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The complex Ginzburg-Landau equation with weak noise, the normal form of the amplitude

equation for the order parameter in a spatially distributed system undergoing a continuous Hopf bi-

furcation, is solved in certain limits for its time-independent probability distribution, which governs

the steady state in one spatial dimension. The method used consists of solving the Hamilton-Jacobi

equation of the nonequilibrium potential associated with the steady-state distribution. The solution

is obtained in the limit of weak spatial diffusion of the order parameter. The nonequilibrium poten-

tial serves as a Lyapunov functional for the order-parameter field. We use our result to discuss the

Newell-Kuramoto instability and the Eckhaus-Benjamin-Feir instability in one spatial dimension,

and to calculate potential barriers of the saddles separating plane-wave attractors. The latter ones

provide us with a global measure of stability for these attractors.

I. INTRODUC TION

Macroscopic systems, e.g. , fluids, driven sufficiently
strongly, e.g. , by temperature gradients or shear forces,
exhibit a plethora of instabilities, in which the asymptotic
state of the system changes qualitatively, e.g. , from time
independent to time dependent, or from symmetric to
asymmetric, or from regular (in space and/or time) to
chaotic.

If the asymptotic state for weak external and time-
independent driving is simple, e.g., time independent (a
fixed point in an appropriate state space), the first insta-
bility which occurs when the time-independent driving is
increased is usually also simple and, in many cases, it
takes the form of a supercritical Hopf bifurcation, ' in
which the fixed point bifurcates into a limit cycle. If g(t )

is the complex amplitude of the limit cycle, its time
dependence suf6ciently close to the bifurcation point is
governed by the normal form

g= a g b
I PI'g, —

where a is a parameter that can be taken real without re-
striction of generality by splitting o8' the frequency of the
limit cycle. The parameter a changes sign at the bifurca-
tion point and is positive or negative in the supercritical
or subcritical domain, respectively. The parameter
b=b„+ib,- is complex, in general. Its real part b„as-
sumed to be positive from now on, describes a nonlinear
saturation of the amplitude of the limit cycle at a finite
value Itj'tI =(a/b„)' in the supercritical domain. In spa-
tially extended systems the amplitude g(x, t ) depends on
space and time and the normal form (1.1) has to be
amended by a diffusion term DV P(x, t), where
D=D„+iD; is complex, in general. This way one ob-
tains the complex time-dependent Ginzburg-Landau
(TDGL) equation. ' We shall assume that D„)0. (In
some cases a convective spatial derivative term —v Vg
has also to be included, where v is a real constant vec-

tor, "' but for simplicity we shall not consider such a
term in the following. ) If, furthermore, the system is sub-

ject to noise, which is short ranged and homogeneous in
its statistical properties in space and time, the equation of
motion takes the form

q=aq b lql'q+—DV'y+ g(x, t) . (1.2)

g(x, t) is the complex noise source, which as usual we
shall take as Gaussian and 5 correlated in space and time

(g(x, t)f*( 'xt')) =rlQ5(x —x')5(t t') . —(1.3)

which generates the drift in Eq. (1.2) via

1b(x ) = —
—,
'
Q +g(x, t ),5%

5tb'(x )
(1.5)

with 4=4,„. The simultaneous appearance of Q in Eqs.

( ) indicates the average over the noise. rlQ is a real,
positive constant, where g is a formal "smallness parame-
ter, " i.e., a bookkeeping device in an asymptotic analysis
of Eqs. (1.2) and (1.3) in the weak-noise limit st~0. In
the following, the vector character of x is assumed to be
understood, if necessary, and will no longer be made ex-
plicit by the notation.

A special case of the normal form (1.2) applies also to
instabilities of systems in thermodynamic equilibrium
(phase transitions for systems without conservation laws
and a two-component order parameter). In that case de-
tailed balance under the time reversal transformation
t ~ t, g~f' hol—ds, which restricts Eq. (1.2) to
b =6*, D =D*. As an important consequence of this re-
striction an explicit form for the thermodynamic poten-
tial 4,& as a functional of the order parameter can be
written down,

@th +GL( I ~ i

' f dx—(—a
I
gl'+ ,'b„l gl'+—D„IV@I')-, (1.4)
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(1.5} and (1.3) is an expression of the fiuctuation-
dissipation theorem for the present case. Furthermore,
the form (1.5} guarantees that the equilibrium probability
distribution functional is exactly given by the
Boltzmann-Einstein formula

W'( {g, P' j ) =const X exp (1.6)

The special case (1.4) is known as the Ginzburg-Landau
functional. In the general case of Eq. (1.2) with complex
b and D the results (1.4) and (1.5) no longer apply. On
general grounds' a time-independent probability density
is approached in the steady state even for complex b and
D. Therefore, one may define a "nonequilibrium poten-
tial" via Eq. (1.6), i.e., via

4( [ f,g' j ) = —lim ri ln 8'( [ g, g* j )
g~O

(1.7)

and study its properties. It is easy to show that Eq. (1.5)
is then generalized to

g(x)= —
—,'Q, +R(x)+g(x, t),5$'(x )

where R =R ( l f,P' j ) must satisfy

x R x +R'x54 , 54
x 5g"(x )

(1.8)

(1.9)

The general Eq. (1.8) resembles the thermodynamic form
(1.5) quite closely, including the fiuctuation dissipation
theorem. It does even more so, if the additional term
R(x) in (1.8) is compared with the reversible drift term
R(x ) =ia;g(x ), which is also allowed in Eq. (1.5), i.e., in
thermal equilibrium, but has been transformed away a]-
ready in Eq. (1.2) by our choice of a as real. A thermo-

dynamic R term in Eq. (1.5) must transform as R ~—R *

under time reversal; it must satisfy Eq. (1.9), but, in addi-
tion, also

fd M 6R' =0, (1.10)

which expresses Liouville's theorem, i.e., the "incompres-
sibility" of the reversible flow R in the state space. In the
nonequilibrium case, R in Eq. (1.8) does not transform as
R ~—R * under the microscopically defined transforma-
tion of time reversal and Eq. (1.10) will not, in general, be
satisfied.

