regime in which it be-
comes exact . This desirable property is not shared by
the model proposed in Ref. 11 for no-mass-flux boundary
conditions.

The conduction solution (vP = 0 = Z = 0) loses stabil-
ity at a Hopf bifurcation when R reaches

Z, + j(Q, E) = g~ —rV'8+ rV'K. (1c)

Here g is the stream function, 8 and Z represent de-

partures of the temperature and concentration from the
linear profiles present in the absence of the motion, while

o, r (r & 1), S, and R denote, respectively, the Prandtl
number, the Lewis number, the separation ratio, and the
Rayleigh number. These equations are supplemented by
stress-free boundary conditions at the top and bottom,

R= Rss+& R +& R +.
The coeKcients R2, R2, and R2 are well known;

in particular, RT2w:—0 (Ref. 9). Consequently, the
coefIicient R4 determines the direction of branching of
the TW branch. In Fig. 1(a) we show the line R&Tw = 0
in the (o, r) plane for several values of S. The curves are
not particularly sensitive to S. We observe that for most
choices of o, r the TW branch is supercritical (R4 ) 0).
The branch is subcritical (R4T & 0) only for rather small
Prandtl numbers o. The direction of branching of the
SW branch is determined by Rz . We find that when
S = —1, R2 -+ 0 as o ~ oo, and is positive
for finite cr. For —1 & S & 9', it is always positive.
The curves R4 —0 and R2sw 0 do not intersect
for any value of S. Consequently, only two possibilities
are likely to arise, (i) R4 & 0, R2 ) 0, and (ii)
R4 ) 0, R2 ) 0. In the former case theory shows
that the TW branch is unstable, while in the latter it
is stable. The SW branch is unstable in both cases. A
third possibility (iii) R4Tw ) 0, R2sw & 0 occurs for
extreme values of S only, as shown in Fig. 1(b) for S =
—'2.0. Note that the transition between regions (ii) and

(iii) must occur via a very narrow region in which the
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0.1 — (a) 9«, the direction of branching is determined by R4 . We
find that

ss 2+ 2~ &o
R4 (1Q)

0.0

1.0-

R,"&0
R,' ) 0

SW.

0.05

-2.0

where m = 4m /p (Q ( m ( 4) is a measure of the wave

number of the instability. This result disagrees with that
of Ref. 14 but has been checked using CAMAL .

In Table I we list those modes that contribute to the
determination of the above coefficients. A number of
other modes that are generated at O(s4) do not con-
tribute and are omitted from the table. Among these
is another z-independent 1b mode, sin4xz; these modes
represent lateral streaming with velocity u(z) = —1b, .
The implication of such an Eulerian mean flow for the
transport properties of traveling waves will be explored
elsewhere. rs 17 In SW or SS convection the amplitude
of these modes vanishes, however, and the mean flow is

absent.
Having identified the modes that must be retained in

order to predict correctly the local branching behavior
we next construct the minimal system. We set4

lb = Re . e'" sin(sz) aqua(t')
t' 2 2p,„..

ik

R,"&0 2 P

-+- ss

sin(2xz) apg(t')
erik

2 2p,„..+ . e'" sin(3n'z) ass(t') (11a)

0,0 1.0
8= Re~ 2 e'" sin(nz) b11(t')

FIG. 1. (a) Lines of R4 ——0 in the (r, n) plane for
various values of the separation parameter S. (b) The lines

R4 ——0 (solid) and R2 = 0 (dashed) on a larger region of
the (r, o') plane for S =—2.0. Schematic bifurcation diagrams
for each of the three regions are drawn as insets. Stability
properties with respect to amplitude and phase perturbations
are indicated by + (unstable) and —(stable). Region (iii) is
present for su%ciently negative values of S only.

1——sin(2n z) bp2(t')

e'" sin(3s. z) bus(t')

e'" sin(xz) dye(t')

1
sin(2n z) dp2(t')

(lib)

e'" sin(js z) dqs(t') (llc)

SW branch is stable and the TW branch unstable. This
region is not indicated in Fig. 1(b).

The bifurcation to steady convection is subcritical if
S ( S,4 and supercritical if S ) S,q, where

—~3

(1+r)(1+ r )

TABLE I. Modes retained in the spatial Fourier expan-
sion of Eqs. (1).

Order

It is easy to check that S,q ) S, always, so that when
the Hopf bifurcation precedes the steady-state bifurca-
tion the SS branch is subcritical and unstable. At the
codimension-two point, R = R,4

= (1+ r )Rp, S =

G2

G3

~4

e'" sin x'z

e' sin(3s z)
sin(2s z)

e'" sin xz
sin(2s z)

e'" sin(3s z)

e'" sin xz
sin(2s'z)

e'" sin(3s z)
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where f,' = pt Substituting into Eqs. (1), and equating
terms of like spatial structure we obtain the following set
of equations:

+11 + (m 1)oil&02 + (m + 1)013+02

= cr(r bll + Srdl1 —all), (12a)

I
&02 ~(&11~13 ~] 1 ~13 — &~~02 (12b)

&13+ I I 2
I

&11&021+2m j
a

(rbls +»d13) —cr(I + 2m)&13 )1+267
(12c) (oil ols bll b13 dll d13)

addition, there are bifurcations from the circle of SS and
SW solutions, i.e. , from a group orbit. These bifurca-
tions occur when an eigenvalue passes through zero, but
its eigenvector remains complex. In the case of bifurca-
tion from the SS branch, such a bifurcation produces a
branch of traveling waves; in the case of SW it results in
a branch of modulated waves. For more details, see Refs.
4 and 8. Consequently, to determine the stability proper-
ties of the SS and SW branches it is necessary to linearize
about these solutions within the O(2)-symmetric system
(12). Finally, the TW branch is determined by looking
for solutions in the form

~11 + &11~02 ~11+02 ~13~02 + ~13~02 (&11 &13 bll b13 dll d13) (13a)

= all —bl 1, (12d) (+02, bp2 d02) — (c102 b02 d02) (13b)

bp2 2 m(ollbll + ~1 lbll bll n13 bl1 13 1 1 b13

—all bls) = —mbo2, (12e)

ollb02 + bll +02 n13 (1 + 2m)b13

dl, l + ulld02 dll 02 n13d02 + d13 02

(121')

oil rdll + rbll (12g)

—all dls) = mrdo2 —+ m "bo2 (12h)

d02 —
z m(al ldll + all dl 1

—dl 1 al3 —dl 1 a13 —al 1 d13

with the "hatted" quantities time independent. The re-
sulting complex algebraic system is readily solved for the
amplitudes and the frequency ~1 as a function of the re-
duced Rayleigh number r The TW. can propagate either
to the left or the right, and are therefore isolated solu-
tions. They may lose stability at a zero eigenvalue corre-
sponding to a saddle-node bifurcation, or through a Hopf
bifurcation which gives rise to a branch of modulated
waves. In the remainder of this paper we explore the
various interconnections among the solution branches.