%e may mention at this point the special case
D =D„b, D;b„—=0, where Eq. (1.2), in infinitely ex-
tended systems, is equivalent to Eqs. (1.8) and (1.9) with
the potential 4 given by the Ginzburg-Landau expression
(1.4) (Ref. 16) and R (x ) given by R (x )

=ib, [ —
lpga P+(D„/b„)V g]. In the general case, the

property (1.7) determines the nonequilibrium potential
uniquely, as long as the steady-state probability density is
unique, which is true for Eq. (1.2). Equations (1.2), (1.8),
and (1.9) determine 4 as a solution of the "Hamilton-
Jacobi" equation

2

x —,
' + a —b +DU' +c.c. =0,

(1.11)
together with the boundary condition, following from Eq.
(1.7), that 4 is minimal in the attractors of the deter-
ministic system, Eq. (1.2) with (=0. As is well known
from the Hamilton-Jacobi theory of classical mechanics,
the solution of Eq. (1.11) can be expressed by the
minimum of an action integral. In the present context
this takes the form

4([f,P' j )=min f ' I.(lg(r), g'(r), 1P(r),g'( ) j )dr+C( A )
IP —cc),g ( —co)IE A

(1.12)

L. = f dx Ij —ay+ b I
yl'—y DV'yl' . — (1.13)

The boundary conditions on the integral in (1.12) are
again dictated by Eq. (1.7). The lower boundary of the
integral is taken in the infinite past, where g, f* take
values on the attractor A. The upper boundary is taken
at r=0, where [g,g'j denote an arbitrary point in the
state space. The parameter C(A) gives the value of the
potential in the attractor A and has to be determined in-
dependently. ' The minimum in Eq. (1.12) is taken over
all paths connecting the initial state on A and the final
state, and over all simultaneously existing attractors A.

In the present work it is our aim to construct the none-
quilibrium potential for the complex TDGL equation in
the physically important limiting case of weak spatial
diffusion, where Eqs. (1.11)—(1.13) can be evaluated
asymptotically in some small parameter. Results of our
work have already been briefly reported in Ref. 18.

where the Lagrangian I. is simply related to the form of
(1.11) and reads

For a number of discrete (lumped) dynamical systems
nonequilibrium potentials have been determined in earlier
work' either from the Hamilton-Jacobi equation or from
the actual integral. The essential new point of the
present work is the fact, that the dynamical system is spa-
tially distributed, i.e., the dynamical system is a nonlinear
partial differential equation and Eq. (1.11) is a functional
partial differential equation.

A number of earlier papers have also dealt with the
problem of nonequilibrium potentials in spatially distri-
buted systems. In Ref. 20 a modal expansion of 1( in Eq.
(1.2) was employed and 4 was constructed as a power
series in the mode amplitudes up to fourth order [cf. Eqs.
(4.51)—(4.54) of Ref. 20]. In the limit of dominating
diffusion it reduces to the result derived in Appendix A.
Another power series expansion of N up to the fourth or-
der in the Fourier amplitudes of 1it equivalent to Ref. 20
was also given in the work by Walgraef, Dewel, and
Borckmans. ' Szepfalusy and Tel' have determined the
nonequilibriuin potential of Eq. (1.2) in a local quadratic
expansion around the attractors /=0 for a (0 and
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P= (a /b„)' for a )0. As will be seen below their result
for a &0 can be used to determine C(A ) in Eq. (1.12).
This is not so with the other polynomial approximants
mentioned above since their validity is restricted to a
close vicinity of the state g—:0. Fluctuations in spatially
distributed systems undergoing bifurcations have also
been studied on the basis of the master equation.
Again, power-series expansions of the nonequilibrium po-
tential in the mode amplitudes up to fourth order have
been worked out also for the Hopf bifurcation case.

In contrast to this previous work on nonequilibrium
potentials in spatially distributed systems, our method of
construction will not be based on, and is more general
than, power-series expansions in the field amplitude. For
a general discussion of the limitations of the power-series
method cf. Ref. 25. Instead we shall construct the func-
tional 4 for 1( varying on length scales large compared to
the coherence length (D, /a )' of Eq. (1.2). Formally,
this is realized by expanding 4, with respect to D, which
we call the "small D" or "weak-diffusion" expansion. In
Appendix A we also apply our methods to the case of
rapidly varying g, where the diffusion term in Eq. (1.2)
dominates compared to the nonlinear term.

In the supercritical domain a )0, Eq. (1.2) (for the mo-
ment considered for (=0) has a number of further insta-
bilities. As shown by Newell and Kuramoto, the spa-
tially constant arbitrary phase of P on the attractor
f~=(a/b„)'~ may become unstable in a neighborhood

of k =0 under appropriate conditions, leading to "phase
turbulence. " ' ' ' Furthermore, in addition to the spa-
tially homogeneous attractor, further attractors exist
where P is a traveling wave which may become unstable
under appropriate conditions, in particular, if for a given
a the wave number k is suSciently large, or, if for given k
the control parameter a decreases (Eckhaus-Benjamin-
Feir instability ' ). The inffuence of noise on these fur-
ther instabilities is also of great interest. In the second
part of this work we therefore apply our results to their
study.

The paper is organized as follows. In Sec. II we con-
nect the concept of nonequilibrium potential with the
steady-state solution of the corresponding Fokker-Planck
functional equation. Section III is devoted to the calcula-
tion of the potential in the limit of weak spatial diffusion
up to second order, at least in the phase fluctuations. De-
tails of the evaluation of the action integral and of the
value C( A ) on the attractor for a & 0 are delegated to
Appendixes B and C, respectively. The plane-wave at-
tractors and their stability are investigated in Sec. IV.
The potential barriers among neighboring plane-wave at-
tractors are determined in the framework of the weak
diffusion expansion. These barriers characterize the glo-
bal stability of the attractors. The paper is concluded, in
Sec. V, by a few remarks on general properties of the
nonequilibrium potential in spatially extended systems.

II. STEADY-STATE ENSEMBLE
AND NONEQUILIBRIUM POTENTIAL

The probability density W( [ tP, P* j, t ) of the stochastic
field g satisfies the Fokker-Planck functional equation

[where 5/5$(x) denotes the functional derivative with
respect to 1((x ), formally for constant g*(x )]

ar
=f dx — [(a —b/P/ )g+DV g]W

6 W++Q +c c
5$(x )5$*(x )

(2.1)

The second-order functional derivative term in Eq. (2.1)
is singular and needs regularization at short distances
where we introduce a cutoff X. We are interested in the
time-independent solution of Eq. (2.1), which gives the
probability density of the steady-state ensemble. Making
the ansatz

W=exp[g —4/r)+0(71 )],
we find the equations

Q 54 54
2 5$(x ) 5q" (x )

(2.2)

and

+[(a b~f~) —P+DV g] +c.c. =054
5

(2.3)

fdx (a b~g~ )g+—DV g+Q + Q
5$ 2 5l(,5l(*

+(a 2b~g~ +D—V )A. "+c.c. =0. (2.4)

In Eq. (2.4) we made use of the short-distance cutoff A, to
put formally

5$(x )

5$(x )
(2.5)

where d is the spatial dimensionality of the system. The
potential 4 in Eq. (2.2) satisfies Eq. (1.7). It is the none-
quilibrium potential, the quantity determining the lead-
ing part of W asymptotically for g~0. Therefore, (2.3) is
identical to (1.11). The function y in Eq. (2.2) deterinines
the "prefactor" of the steady-state ensemble.

III. THE LIMIT OF WEAK SPATIAL DIFFUSION

4=4 +4 +.
X Xo+X]+

(3.1)

where 4, and y, are expected to be of order e (or ~D ~).

A. Solution of the Hamilton-Jacobi equation

The Hamilton-Jacobi equation (2.3) and the prefactor-
equation (2.4) in leading order (D =0) then read

In the bulk of this paper we consider the case of weak
spatial diffusion. Formally, we assume D (both real and
imaginary parts) to be small, of order e, and other param-
eters, as, e.g. , ~b~, to be of order unity. Then it is possible
to expand both the nonequilibrium potential 4 and the
prefactor y in powers of e. We write
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2

g 540 54Of dx — + (a b—I&I')r/)+c c. . =0,
2 5$ 5P

5+o 5yof dx (a b—I/I )g+Q +c.c.
5q»

52(p= —f dx — +(a 2b—lgl )A, "+c.c.
2 5$5$*

(3.2)

54 64, 64,fdx g „+(a —bi&I')g +c.c.

&+0= —f dx D V'g+c. c.
6

By inserting the functional derivative of 4o one finds

(3.4)

It is easy to check that the solution for 40 is

(3.3)

54)
x —a+6 +c.c.

x a —b„D *V +c.c.2 (3.5)
which is, in fact, minimal in the deterministic attractor to
zeroth order /=0 for a (0 and lgl—:(a/b„)' for a &0.
The zeroth-order solution does not contain any spatial
derivative; therefore it is advantageous to work in the
real-space representation also when carrying the calcula-
tion to the next order.

Inserting Eq. (3.3) for 4o the inhomogeneity of the
equation for yo vanishes, and we have

go =const.

%e shall content ourselves with this result of zeroth or-
der for the prefactor, but we proceed to compute the po-
tential to first order.

Keeping in (1.11) all terms of order e we obtain for 4,

d =( —a+b'li}'I')q
d7

(3.6)

for all x. This has to be solved in an interval 70(7(7,
by fixing the value of g at the end r, . Without restricting
generality we can choose 7, =0 since the problem is auto-
nomous. The solution is easily found to be

This linear functional-differential equation can be solved
by the method of characteristics. Since in the homogene-
ous part there is no coupling between neighboring coordi-
nates x, the characteristic equations do not contain x ex-
plicitly. By introducing a fictitious time 7 they can be
written as

207

—] /2+ib, /2b„
—ia(, b, /b„)~

e ' ", 7~0, (3.7)

where g denotes the value at the end point P—= f(r=0) and P is the field which will appear as the variable of the poten-
tial. Therefore, it is g where the x dependence appears, g:f(x ). Th—e left-hand side of Eq. (3.5) is just d4&/dr taken
along the characteristics. Consequently, a particular solution of (3.5) takes the form of a tiine integral of the right-hand
side, i.e.,

4~&„,(ro)= —fdx f dr[a big(r)l ][Dg—(r)V P(r)+c c ]. . . (3.8)

(3.9)

Here the coupling by diffusion between neighboring sites in x is explicit and must be taken into account through the im-
plicit dependence of g(r) on its prescribed end value P(x ). By evaluating V P(r) and using that

a —b„lg(r)l =(a b„lg )e " "— + 1 — "
e "

a a

and that the time integral in (3.8) can be converted into an integral over a new variable u =exp(2ar), we find

4, „,„,(ro) =—fdx 1—1 (I ( o)[D,(0'V'0+ eV'0')+ D;(0*V'0 eV'it")]-
a

+I,(ro) [(D„b, D, b„)i(g'Vg —/VS')Vl—gl'

(D„b„+D, b, )[(V I

—pl')'+
I @I'V'I @I'] I /a

+I3(ro)(3D„b„D„b,+4D, b, b„)I—tpI (Vltpl ) /(2a )), (3.10)

where the "time" integrals I„(ro) are

pl (1—u )"
I„(ro)=—f, du n=1, 2, 3 .","0 [(b„/a)I+I +[1 (b„/a)I+I ]u I"— (3.1 1)
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In order to have the general solution of Eq. (3.5), the gen-

eral solution of the homogeneous equation has to be add-

ed

where

I.,= —Jdx l q (—a b—
l
ql')pl' (3.18)

@
& part( ro ) +@i ham('ro ) ~ (3.12)

and L, is of order e:

where 4, „, (ro) can be an arbitrary real valued function-
al of g(ro) and, through (3.7), of g(x ). 4&, „, (ro) must be
chosen in such a way that the complete potential
4=4o+4, is minimal on the attractor specified up to
first order in e. In the framework of the Hamilton-Jacobi
formalism it is difficult to devise a systematic procedure
for fulfilling this condition. However, a solution of this
problem can be given by determining 4 from the action
integral, which leads back to Eq. (3.5) and the solution
just presented, but in addition automatically incorporates
the boundary condition.