In order to guide the exploration we review briefly the
results of analyzing the TB bifurcation with O(2) sym-
metry which occurs at

~13 —&11d02 + ~11+02 1+-(1+r)(l+ o), (14a)

= a13 —(1+2m)rdls+ (1+2m)rb13, (12i)

where the prime denotes differentiation with respect to f,',
and r = R/Rp. These equations constitute the required
minimal system.

The appearance of the complex amplitudes is a conse-
quence of the O(2) symmetry. When all amplitudes are
real Eqs. (12) reduce to the corresponding set for the Z2-
syrrmnetric problem. Note that in this system the mode
a02 vanishes. The Z2-symmetric system admits station-
ary solutions corresponding to steady convection (SS) ob-
tained by setting d/dt' = 0. In addition, a branch of SW
bifurcates from RH pf ~ Within the Z2-symmetric system
we can determine the stability of the SS and SW branches
with respect to amplitude perturbations. In particular, a
zero eigenvalue corresponds to a saddle-node bifurcation
and its corresponding eigenvector is real. This analy-
sis follows closely that given by DaCosta, Knobloch, and
gneiss for therrnosolutal convection. We omit the de-
tails. In the O(2)-symmetric system the SS and SW so-
lutions are no longer isolated: there is a circle's worth of
each, labeled by a phase which specifies the position of
the cell boundary relative to an arbitrary origin. Each
solution is neutrally stable with respect to translation. In

—r2(1+ o)
o + r(1+ r)(1+ o)

(14b)

Near this point Eqs. (12) reduce to an amplitude equa-
tion of the form4 8

where p and v are linearly related to (r —r, )/s2 and

(S —S,)/s2 and the dot denotes differentiation with re-

spect to the slow time ct,'. Here A oc —R2 and is pos-
itive, D oc —RT2w and vanishes, while 2C + D oc Fgw-
and is negative. Although the fact that D vanishes for-
mally renders the analysis of Ref. 8 inapplicable to the
present problem, one may argue (cf. Ref. 4) that it
should behave in accordance with the predictions for D
small and negative (when R4Tw ) 0 ) or D small and pos-
itive (when R&+w ( 0). These predictions are sketched in

Fig. 2.
In Fig. 2(a) (R&Tw ) 0 ) the TW branch bifurcates

supercritically, and loses stability at a secondary Hopf

&11 —(p + ~i&11 l )&11 + s[ &clll + +(&lloll + oil&11)all
+Dlo» I'&»1+ o(&')
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TW )1/2 (17)

The SW branch is unstable throughout, and terminates
on the (unstable) SS branch in a heteroclinic orbit; as this
point is approached the period again approaches infinity
according to (16). In Fig. 2(b) (RT4w & 0) both the
TW and SW branches are unstable throughout, and no
secondary bifurcations to MW occur.

In Sec. III we show that these results describe the dy-
namics of the system (12) over a wide range of parameter

+
R,"&0
8,"&0

',SS
I+—+

\

I
I
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\
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FIG. 2. (a) Schematic bifurcation diagram near a Takens-
Bogdanov point with O(2) symmetry when R~ & 0 and
Rq & 0 [region (ii) in Fig. 1(b)]. Stable (unstable) por-
tions of the branches are indicated by solid (dashed) curves.
The signs of the principal eigenvalues are shown along each
branch. Local bifurcations are marked by solid circles, global
bifurcations by open circles. (b) As for Fig. (a) but for region
(i) in Fig. 1(b) where R~ & 0, R2 & 0.

bifurcation giving rise to stable MW. The MW branch

terminates on the TW branch in a global bifurcation. If
we write the solution to (15) in the form aqI ——Ae' ",
then A = Ao (constant) describes a traveling wave, while

A = A(t), uI E 0, describes a modulated wave. In
the comoving frame the oscillation A(t) is a standing
wave; as the Rayleigh number increases the modulation

amplitude also increases, and its period P approaches
infinity according to

P - —in(I"h —I.), (16)
where I g is the Rayleigh number at which the global bi-
furcation takes place. The (unstable) TW branch termi-
nates on the (unstable) SS branch, with the phase speed
c approaching zero as

values. In addition, however, the presence of a large am-

plitude stable SS branch is revealed which is connected
to the unstable SS branch via a saddle-node bifurcation.

III. THE RESULTS

Equations (12) were solved numerically for steady
states and traveling waves. The stability of each solution
was determined by numerically solving the appropriate
characteristic equation. Owing to the translation sym-
metry, zero is always an eigenvalue. On the SS branch
additional zero eigenvalues occur at a saddle-node bifur-
cation and at a bifurcation from SS to TW. On the TW
branch a zero eigenvalue signals a saddle-node bifurca-
tion, while a Hopf bifurcation gives rise to a secondary
MW branch. The SW branch can be found by restrict-
ing the variables in Eqs. (12) to be real. This suppresses
the instability of SW to TW and enables one to find this
branch by solving the time-dependent problem. We have

checked our results by expanding each modal amplitude
in a Fourier series in time, and obtaining algebraic equa-
tions for the amplitudes of the Fourier components. We
have found that this method works well for our parameter
values provided all the harmonics through fourth order
are retained. This yields 12 complex and six real equa-
tions for the 30 nonzero coe%cients. A similar method
was used to construct the M% branch, requiring the so-
lution of 135 simultaneous algebraic equations. This ap-
proximation works well provided the modulation is not
too nonlinear. Figures 3(a) (inset) and 3(e) indicate the
limitations of this method for MW and SW, respectively.
In the present problem the MW branch is stable, and so
can also be located by direct integration of Eqs. (12).
In particular, numerical integration can be used to study
the termination of the MVV branch, where the algebraic
method fails. The integration was carried out using an
eighth-order Runge-Kutta scheme with 128-bit preci-
sion to ensure adequate accuracy near the end points of
the various branches. The algebraic method can also be
used to determine the eigenvalues describing the stability
of the various branches. In particular, for the TW branch
given by (13) essentially exact eigenvalues are readily ob-
tained.