B. Evaluation of the action integral

Our aim here is to evaluate the action

@g ——f «L( [P(r), Q'(r), P(r), g '(r) }), (3.13)
0

where g(r) is a solution of the Euler-Lagrange (or Hamil-
tonian) equations defined by the Lagrangian (1.13). The
trajectories g(r) have to be chosen in such a way that in

the infinite past ~o~ —~ they start on the attractor A,
and at r=0 they end at 1((r=0)=g(x). In view of Eq.
(1.12) this property automatically ensures the minimum
of the potential on the at tractor since 4, =0 for

P, g* E A, and P, ~ 0 elsewhere due to (1.13).
The Hamiltonian associated with the Lagrangian (1.13)

of the complex TDGL model is easily obtained as

H( [P,g*,~,~"
I )

= f dx l~l'+~(a—q blyl'q+D—V'q)+c c
2

(3.14)

where n=5L/5$ is. the generalized momentum field.
The canonical equations are then

5H
7 77

5m
' (3.15)

where derivation with respect to the time v. is denoted by
a dot.

Since 4, is an action, the Hamilton-Jacobi theory tells
us that

(3.16)

(3.17)

is the momentum on the trajectory along which the ac-
tion is to be evaluated. Consequently, m. =0 holds on the
attractor A, where 4, is minimal and Eq. (3.16) specifies
the unstable manifold in the infinite-dimensional phase
space along which the deterministic attractor A can be
reached for ~~ —~.

In the limit of weak diffusion the Lagrangian splits into
two parts.

-o+L

L, =—fdx [D[P *—(a b—*lQl')g*]V'g+c. c. ] .

q= g~*+(a —b lpl')q .

Furthermore, we know that

(3.20)

(3.21)

and hence

g=( — +ah*le(l')p . (3.22)

This is nothing else than the differential equation of the
characteristics of the Hamilton-Jacobi equation (3.6) as
expected. By prescribing the endpoint to be 1( =1((x ) the
solution is given by (3.7). It is obvious that for r~ —~
this trajectory really approaches the deterministic attrac-
tor for D =0.

When evaluating the action to first order in e the La-
grangian Lo+L] must be integrated along a trajectory
specified up to first order in e. However, since the action
is extremal, there is no contribution to the time integral
from the first-order correction of the trajectory, i.e., the
time integral of Lo continues to yield 4o up to correc-
tions of second order in e, which are neglected in our
present first-order calculation. A contribution of first or-
der in t might still arise from the fact that the lower
boundary of the time integral (the attractor) changes to
first order in e. This leads to a term proportional to
5Lo /5/=m. Since the mom. entum is zero on the attrac-
tor this contribution also vanishes. Thus, we find that the
first-order correction 4, is simply the time integral of

1

L, taken along the unperturbed trajectory (3.7). By in-

serting (3.22) into (3.19) one obtains

N, =—J dr fdx[a bl 1((rl')]—
0

X [Dg*(r)V g(r)+c.c.],
(3.23)

where f(r) is given by (3.7).
A comparison of (3.23) and (3.8) shows that one should

choose ~o~ —~ in the Hamilton-Jacobi formalism since

p t then automatical ly fulfills the boundary condition
as

4, „„,(so~ —oo ) =@,
l

(3.24)

(3.19)

From (3.13) then follows, correspondingly,
0

+4, , where 4, is identical to 4o, given by Eq. (3.3). It
1 0

is easy to specify the required Hamiltonian trajectory in
leading (e ) order. From the canonical equations we
have
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Consequently, by recalling (1.12), the homogeneous solu-
tion N, h, must be nothing else than the potential on the
attractor

(I5k 5k I ) =+G'L'(I5~ 5k I }

4, „, (ro~ —~)=C(A) . (3.25}
D,b,- —D, b„ +c.c.

Our next task is to specify C( 3 ) which will then lead to
the complete determination of the potential to first order.
In order to do this we must distinguish between the two
regions a &0 and a)0. The deterministic attractor is
drastically different in these regions, already in zeroth or-
der. We also note that the lower limit exp(2aro) of the
integrals I„(so~—00 ), Eq. (3.11), is infinity and zero for
a & 0 and a )0, respectively.

C. The potential on the attractor

Since our aim is to specify the potential up to first or-
der in D we have to know how the attractors look like in
the same order. Below the bifurcation threshold, i.e., for
a &0, the situation is quite simple. The time-independent
solution of the deterministic version of Eq. (1.2) must be
/=0 both in zeroth and in first order in D. This means
that the attractor is unique, there cannot be any fluctua-
tions on it, consequently, the potential on the attractor is
constant, which can always be chosen to be zero, i.e.,

C(IQ, Q'I )=0 . (3.26)

Above the bifurcation threshold, i.e., for a )0, the case is
completely different. The zeroth-order result for the at-
tractor specifies only the modulus ro of P( —~) as
ra=(a lb„)'~ . The phase y( —~ ) on the attractor is un-

determined and a continuum of degenerate attractors ex-
ists. Thus C( A } in Eq. (3.25) becomes a functional of the
phase g( —oo ). In order to determine this functional it is
necessary to calculate the potential 4 in a small neigh-
borhood of the attractor and then to put

C( 3 ) =4(
I roexp[ip( —oo )],roexp[ iy( —o—o )] I ) .

(3.27}

b*+ k
a

(3.30)

The first part represents the Gaussian approximation of
the Ginzburg-Landau potential (1.4). For our present
purposes the result (3.30) should be expanded in the
diffusion coefficient, and we shall retain only the terms of
first and second order of this expansion. Furthermore,
we wish to use Eq. (3.30) in Eq. (3.27), and we therefore
specialize it for the attractor A on which only phase fluc-
tuations p( —~ ) are possible. Therefore we put
5(x ) = ro I exp[i'(x, —ao )]—1 I =iroy(x, —ao ), i.e.,

k 5k = —J dx e'""Vy(x, —ao ), (3.31)

and obtain in this way

aD„
C(A )=—J dx 2

1

b„

ab, D
(Vg )

[D;(b„b; ) 2D„b—„b;](V—y)

+ a(Vq&) +const,

(3.32)

where p—:cp(x, —~ ) and the constant is independent of
Vq(x, —00 ). Here and in what follows we use the abbre-
viations

itj(x )= r 0+(5)x. (3.28)

Defining Fourier transforms (in a finite system of volume
V with cyclic boundary conditions) by

5(x)= —pe ' "5k,1

k

q(x)= y e
1

(3.29)

the result of Ref. 16 takes the form [cf. also Appendix C,
where we derive a more general result containing Eq.
(3.30) as a special case]

As the potential is a smooth functional in a sufficiently
small neighborhood of the attractor it can be expanded as
a power series in P ro, g* ro—. Fortunate—ly, the re-
quired power series expansion has already been per-
formed in the work of Szepfalusy and Tel, ' and we shall
make use of their result. In Ref. 16 the expansion is per-
formed with respect to the amplitude 5(x ) defined by

D =D„b; —D b, ,

D+ =D„b„+D,b; .
(3.33)

Vq&(x, —~ ) =Vg(x )+ Vr(x )

b„r(x )
(3.34)

From Eq. (3.7} for r~ —~ we obtain f( —~ ) in terms of
g(x ). Thus to first order in the D expansion we obtain

The term with the constant a has been added in Eq.
(3.32), because a term of this form is expected to appear
in second order. The constant a cannot be determined
froin Eq. (3.30) as the latter result is restricted to second
order in the perturbation 5, while (Vg) is of fourth order
in 6. However, a will be fixed by an expansion generaliz-
ing Eq. (3.30) in Sec. III F.

By means of the characteristics (3.7) the result (3.32)
still has to be expressed in terms of g(x ). We note that
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4b„

b; i(@*vs qv—y') vlyI'
2b„

order in D are also contained in Eq. (3.32), but not in
(3.35). They will be given explicitly only when they are
needed (cf. Sec. III F). Now we are in a position to add
up 4, and C to find the final results for the potential to
first order.

D. The potential below the bifurcation threshold (a & 0)

+const . (3.35}
Using the fact that in this region the integrals I„(3.11)

take the form

As this expression for fixed P no longer depends on
y(x, —oo ) labeling the continuum of attractors for a )0,
the minimum over all attractors A in Eq. (1.12) can be
dropped in this case. The contributions to C of second

I

(
—1)"I„(re~—oo ) =

~ [I—(b, /a ) I
pl']"

we obtain from (3.10)

(3.36}

4, =—J dx D„(P*—V'g+gv'P') 'D;(Q'—V Q QV tt"—)

1

2[1—(b, /a ) I pl']

D D+
i(q'vy yves') —v

I
yl' '[(v—lyl')'+ lql'v'lyl']

3[1 (b„/a) P—] 2a 2a
(3.37)

By means of (3.1), (3.3), (3.26), and (3.37) one finds the
complete potential up to first order in IDI. There is no
need to take the minimum in Eq. (1.12) since the action is
single valued. It is worth eliminating double spatial
derivatives by means of Gauss's theorem, which leads to
the appearance of a contribution from a surface integral.
We can write

+.oL(4 0') = i(q'vq yves') V—
I
pl'

Q 2(a —b, ql')

b, I@l'(vlyl')'
'

where @„oLis of order ID I
and reads

(3.41)

@(t0 0*])=+a(IP0*) )++s(IP 4*1) (3.38) It is worth emphasizing that the potential we have found
is of nonpolynomial type. Note that the denominators
cannot vanish as long as a &0 since b„ is assumed to be
positive.

The surface contribution is of order ID I and has the form

4s(g, g")=—fdf D„VI/I' D;—i(P"Vg P—VP*)—1

'
2(a —b„lql')

(3.39)
E. The potential above the bifurcation threshold (a & 0)

In the region a & 0 the integrals I„read

The bulk contribution splits into the Ginzburg-Landau
part (1.4) and a remainder

1
I„(ro—+ —oo ) =

n[(b„ /a) qII]"
(3.42)

@B([0I*I )=~'GL(I 0 O'I )+@.GL([0 0'l» (3.40) Therefore we have

4, =—J dx —
lpl [D„(g'V Q+QV g')+iD;(p'V g gv 1)*)]-

r

D
+ i(/*vs /vs') v—lgl

D+ 3D+b„Db; (V—+ [(vlql')'+ Igl'v'IOI'}] +
2b„

(3.43)

The result becomes again clearer if double spatial derivatives are eliminated by means of Gauss s theorem. Adding +o
from (3.3), 4, from (3.43}, and C from (3.35) the complete contribution is single valued and the potential is again the

1



4668 R. GRAHAM AND T. TEL 42

sum of a bulk and of a surface contribution (3.38},where now

@s(I4 0*I}= —f df
D+D„— V I/i +D, i(/*V P g—Vg*)

I'

(3.44)

The bulk contribution is of the form (3.40), where the remainder to the Ginzburg-Landau term is found to be, for a )0,

+.oL(IP 0*((}= fdx—2b; 1

Ib I' 2b„
IV in+I +i(V in+/P*). V lnlgl 1— b„

Ib I'

+(VlnliP '}' — 1 — Iql +
a Ibl

(3.45)

The nonequilibrium potential is again of nonpolynomial
type. Note that in this region a formal divergence shows
up for I/I~0. This divergence is formal because it
occurs outside the domain of validity of Eq. (3.45} as g is
not slowly varying. Instead the diffusion term dominates
in (1.2) for I/I ~0 and the potential of Appendix A can
be used. Finally, it is worth noting that the results (3.41)
and (3.45) fit together at the bifurcation threshold a =0.