A. Bifurcation diagrams

In Fig. 3(a) we show the bifurcation diagram, ~aqua~

versus r, for parameters characteristic of a He- He
mixture: r = 0.03, o = 0.6, S = —0.01. Here the
T% branch bifurcates supercritically, but loses stabil-
ity to an MW branch at r 1.087775 before ter-
minating on the lower part of the SS branch at r
(& I

M ). Owing to the small range in which the MW
branch exists an enlargement of the appropriate portion
of the diagram is included. For a slightly lower value of
S, SsN —0.012 500 6, the TW branch terminates at
the saddle-node (SN) bifurcation on the SS branch, as
shown in Fig. 3(b). When S & SsN the TW branch
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terminates on the upper part of the SS branch as shown

in Fig. 3(c) for S = —0.0142. Here the SS branch re-

mains unstable past the saddle node, gaining stability
only for r & riw. The SS branch remains stable for

r& & r ( r&, but at r = r2 it once again loses sta-
bility to traveling waves when the dominant eigenvalue
returns to the positive half plane. This large amplitude
TW branch extends to infinity. Similar behavior was ob-
served in Ref. 11. The values of r&+ are too large to
show the second TW branch in Figs. 3(a) and 3(b), but
have been found numerically. For S & S~ —0.0143, the
TW branch becomes disconnected from the SS branch
which is now unstable for all r. This case is illustrated
in Fig. 3(d) for r = 0.03, e = 0.6, S = —0.02. At such

amplitudes, however, the concentration field will be con-
fined to thin boundary layers and we expect the physical
system to behave like pure Rayleigh-Benard convection.
Consequently the stable large amplitude TW are likely to
be an artifact of the truncation. Finally in Fig. 3(e) we

show a case in which the TW branch bifurcates subcrit-
ically (r = 0.03, 0 = 0.02, S = —0.02). Note that Figs.
3(a) and 3(e) agree qualitatively with the predictions of
the Takens-Bogdanov analysis [Figs. 2(a) and 2(b)].

Observe that in Fig. 3(a) we have a hysteretic transi-
tion to steady convection while in Fig. 3(c) the transition
is nonhysteretic. In addition, the secondary bifurcation
from TW to MW occurs only for S & SsN. The value of
SsN is readily determined from the requirement that the
stability of the SS branch possesses three zero eigenvalues
at the turning point: one from the translation invariance,
the second because it is a saddle-node bifurcation, and
the third to allow the TW to terminate there. As S
decreases towards SsN the Hopf frequency at the bifur-
cation from TW to MW decreases to zero so that the
TW branch terminates with a double zero eigenvalue, in

addition to the third zero from translation invariance.
The motion of the relevant pair of eigenvalues along the
TW branch as a function of r is shown in Fig. 4 for (a)
S & SsN, (b) S SsN, and (c) S & SsN. Figure 4(a)
shows that these eigenvalues are initially real and stable.
With increasing r they coalesce on the negative real axis
and move into the complex plane. The TW solution un-

dergoes a Hopf bifurcation to MW when these eigenvalues
enter the right half of the complex plane. As r increases
further the eigenvalues merge onto the positive real axis
and then split into two positive real eigenvalues. One

of these continues to increase with increasing r while the
other decreases, reaching the origin when the TW branch
terminates on the SS branch. For S & SsN [Fig. 4(c)]
the eigenvalues coalesce on the negative real axis, and
the larger real eigenvalue reaches the origin at the end

of the TW branch. Consequently, here the TW branch
remains stable throughout. At S = SsN, r = rsN [Fig.
4(b)] we have a multiple steady-state bifurcation from a
group orbit of nontrivial steady states (see Appendix).
The above sequence of transitions is discussed further in

Sec. IV. The same conclusions apply if S is held fixed and

o is varied, and allows one to define osN(r, S). Such a
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FIG. 4. The motion of the principal eigenvalues along the
TW branch as a function of r for 7 = 0.03, o' = 0.6, and

(a) S = —0.01, (b) S = —0.0125 SsN, (c) S = —0.0142.
The location of the eigenvalue is shown at a sequence of r
values within the interval specified with every tenth point la-

beled by an integer to indicate the direction of motion with

increasing r In (a) a bifur.cation to MW occurs when a pair of
complex eigenvalues crosses into the right half plane, and the
TW branch terminates when the smaller eigenvalue reaches
the origin. In (c) the TW branch remains stable, and termi-
nates when the larger eigenvalue reaches the origin. When
S = SsN the TW branch terminates at the saddle node on
the SS branch.
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single frequency uz (and its harmonics) only. The fig-

ure shows excellent agreement between the asymptotic
relation (16) fitted to the first three points and the re-
maining points computed numerically, indicating that
in the comoving frame the standing wave component of
the MW is approaching an infinite period orbit, as sug-
gested by the Takens-Bogdanov analysis. These results
provide excellent estimates of the quantities r+ and
rg, i.e., the end points of the T%' and MW branches,
respectively. We find rT = 1.136 870 185, while

rg ——1.087 847 105 660 535 401 08. As shown below
the behavior near r g is so delicate that accuracy of this
magnitude is in fact necessary. These results complete
our discussion of the general properties of the bifurca-
tion diagrams, and in particular of the conditions for the
presence of an MW branch.

Re(a"„')

—0. 1—

003 0. = 0 6

(a) r = 1.0878

S = —0.01

t
20 000

B. Termination of the MW branch

We now turn to more detailed and subtle properties of
the modulated traveling waves and discuss the nature of
the global bifurcation with which the MW branch ter-
minates. We begin by presenting in Figs. 8(a) and

8(b) the time series for Recit at two successive values
of r for r = 0.03, a = 0.6, S = —0.01 illustrating the
rapid lengthening in the modulation period towards the
end of the MW branch. The time series for bpz cor-
responding to the series in Fig. 8(b) is shown in Fig.
8(c). Although the time series appears to be compli-
cated owing to the numerous oscillations near the minima
it is strictly periodic. For comparison we show in Figs.
9(a) and 9(b) the time series for Reaii and bpz wheil
7 = 0.03, o = 0.6, S = —0.0125, and r = 1.099 943 2.
For this value of S the TW branch terminates just below
the saddle-node bifurcation on the SS branch. Although
the S values used in Figs. 8 and 9 are quite close, the cor-
responding time series show marked differences. These
can be attributed to the rather different standing wave
components of the two waves, as illustrated in Figs. 8(c)
and 9(b). Note, however, that a suitable enlargement of
the rapid phase of the oscillation shown in Fig. 9(b) re-
veals a sequence of oscillations near each minimum that is

quahtatively similar to the behavior shown in Fig. 8(c).
In both sets of figures we indicate also the amplitude of
the unstable SS, TW, and SW solutions that coexist with
the MW solutions shown. This information will be of vi-

tal importance in interpreting the observed structure of
the MW.

In Figs. 10(a) and 10(b) these results are presented as
limit cycles in the (bpz, dpz) plane. This projection has
the advantage that it removes the oscillation frequency
associated with the phase velocity of the traveling wave.
Each figure shows the corresponding limit cycles for sev-
eral values of r showing the approach to the infinite pe-
riod orbit implied by Fig. 7(b). In this projection the
traveling wave appears as a fixed point. Since its posi-
tion depends on r we indicate by a + its location for the
largest r value only. Note, however, that in view of the

0.1—
I

Re(a„)

003 0. = 06 S = —0.01

t
20 000

(b) r =- 1.08784710566053540103

0 01 r = 1.08784710566053540103
0.03 0 = 0.6 S = —0.01

bp. .b~-

(b."&-
0 20 000

FIG. 8. The time series Reaii (t) for r = 0.03,
0.6, S = —0.01 and (a) r = 1.0878, (b) r

= 1.087 847 105 660 535 401 03 showing the rapid increase
in the modulation period and amplitude with increasing r.
The amplitudes of the coexisting but unstable SS, TW, and
SW are labeled using the notation

~

. ~ ~. (c) The time se-
ries bp2(t) corresponding to (b) showing the highly nonlinear
standing wave component of the modulated wave. The values
of bog for the coexisting SS and TW are indicated, with the
notation & ) used to denote the range of oscillation of the
coexisting SW.
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small increments in t the shift in its position would in any
case not be discernible on the scale of the figures. The
same applies to the point representing the circle of steady
states and denoted by X. We draw attention to the small
amplitude oscillations that these limit cycles develop
with increasing r. The indicated location and amplitude
of the (unstable) SW limit cycle, again for the largest
value of r, strongly suggest that this structure is asso-
ciated with the presence of nearby standing waves. The
structure of Fig. 10(a) is shown in a different projection
in Fig. 10(c), and again in Fig. 11, where Imaii is plot-
ted against Redji every time Reaii ——0 with Reaii & 0.
This procedure defines a section through the MW torus
by a plane E. Figure 11 shows the resulting Poincare sec-
tions for several values of r. Since a MW must take the
form ati —f(uqt)exp iuit =

I f(uq&) !exp!'inta + ig(u2f)j,
the Poincare section exhibits points at times satisfying
~it + P(~2t) = (2n+ 1)s/2, n = integer. For a TW the
map is therefore a time-T map, where T = 2n/ui, but for
a MW the times between successive points are not equal.
Note that the drift frequency u, for a modulated wave

differs in general from u&, the drift frequency for a
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I
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FIG. 9. The time series (a) Rea&z (t), (b) bp2(t)
= 0.03, cr = 0.6, S = —0.0125, and r = 1.099 943 2. The
inset shows a stretch by a factor of 50 in t near a minimum
in the time series (b) showing behavior similar to that of Fig.
8(c).

FIG. 10. Limit cycles in the (bp2, dp2) plane for (a)
0.03, n = 0.6, S = —0.01, and (b) r = 0.03,

= 0.6, S = —0.0125, and several different values of r, showing
the rich structure associated with a simultaneous approach to
a fixed point representing a steady state and to a limit cycle
representing a standing wave. Unstable fixed points corre-
sponding to SS and TW are denoted by x and +, respectively,
with the amplitude of the unstable SW limit cycle indicated
by (. .), each for the largest r value shown. (c) As for (a) but
showing the (bp2 ap2) plane.
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pure TW at the same value of r, although they agree at
rM .This is because ~i (like ~2M ) depends on the
amplitude of the modulation. In Fig. 11 the TW corre-
spond therefore to a fixed point, indicated by +, while
the circle of SS is represented by its representative with
Reai~ ——0 and indicated by X. Note that such a point
necessarily lies on the axis Redye: 0. Both points are
hyperbolic. A pure SW is represented by a limit cycle
1ying in a plane intersecting the complex a~i plane in a
straight line through the origin. The limit cycle therefore
intersects the plane E along the line Reaps = Imai] —0;
this occurs at a point whose Redqi coordinate is also in-
dicated in the figure.

We now describe a scenario that accounts for the qual-
itative aspects of the above results. It is known that suf-
ficiently close to the Takens-Bogdanov bifurcation8 the
MW two-torus does become homoclinic to the TW one-
torus as r approaches rp, . In particular, it can be shown
that as r ~ rp, the drift frequencies cuM and ~ ap-
proach one another, and the modulation frequency uncy 4)2

vanishes. Viewed in the comoving frame the TW fixed
point at r = rI, lies on the MW limit cycle. Note that this
cannot occur in a three-dimensional system since it re-
quires the fixed point to be a generalized saddle, but does
occur in the four-dimensional normal form (15) where the
TW fixed point has a pair of unstable eigenvalues and
a third stable eigenvalue. We remark also that near the
Takens-Bogdanov bifurcation (ass —rH»r &( r ss) the ori-
gin has a pair of unstable eigenvalues of multiplicity two,
and hence is repelling in all directions. In contrast fur-
ther away from the Takens-Bogdanov bifurcation the ori-

gin acquires a nontrivial stable manifold. For example int

the system (12) this manifold is 11 dimensional and corre-
sponds to real eigenvalues. For case f of Fig. 11 the least
stable eigenvalue is A3 ———m7 = —0.08, while the unsta-
ble eigenvalues are A& + iA2, where Az ——4.089 92 x 10
and A2 ——5.614 83 x 10 . Accordingly the MW two-
torus cannot become homoclinic to the origin near the
Takens-Bogdanov bifurcation, but can do so, in principle,
further away from it. In fact, the results summarized in