D D
dx Vy2b'g b, b„i&I'

D
+ 2D;+ a

b, lql'

(3.46)

It should be noted that P, vanishes for Igl =a/b„We.
still have to add the second-order contribution C2 from
C(I 1(, tt]i) in order to obtain the complete potential to
second order. To this end we have to use Eq. (3.32) with
Eq. (3.34) and Eq. (3.7) in order to express [Vtp( —pp )],
[V y( —pp )] in terms of [Vg(x )], [V g(x )] at the end
point of the characteristics. However, the latter task is

F. Dominant second-order contributions to the potential

Due to the phase symmetry of Eq. (1.2) in the case
a &0 phase fluctuations of long wavelengths occur with
high probability, while fiuctuations in Igl are suppressed
in comparison due to the nonlinear stabilization de-
scribed by Eq. (1.2). It is therefore desirable to proceed
with our expansion in D to the next (second) order at
least in as much as phase fluctuations are concerned. The
calculation proceeds as in Sec. III A and is given in Ap-
pendix B. The calculation is simplified by our decision to
treat only the phase gradients in second order in D. The
result is

where a is not yet known and

2D
~ [D,(b„b, ) 2D—„b„b,—]

b

2D Re(iD'b )
(3.49)

We now proceed to determine a. In principle, a could be
obtained by a local expansion of the potential on the de-
generate attractor Idol =(a/b„)' up to fourth order in

Vy, but this calculation becomes very tedious in practice.
A much easier computation is instead a local second-
order expansion of 4 in Vcp and Vr in the neighborhood
of the plane-wave attractors appearing as local minima of
the potential in first order for a & 0,

)]i/2 lkpx+llPp
(3.50)

where yo is an arbitrary constant phase. The local expan-
sion around (3.50) is given in Appendix (C) [cf. Eq. (C7)].
A corresponding local expansion can also be performed
for the potential given by (3.40) and (3.45), for a )0, ex-
tended by second-order terms, for which we make the
general ansatz, polynomial in (Vy), (Vr), and in the
scalar product (Vy Vr ) (a polynomial form is always leg-
itimate in the vicinity of attractors):

trivial in our present approximation, where we neglect
gradients of Ii}'ll in the second-order calculation, because
then simply

[Vy( —~)] =[Vy(x)]', [V'p( —~)] =[V'y(x)]'.
(3.47)

Thus from Eq. (3.32)

C, ( A ) =—f dx I a[Vs(x ) ]'+P[V'y(x )]'], (3.4&)
1

42=4, +—f dx a[Vs(x)] + [Vp(x)] [Vr(x)] + I( yV( )xVr(x)] —(Vy) (Vr) Ia, r (x) r (x)

+ [Vlp(x )] [Vq)(x ).Vr(x )]+P[V q7(x }]r(x )
(3.51)
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Here 4, is given by Eq. (3.46) and P by Eq. (3.49). We

included all terms linear and quadratic, but not those cu-
bic and quartic in Vr. Therefore, the following calcula-
tion determines Cz(A) to an approximation better than
required to fix a in Eq. (3.48). The ansatz (3.51) goes
even beyond the leading phase-gradient terms of second
order, because it retains also the (Vy) Vr and (Vy) (Vr )

terms (cf. below). The local expansion around (3.50) con-
tains, among other terms, a quadratic form in V6q, V5r,
the gradients of the phase and amplitude fluctuations [cf.
(C4) and (CS)]. Its coefficients depend on the undeter-
mined coefficients in Eq. (3.51). The two local expansions
can be compared. As shown in Appendix C the compar-
ison is successful [i.e., the polynomial ansatz (3.51) is pos-
sible] only in the one-dimensional case, where the term
with the coefficient a, 2 vanishes. For the other
coefficients we obtain in Appendix C

iD D„b;a=-
b„lb)'

help of the fluctuations included in Eq. (1.2), in order to
reach the basin of attraction of another attractor. In
leading order in the noise intensity g the mean lifetime in
the vicinity of a given attractor is then proportional to
exp(54/g). We shall consider here a special class of at-
tractors, the plane-wave attractors

f(x ) = ro(k )e'" (4.1)

characterized by the wave number k, and use the poten-
tial to determine both their local and global stability
properties. We suppose periodic boundary conditions in
which case no surface contributions 4z are present. The
local stability properties of the attractors (4.1) can also be
derived from Eq. (1.2) via a linear stability analysis. This
part of our calculation therefore merely demonstrates the
method and serves mainly as a check for the explicit ex-
pressions we obtained for the potential. On the other
hand, the global stability properties are entirely outside
the realm of linear stability analysis. The results we ob-
tain here cannot be obtained by any other method.

2D D„b;
a = — (b —2b ),ll 3 I 3[b

(3.52) A. The attractor g—:0—Hopf bifurcation

2 D Dr
(b; b„) . —

D b, &0, (3.53)

which we assume in the following. We note that (3.51}
for fixed r(x ), g(x ) is independent of ko. Therefore tak-
ing the minimum over ko in Eq. (1.12) is not necessary.
In the case d ~2, however, a polynomial ansatz of the
form (3.51) independent of ko, even if including terms of
still higher arbitrary order, cannot be matched with the
direct local expansion around (3.50) without introducing
unacceptable divergencies for ~11~ =a/b„. We have to
conclude that for d ~ 2 the potential must contain terms
which are not analytic in D arising from taking the
minimum over ko (cf. Appendix C). Henceforth we shall
restrict ourselves to the case d =1, where Eqs. (3.51) and
(3.52) apply.