Figs. 8(b), 10(a), 10(c), and 13 for S = —0.1 indicate
that the MW two-torus becomes homoclinic neither to
the TW fixed point nor to the origin (see, in particular,
Fig. 12). Figure 10(a) suggests that instead the two-
torus is becoming homoclinic to the circle of nontrivial
fixed points SS. Each of these is characterized by a phase

P and is neutrally stable with respect to changes in P, i.e.,

spatial translations. Since bo2, doz are both real and inde-
pendent of P this circle appears in Fig. 10(a) as the single
point indicated by X. The development with increasing
r of a sharp corner in the limit cycle near this point is
characteristic of the approach to a homoclinic orbit. Note
that at these parameter values an SS fixed point SS hasas
a one-dimensional unstable manifold W", in addition to
a one-dimensional center manifold 8

&
present because of

the O(2) symmetry. The unstable manifold lies in a Z2-
invariant subspace, hereafter Zy, since it corresponds to
an amplitude instability. Since the 13-dimensional stable
manifold W& of the fixed point SS~ has a component or-
thogonal to Ey a trajectory in the stable manifold start-
ing with initial conditions that are not reflection invari-
ant (in Zy) will result in a drifting state that comes to
rest, after an infinite time, at the fixed point SS~. The
trajectory leaves SS~ along its unstable manifold ~"

—0.10
I

——Re(d„)

C.

d.
e.
f.

1.0878
1.08784
1.08784
1.08784
1.087847105
1.08784710566053540102

Re(d„)

~7 =- 0.6 S = —0 01

FIG. 11. Poincare section through the MW two-torus for
several values of r corresponding to Fig. 10(a). Imam& is
plotted against Red&& every time Reaii ——0 with Reaps ) 0.
100, 500, 500, 1000, 2000, and 40000 points are plotted to
make up sections a through f, respectively. The location of
the SS and TW fixed points, and the amplitude of the SW
limit cycle are indicated as in Fig. 10, again for the largest
value of r.

FIG. 12. The (p, v) plane for the normal form (18) with
c & 0, f & 0 showing the different phase diagrams (z(t), y(t))
characteristic of variou regions. The line I' is a codimension-
one surface of global bifurcations. Bifurcation diagrams
zo(A) obtained along typical sections through the (p, v) plane
are shown as insets. These show stable (unstable) solution
branches as solid (dashed) lines, and local (global) bifurca-
tions as solid (open) circles.
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approaching the standing waves which are stable in Zy.
Consequently the trajectory becomes homoclinic to the
SW limit cycle with the same phase P, hereafter SW~, as
the fixed point SS~. This approach to the SW~ limit cy-
cle manifests itself in the fine structure of the oscillations
near the origin. Indeed one can verify that the frequency
of the oscillations near the origin is close to A~ in Fig.
8(b) or 2hz in Fig. 10(a), as appropriate for small am-

plitude standing waves. Since the SW are unstable with
respect to perturbations orthogonal to Z~ they in turn
decay into TW.s This instability manifests itself in the
decay with time of the oscillations in baz, daz, and aaz
leaving only those in aii, bii, . Since at these pa-
rameter values the TW have a much larger amplitude,
the TW amplitude grows exponentially towards the TW
fixed point. However, since this point is unstable the so-
lution approaches the MW instead and so drifts again
into the circle of fixed points. Thus the MW two-torus
becomes heteroclinic to both the circle of steady states SS
and the circle of standing waves SW. Since P is arbitrary
the Zz-invariant part of the heteroclinic cycle is in fact
a circle of heteroclinic orbits. In particular, the phase P
of the Z~-invariant subspace selected by the heteroclinic
orbit during the "half" cycle that it spends in such a sub-

space is undefined. Note that during this "half" of the
cycle the resulting MW experiences no drift. This obser-
vation illustrates graphically that near r = ri, the MW no

longer drifts uniformly (as it does near r ) but instead
drifts in fits and starts. These ideas can also be used to
understand the presence of the "fan" that opens out in

Fig. 11 with increasing r Since th.e SW component of
the MW is not a pure SW for any r & rq the correspond-
ing oscillation in the complex aii plane winds around the
origin. As a consequence it intersects the plane E along
a number of points corresponding to different phases of
the variable Redii. The solution therefore samples all
values of Redii between zero and its value on the circle
of steady states. In Fig. 11 the latter is slightly off-scale
and describes the maximum vertical extent of the "fan"
shown there. Note finally that at r.s both ~~&w and ~z+w

vanish simultaneously. This does not violate the fact that
the two frequencies ~~iw and ~z~ cannot lock on the
MW two-torus. Indeed it resembles what happens when
a two-torus becomes homoclinic to a one-torus with a
nonzero frequency u& . Then, as r —+ rp, ~2 ~ 0

nd ~Mw ~ ~Tw
The above scenario is consistent with the available

numerical results and argues strongly in favor of the
MW two-torus disappearing, for both S = —0.1 and
S = —0.125, by forming a heteroclinic orbit connecting
the circle of steady states to the circle of standing waves.
This type of heteroclinic orbit has not, to the authors'
knowledge, been observed before. Note that in spite of
much structure in the two-torus no chaotic behavior was
detected. However, any perturbation of the problem that
breaks the translation symmetry will result in frequency-
locking on the two-torus, and a likely torus breakdown
before the dynamics associated with the global bifurca-
tion first appears.

IV. BIFURCATION ANALYSIS NEAR cr = esg

y = (v+ cz)y, (18b)

z=p —z +y + fz, (18c)

where the variables z and y correspond to position and
velocity in the horizontal, and z is an amplitude coordi-
nate relative to the saddle-node amplitude. The parame-
ters p, v are unfolding parameters and are linearly related
to r —i's~ and o —os~. In the normal form (18) we have
made a particular choice of signs of the terms yz, zz. In
the following we show that with this sign choice the signs
of c and f can be selected to describe the results of the
preceding section. With other choices of signs of yz, zz

this is not possible.
Since Eq. (18a) decouples from the other two, the

normal form is effectively two dimensional. A partial
analysis of the resulting system is given in Ref. 23. There
are two types of fixed points (y, z):

(O, za): za k~p for SS,

(yo, zs): yo yQ(v/c) —p, zp
——v/c for TW .

(2o)

The identification of these solutions as SS and TW uti-
lizes (18a) to associate a drift with all solutions for which

y g 0. The SS are stable in the z direction (amplitude di-

rection) if zo ) 0, and in the y direction (phase direction)
if v+ czp & 0. The saddle-node bifurcation occurs when

p = 0; the bifurcation to TW occurs along p (v/c)2.
When c & 0 the TW fixed points are saddles and undergo
no bifurcation. However, when c & 0 a Hopf bifurcation
occurs along the line

and a stable (unstable) limit cycle forms provided f
& 0 (f & 0). In view of the drift associated with the bi-

furcating fixed point such limit cycles must be identified
with the modulated traveling waves (MW) of Sec. III.

We summarize the results for c & 0, f & 0 in Fig. 12.
The (p, v) plane breaks up into six regions with distinct
local phase portraits. The resulting bifurcation diagrams,
constructed by taking appropriate cuts through the (p, v)
plane and also shown in Fig. 12, are precisely of the
form found numerically in Sec. III A. In particular, for 0

& os~ (the lower cut) the TW undergo a secondary Hopf
bifurcation to MW; the MW are stable throughout and
terminate in a global bifurcation on the lower (unstable)

Many of the results of the preceding section can be un-
derstood simply by constructing a normal form describ-
ing the interaction between the TW and SS branches in
the vicinity of the saddle-node bifurcation on the latter.
This construction is described in the Appendix and leads
to the following three-dimensional system:

(18a)
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part of the SS branch, followed by the TW. For 0 & OsN

(the upper cut) the TW remain stable throughout, and
terminate instead on the upper part of the SS branch.
In the former case the transition to SS is hysteretic; in
the latter case it is not. In both cases the TW terminate
with the square of the phase velocity approaching zero
linearly [y po —p, po = (v/c) ]. Note that the MW
disappear precisely when a passes through os~.

It will be observed that the limit cycles in region 5 of
Fig. 12 must disappear in the process of crossing into
region 1. It is important to discuss this process and the
suitability of (18) for its description. As the boundary

p (v/c)z, v & 0 (see Fig. 12), is approached the two
fixed points representing TW coalesce with the O(pi~2)
fixed point representing SS. By the time this happens
the MW limit cycle must have disappeared and this must
take place by means of some global bifurcation. Within
the normal form (18) the limit cycle cannot become ho-

moclinic to the TW fixed point, , and so disappears by
becoming heteroclinic to the O(p ~ ) and O(1) SS fixed
points. The latter fixed point is not, however, a part of
the local analysis and was for this reason discarded in

(19). Consequently the normal form cannot describe the
fate of the limit cycle. In particular, as the MW limit

cycle gets closer and closer to the O(pi~z) SS fixed point
it increases in size and the local analysis breaks down.
The limit cycle can therefore become homoclinic to o/her
invariant sets such as the SW in the system (12) whose
existence is not revealed by a local analysis of this type.
Thus all that can be deduced from the local analysis near
the saddle node is that the limit cycle must disappear in

a global bifurcation for p = p, & (v/c)2, as indicated by
the curve I' in Fig. 12. The inability of a normal form
to describe global bifurcations which nonetheless must
occur has been observed before.

It is important to observe that it is possible to go fur-

ther if one returns to the original system for which the
normal form (18) is derived. In the Appendix this is the
degenerate Takens-Bogdanov normal form. In this sys-
tem the O(1) SS fixed point does not exist. Since the
origin is unstable and the normal form (18) prohibits the
formation of a homoclinic orbit through the TW fixed
point the lVlW limit cycle must become heteroclinic to
the O(p i ) SS fixed point, and the only O(1) nondrift-
ing state that is present, the standing waves SW. Conse-
quently the presence of the heteroclinic orbit described
in Sec. IIIB can be demonstrated theoretically near the
degenerate TB bifurcation, when the TW branch termi-
nates just below the SS saddle node. In contrast when
the TW branch terminates farther from the saddle node
the normal form (18) fails and the analysis of Ref. 8 ap-
plies instead. In this case the MW limit cycle becomes
homoclinic to the TW.

The codimension-two bifurcation that occurs at S
= Sd separating Figs. 3(c) and 3(d) can also be under-
stood using similar techniques. In this case the normal
form 1s

(22b)

with the case S & Sg (S & Sd) corresponding to v

&0(v&0).

V. DISGUSSION AND CONCLUSIONS

In this paper we have studied the properties of a min-
imal system describing two-dimensional Boussinesq con-
vection in a binary fluid mixture heated from below. This
system was constructed so as to be asymptotically ex-
act at small amplitudes. Our results are sununarized in
the bifurcation diagrams shown in Figs. 3. We see that
in all cases the observed behavior at small to moderate
amplitudes agrees with the predictions of the Takens-
Bogdanov bifurcation with O(2) symmetry [cf. Figs. 2(a)
and 2(b)]. In particular, this applies to the secondary
MW branch which bifurcates supercritically and termi-
nates in a global bifurcation. The only difference be-
tween the theory of the Takens-Bogdanov bifurcation~ s

and our numerical results at moderate amplitudes is that
the MW two-torus terminates in a heteroclinic bifurca-
tion involving the SS and SW circles instead of the TW
one-torus. Consequently we expect a transition with de-

creasing S from a homoclinic bifurcation involving the
TW one-torus to a heteroclinic one involving the SS and
SW circles. At a critical value of S there should there-
fore be a heteroclinic bifurcation at which the MW two-
torus becomes simultaneously homoclinic to three invari-
ant sets: TW, SS, and SW. From Figs. 10(a) and 11
it appears that this critical value of S is only slightly
larger than —0.1; we have not, however, attempted to
locate it. The bifurcation diagrams also reflect the fact
that at larger amplitudes the SS branch turns around to-
ward larger Rayleigh numbers; this results in two possible
transitions, one hysteretic and the other not, from trav-
eling wave convection to steady overturning convection,
as the Rayleigh number increases. These bifurcation di-
agrams can be obtained from an analysis of a degenerate
TB bifurcation with 0(2) symmetry as shown in Sec. IV
and the Appendix, and qualitatively similar transitions
have been observed in experiments in ethanol-water mix-
tures heated from below. z In particular, the vanishing
of the TW phase velocity was observed, although the re-
lation (17) could not be verified, perhaps owing to slight
hysteresis in the transition arising from small departures
from two-dimensional structure in this regime. A re-
lated experiment by Heinrichs, Ahlers, and Cannell has
revealed a transition from TW to MW whose signature
is entirely consistent with the predictions of the TB bi-
furcation with 0(2) syinmetry. 2s However, the present
model does not predict the correct behavior for ethanol-
water mixtures (o 10) largely because the TW branch
reaches much larger amplitudes than for He- He mix-
tures (0 0.6). In the latter the bifurcation behav-
ior that occurs at small amplitudes, including the MW
branch, is believed to be in the range of validity of the
model, and hence a property of the partial difkrential
equations for moderate departures from the parameter
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values required for the TB bifurcation. A similar cor-
respondence between model solutions and the solutions
to the partial differential equations has been established
for Z2-symmetric thermosolutal convection in Ref. 7 and
O(2)-symmetric thermosolutal convection in Ref. 29. It
should be noted that with identical boundary conditions
at the top and bottom finite amplitude TW have, in the
comoving frame, the symmetry (z, z) ~ (z+ x/k, 1 —z),
(g, 8, E) ~ (—Q, —8, —E). This symmetry allows the
centers of neighboring cells to be displaced in opposite
directions with respect to the layer midplane. These
displacements increase from zero with increasing ampli-
tude and are allowed because the reQection symmetry Z2
takes a traveling wave into a distinct state, namely a wave