IV. ATTRACTORS AND THEIR STABILITY
IN ONE DIMENSION

While the terms with e& &, e2 are not relevant to the order
in which P, was calculated in (3.46) [where terms linear

2

and quadratic in Vr multiplied by (a /b„g~ )
—1 or

ln(a/b„~g~ ) have been neglected], the inclusion of these
terms will lead to higher symmetry later [cf. Eqs. (4.14)
and (4.16)] and we therefore decide to keep them. For
global stability to this order we have to require that cx & 0,
i.e.,

As mentioned in Sec. III C, in the region below the bi-
furcation threshold one single attractor 1(

—=0 exists only.
One immediately sees from (3.41) that for a (0 the non-
Ginzburg-Landau part of the bulk contribution is of
fourth and higher order in 1(. Therefore, the quadratic
approximation of the potential around the attractor /=0
follows completely from 4o„( I g, 1(*I ) and has the form

e,"([q, q*
I ) = Jdx( a—~q~'+D„—~V q~'}, (4.2)

where the superscript (G} stands for Gaussian approxi-
mation. Thus the presence of any nonvanishing P(x)
makes the potential higher than its value taken at the at-
tractor 1(o=0; the larger a ~, the more stable the attrac-
tor. It also follows from (4.2) that the k=0 component

Po becomes marginally stable for a ~0 in accord with the
fact that the deterministic solution /=0 loses its stability
at the bifurcation point a =0. Note that at this point the
potential is not of polynomial type due to the presence of
a singu ar +nGL (

B. Extremum conditions for a & 0

The potential 4 defines a local Lagrangian via

4= —f dx L(V p, Vy, Vr, r) .
1

(4.3)

Its extrema g{x ) = r(x )exp[i g&(x )] satisfy the variational
principle 5+=0 which leads to the Euler-Lagrange equa-
tions

In this section we study, for one-dimensional systems,
extrema of the potential, in particular its local minima
which describe attractors of Eq. (1.2). The local stability
properties of a given attractor can be determined from
the form of the potential in its neighborhood. A global
measure of stability is provided by the height 6N of the
potential barrier which must be surmounted, with the

aL aL
gV2

=0,
(4.4)

BL
BVr

BL
Br

Equation (4.4) has the form of a conservation law
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V'J =0, J=const, in agreement with the phase symmetry
of Eq. (1.2) and of 4, where

2Q] ] 3Q2
J=4a(Vy) + (V(p)(Vr) + (Vy) Vr

r r
c}L BL

gV2
(4.5) +4f, (a, r )Vy+4f z(a, r )V'r, (4.9)

Another conservation law is implied by the fact that L
does not explicitly depend on x. We find in the manner
familiar from analytical mechanics the conserved "ener-

Q11 3 Q2
E =

—,'JVg+ (Vy) (Vr ) +— (Vy) (Vr )
r2 4 r

f, (a—, r )(Vq&) +fz(a, r )VrVp

+2f, (a, r)(V'r) + Uo(a, r) . (4.10)

E=[(V'y) —(V(p)V] z +Viz +Vr 'L,—BL BL BL

BVy BVr

(4.6)

where the somewhat unusual first term on the right-hand
side arises because L depends also on the second spatial
derivative of y. The remaining differential equations (4.4)
are, in general, nonintegrable, because Eqs. (4.4) consti-
tute a dynamical system of fourth order without any fur-
ther conserved quantities. Therefore, it must be expected
that chaotic extrema of 4 exist. It is tempting to specu-
late that chaotic minima of 4 do exist and, in the long
wavelength limit, to which the form (4.3) is restricted,
correspond to numerically determined solutions of Eq.
(1.2), ' ' ' which by all appearances are spatially chaot-
ic attractors. Further evidence in favor of or against this
hypothesis could only be gained by a numerical investiga-
tion of Eqs. (4.4) which has not yet been carried out.

In the following we shall restrict our attention to
simpler, nonchaotic, extrema of 4 for which the term
with V 9z in Eq. (4.4) is negligible compared to the
remaining V y term. Then Eqs. (4.5) and (4.6) simplify,
because we may neglect BL/BV 9z. Explicitly the La-
grangian in this approximation may be written [see Eqs.
(3.3), (3.45), and (3.51)]

Vp=f(r, J)+g(r, J)Vr+h(r, J)(Vr)

For f we find the equation

J=4[af +f, (a, r)]f,

(4.11)

(4.12)

while g and h satisfy

f, (a D„f',r)—
g(r, J)=-

f, (a D„f,r )—
a»I2r +(3azl2r)g+3ag

h(r, J)=-
f, (a D„f,r)—

Here we made use of the first two of the relations

(4.13)

f, (a, r )+3af =f, (a D„f,r ), —

Equations (4.9) and (4.10) are integrable, because in prin-
ciple they can be solved for V'r, Vq by algebraic methods
and then integrated by quadratures. Unfortunately, the
resulting algebra cannot be carried through in practice,
and we have to resort to further simplifications. Con-
sistent with our derivation of L, Eq. (4.7), we shall neglect
in E powers of Vr of higher than second order. In order
to eliminate Vy from Eq. (4.10) we first have to solve (4.9)
for Vy, which now needs to be done only up to (Vr)
terms. We make the general ansatz

Q)) Q2
L=a(Vy) + (Vy) (Vr) + (Vp) (Vr)

r 2 r

+2f, (a, r )(Vqr) +4fz(a, r )VrVp

+2f3(a, r)(Vr) —Uo(a, r ) (4.7)

fz(a, r)+ f =fz(a D„f,r), —3Q2

r

f3(a, r)+ f' =f3(a D„f,r) . —
2r

(4.14)

with
Inserting Eq. (4.11) into Eq. (4.10) and making use of Eqs.
(4.12)—(4.14) a straightforward but lengthy algebra yields
E in the compact form

Uo ( a, r ) = +2ar b„r—
D b;

f, (a, r) =D„r

E= ~K(r)(Vr) +U,a(r)

with

(4. 15)

fz(a, r)= 1 — 1—
[b[zr 2b'

(4.8)
(4.16)

U,z(r)=Uo(a, r)+3af (r,J)+2f, (a, r)f (r,J) .