traveling in the opposite direction. In contrast for sta-
tionary rolls Zz takes a roll solution into minus itself, and
hence forces the existence of a solution with cell centers
in the midplane. Note that it is the Z~ symmetry rather
than reAection in the midplane that is important here.
Although the displacements in a TW of the cell centers
are not represented in Eqs. (11), a quantitative compar-
ison for thermosolutal convection between the minimal
model and solutions of the partial differential equations
shows that the modes retained in (11) consistently con-
tain the most power. 29

In addition to exploring the bifurcation diagrams away
from the codimension-two point, the study of the minimal
system has revealed several results of theoretical interest.
In particular we have presented evidence that away from
the Takens-Bogdanov point the MW branch continues to
terminate in a global bifurcation [cf. Fig. 7(b)j, albeit
of a novel type. This bifurcation is heteroclinic involv-

ing the states SS and SW instead of TW, and required
extreme accuracy to establish its existence. Of interest
also is the observation that modulated traveling waves
are present only for o' ( as~, where os~ denotes the
value of the Prandtl number for which the TW branch
terminates at the saddle node on the steady state branch.
We found that this behavior could be readily explained
by a normal form constructed at the codimension-two
point o. = o.s~, r = rs~. The analysis showed that the
Hopf bifurcation to MW moves towards the end of the
TW branch as the codimension-two point is approached,
with the modulation frequency approaching zero. This
suggests that in experiments like that of Ref. 26 MW
could be realized by increasing S to bring the termina-
tion point of the TW branch below the saddle node on
the SS branch. We emphasize, however, that this is not
the only way for the MW to disappear. For example,
farther from the Takens-Bogdanov bifurcation the TW
branch may develop a cusp and acquire a loop in which
exactly the right number of eigenvalues lose stability for
the branch to terminate on the unstable SS branch with-
out a prior bifurcation to MW. We have also seen that
for o ( crs~ the TW branch has two distinct parts, the
small amplitude branch from which the MW branch bi-
furcates, and a large amplitude branch which bifurcates
from the upper part of the SS branch. For os~ ( a ( o ~
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APPENDIX: DERIVATION OF THE NORMAL
FORM (18)

As mentioned in Sec. IV the numerical results may be
understood in terms of a codimension-three bifurcation
which arises when one of the nondegeneracy conditions
in the generic Takens-Bogdanov bifurcation fails. Since
the numerical results that are of interest involve interac-
tion between the TW branch and the saddle-node bifur-
cation on the SS branch, we are interested in unfolding
the degeneracy A = 0 in the analysis of Dangelmayr and
Knobloch. In this appendix we derive the appropriate
normal form. However, instead of providing a complete
analysis of this normal form, we use it to derive a nor-
mal form describing the interaction of the TW and SS
branches only, in the case where the latter is close to a
saddle-node bifurcation.

As in Ref. 8 we use complex coordinates (v, w) 6 C
and demand that the resulting equations are equivariant
under the following representation of the group O(2):

Rg(v, m) = (e' v, e' w), translations (Ala)

z(v, w) = (v, ur), reflections . (A1b)

both TW branches bifurcate from the upper SS branch,
and for cr & up these branches join and detach from the
SS branch. Here stable TW exist for all values of the
Rayleigh number greater than RH ~r. This property of
the model occurs, however, for amplitudes beyond its
regime of validity.

The present model is a considerable improvement over
the model proposed in Ref. 32. The latter includes
only the modes any, bye, boz, dqq, doz, with the result that
the TW branch is completely degenerate: it exists at
R = RH &f only, a property that could be anticipated
from the well-known result that with the present bound-
ary conditions, RT2w—:Q.s In the minimal system this
degeneracy is removed by the higher-order modes, and
allows us to study the properties of the secondary MW
branch. In addition, the fourth-order calculation re-
quired to construct the model revealed the existence of
an Eulerian mean Row associated with a traveling wave
whose significance for the transport properties of such
waves will be discussed elsewhere.
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There are three invariants of this action:

03 —'U8) + UlU.

The most general equivariant vector field then takes the
form

syauaetry, rotation through 0 generates a nonzero y~.
Thus y~ represents the coordinate along the group orbit,
while the coordinates (z1, z2, y2) are perpendicular to it.
By a theorem of Krupa the vector field (A6) may lo-

cally be decomposed into a three-dimensional vector field
in the perpendicular direction,

V = g]V+ggW )

8) = g3'U + g48))

(A3a)

(A3b)

(A7a)

where gz
—gz(o1, o2, os), j = 1, 2, 3, 4, are smooth real-

valued functions. The Takens-Bogdanov singularity is
characterized by the linearization

t v ) (0 1 ) (v
(A4)

v = w+ 0(7), (A58)

of (A3), Nonlinear near-identity coordinate changes may
be carried out to remove as many of the nonlinear terms
in (A3) as possible. Omitting the details, we find that
at third order in (v, w) four terms remain, while at fifth
order there are six terms that cannot be removed:

z2 —Pzl + &z2 + gz1 + B(z2 + u2)z1 + Mz1z2 + Ez1
+F(z2 + V2)zl + +zlz2 + Hz1(z2 + 92)z2

+2Jzizq )

j2 ——[v + Dz1 + Gz1 + Hz1(z2 + y2) + 2Jz1zzjy2,

(A7b)

together with a drift along the group orbit:

y1 = y2.

(A7c)

(AS)

Here M = 2C+ D, N = G+ 2I. Hence to understand
the dynamics it is sufficient to analyze (A7).

In the system (A7) the point (z, 0, 0), where

w = B)w(2v y C(vw + vw)v+ D(v)2w+ E[v[4v

+F lvl'lwl'v+ Glvl'w+ Hlvl'lwl'w

+Iivi'(vw+ vw)v+ Jivi'(vw+ vw)w+ O(7),
(A5b)

where O(7) denotes seventh-order terms. In obtaining
this normal form we have set the coeflicient A of ~v~ v

in (A5b) equal to zero. The resulting degeneracy has
codimension-three, and requires three parameters to un-
fold it. Omitting all higher-order terms, we have

v+ Dz + Gz" + Hz y = 0. (A10)

To study the interaction between TW and SS we linearize

(A7) about (z, 0, 0). There are three eigenvalues given by

A —A(v+ Mz + Kz ) —(@+3rjz +5Ez ) = 0,
(Al 1)

(A9)

denotes a nontrivial steady state. The point (z, 0, y) rep-
resents a traveling wave, where

V=tO (A6a)
As ——v+Dz +Gz . (A12)

(A6b)

w = pv+ vw+ ri[v[ v+ B~w~'v+ C(vw+ vw)v

+Dlvl'w+ Elvl'v+ Flvl'lwl'v+ Glvl'w

+Hlvl'lwl'w+ Ilvl'(vw+ vw)v

+Jfv)2(vw+ vw)w.

T11e last eigenvalue describes the bifurcation from SS to
TW when it passes through zero. Assuming that both
the eigenvalues (All) have ReA g 0, we can carry out
a center manifold reduction at As —0, and obtain the
normal form

j2 ——12y2 + O(5) (A13)
This is the required truncated normal form. Note that
when g = O(1) and certain nondegeneracy conditions on
the coe%cients C and D hold, then the fifth order terms
are no longer required and the system (A6) reduces to
that analyzed in Ref. 8. In the codimension-three case
we treat all three unfolding parameters p, v, g as small.

Equations (A6) describe the interaction of TW with
the saddle-node bifurcation on the SS branch. By
construction it occurs in the neighborhood of the
codimension-three singularity, and hence at small am-
plitude. To obtain equations describing this interac-
tion we introduce real coordinates v = (z1, y1),
= (z2, y2) in R and choose a particular steady-state so-
lution (z1, y1, z2, y2) = (z, 0, 0, 0). Because of the O(2)

with an unfolding

y2
—by2+ ay22+ O(5), (A14)

where 6 = O(Aa). To Eq. (A14) one must append (AS)
describing the drift. in the yq direction. Thus the fixed
point y2

——0 represents a steady state (j1 ——0), but the
nontrivial fixed points +y~ represent waves traveling in
opposite directions (j1 —+y2). Consequently (AS) and
(A14) establish that, viewed appropriately, the bifurca-
tion to traveling waves is a pitchfork bifurcation. In
particular, the usual transfer of stability rules hold for
this bifurcation as well.

Of interest is the case when (All) has a zero eigen-
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value, corresponding to a saddle-node bifurcation on the
SS branch. The codimension-two bifurcation that arises
when this bifurcation interacts with the bifurcation to
traveling waves (As .—0) will be described by a two-
dimensional system. To determine this system we sup-
pose the three eigenvalues (All) and (Al'2) are

(1 + Tjzi) (A2lc)

z' = +z' + y'+ fz'+ O(4), (A22a)

Choosing n, . . . , rl appropriately one finds that the coef-
ficients rn, n can be scaled to +1, and three of the four
cubic terms eliminated:

Ag
——A = v+ Mz + Nz") A2 ——Ag ——0.

Then the linearization of (A7) takes the form

iz — 0 A 0 zz

)

(A15)

(A16)

y' = cyz + O(4). (A22b)

Here the prime denotes differentiation with respect to t,'.
To unfold these equations we allow A2 and As to be small
but nonzero, introducing linear terms into (A22). The
resulting linear terms may be diagonalized by an addi-
tional near-identity coordinate change; a small shift in
the origin of z yields finally the system

We introduce new coordinates (zi, zz) given by

zj ——zg —zg A, (A17a)

z' = p + z + y + fz + O(4),

y' = (v+ cz)y+ O(4).

(A23a)

(A23b)

z2 ——zp A,

in which (A16) takes the Jordan form

(A17b) Here p, v are the two unfolding parameters and are lin-

early related to A2, As. The O(4) terms may be dropped
provided the nondegeneracy conditions

c(o) A o f(o) A o (A24)

(z,
V2

)

l (
0 0 0 '

yg001)(zz) (A18)

The coordinate zz can now be eliminated using center
manifold reduction. Omitting the details, we find that
on the center manifold

zz —az,'+ byzz+ O(3), (A19)

with zi and yz obeying equations of the form

zi —mzi + nyz + pzi + qziyz + O(4), (A20a)

yz
—(r z, + sz, + uyz)yz+ O(4). (A20b)

z = azi + pz,'+ by,
' + O(3), (A21a)

y = Pyz+syz»+o(3), (A21b)

Explicit expressions for a, b, m, . . . , u are readily obtained
but will not be necessary in what follows. Equations
(A20) may be further simplified by a nonlinear coordinate
change of the form~s

hold at p = v = 0. This truncated system is the required
normal form for the present problem. Together with (A8)
it describes the interaction of the TW branch with the
saddle node on the SS branch, as discussed in Sec. IV.

Equations (A23) have been studied in two other con-
texts. They are the normal form for the interaction of a
saddle-node bifurcation with a Hopf bifurcation and are
analyzed in this context in Ref. 23. They are also the
normal form for the interaction of two steady-state bifur-
cations, one a saddle node and the other a pitchfork.
Consequently the existing analysis has merely to be rein-
terpreted within the present problem (see Sec. IV). Fi-
nally it is clear from the above analysis that the normal
form equations do not depend in form on the use of the
Takens-Bogdanov normal form (A6) which merely allows

us to compute the coeflicients c and f, as well as the signs
of the two quadratic terms, in terms of the various quan-
tities appearing there, and hence in terms of the physical
parameters. We do not carry out these computations
here, and instead show in Sec. IV that Eqs. (A23) suf-

fice to explain the numerical results, for a suitable choice
of coefBcients.
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