fz(a D„f',r)—
K(r ) =4f, (a D„f,r )

—4—
f, (a D„f,r)—

D b,
f3(a, r ) =D„+

b„r

) a —b„r
3

where a, a», az, D are defined in Eqs. (3.52) and (3.33),
respectively. The "angular momentum" J and the "ener-
gy" E are then given by

(4. 17)

Equation (4.15) must be satisfied by all extrema of the po-
tential with ~13V p~ &&2~f, (a, r)V y~. Once Eq. (4.15) is
solved the corresponding (extremal) value can easily be
calculated by noting that the potential 4 here plays the
role of the action in classical mechanics. With energy
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4,„„=—f dx( JVy E—)+4„([r }),1

where the radial part 4&„( [ r ] ) is given by

(4.18)

4,({r])=—f dx K(r)(Vr) + f (r,J)
r

+4f2(a, r }f(r,J) Vr

(4.19)

and angular momentum conservation the extremal action
takes the form

The function f(r, J), on the other hand, is determined by
Eqs. (4.11) and (4.12). From (4.11) it follows with r =ro
that Vg= f(ro, J ) =—k, i.e., the attractor is a plane wave,
where the wave number k is determined via (4. 12)

J=4[ak +f, (a, ro)]k . (4.29)

As J is a constant of integration, which can be chosen
freely, k becomes an arbitrary constant which labels the
different plane-wave attractors. Equation (4.24) can be
evaluated by differentiation of (4.26) and (4.27) and elim-
inating the second derivative of f with respect to ro
The resulting conditions reads, with f=k,

[ b„f i ( a— D„k—, ro ) +2D„k ]f i ( a D„k—, r& ) (0 .

In the following we shall study plane-wave states
r(x ) =const, y(x ) =kx, and states differing only locally
in some small region from such plane states.

Equation (4.25) yields the condition

D D,
D„+ )0,

D+

(4.30)

(4.31)

Assuming

r(x)—:ro

C. Plane-wave attractors

(4.20}

where D is defined by (3.33). The conditions (4.24) and
(4.25) ensure stability with respect to fluctuations of r and
Vr, respectively. In order to ensure also stability against
phase Auctuations the "moment of inertia" of the attrac-
tor must be positive

we reduce the angular momentum J, Eq. (4.11), and the
"energy" E, Eq. (4.15), to

J=4af (ro, J )+4f, (a, ro)f(ro, J),
BJ

a(v ) "="„ (4.32)

(4.21) which, by (4. 12) and (4.14), implies

f i (a —D„k,r,&) )0,
which reads, more explicitly

E= U, ir(ro) = Uo(a, ro)+3af (ro, J)
+2f, (a, ro)f (ro, J) .

The state (4.20) is a local minimum of 4,

dx JVy+E —2U, fr r
1

(4.33)

(4.34)Drb„+D, b, —:D+ )0 .
(4.22)

Uea
(4.23)

()r r=ro

a'U„ (0,
Br2

D „ab„
k —=k, .

3D+ b„+2D b; D„

(4.24)
(4.35)

If (4.34) is violated, the system is unstable against fluctua-
tions of Vg (Newell-Kuramoto instability ). In this case
the term f3(V p) in the Lagrangian is no longer negligi-
ble, and new chaotic attractors may appear with long
wavelengths as long as ID+ I

remains small. If (4.34) is
satisfied the stability condition (4.30) reduces to

K(ro)) 0 . (4.25)

The conditions (4.24) and (4.25) ensure stability of the at-
tractor (the minimum of 4) agains fluctuations of r and
Vr, respectively. Equation (4.23) leads to

2 a'=
a b„ro+D„f +fi(a —D„f,ro) =0-,

ro
(4.26)

while from Eq. {4.21) we obtain by differentiation of the
expression for J

The right-hand side is positive, as D+ is positive by (4.34)
and a, b„, D„, and D b, [see (3.53)] are also positive
The condition (4.35) is only violated if k becomes too
large. This is the Eckhaus-Benjamin-Feir instability for
the complex TDGL equation. Thus Eqs. (4.31), (4.34),
and (4.35) are the general local stability conditions for
plane-wave attractors. These attractors with 0 k (k,
coexist for a )0. They have the N value

2f D„

aro f i(a D„f,ro)— {4.27)

2k D la 1—
lbl'g

k +const,
6k,

(4.36)

Inserting this result in (4.26) we find

ro = [a D„f (ro, J )]lb„. — (4.28)

where / is the length of the system. The absolute
minimum of 4k with respect to k is at k =0. There is a
maximum at k =3k, outside the stable regime, however.
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For k ~k, the second derivative 8 4&/Bk ~0. Thus,
like in thermodynamics, instability is associated to a loss
of convexity of the potential 4. In the stable regime the
plane-wave attractors are separated by barriers of the po-
tential N. The height of these barriers furnishes an objec-
tive measure of the nonlinear stability of a given attrac-
tor. It is therefore of interest to calculate them, which is
the purpose of the next section, where we apply the
method worked out by Langer and Ambegaokar for the
real case.

The "radial kinetic energy" (4.16) is simplified by neglect-
ing 5f, i.e., putting f=k Thus the energy conservation
(4.15) in the present case reduces to

f2(a D—„k,r)E=2 f3(a —D„k,r) — (Vr)
fi(a D„—k, r)

+ Uo(a, r )
—3ak +(J+gak ) /[8f i(a D„k—, r )] .

(4.40)

D. Potential barriers

J JI, (r—)5f(r)=
4f ~

(a D„k,—r )

with

3ak[J J„(r—)]
16f~(a D„k,r)—

(4.37)

Jk(r ) =4[—2ak +f ~
(a D„k,—r )]k . (4.38}

Inserted into Eq. (4.17) this yields, after some algebra,

U, (r)=U (a, r) —3ak +
8f, (a D„k,r)— (4.39)

Let us now study states which diff'er only little from
plane waves, i.e., y(x ) =kx+5y, hence f(r ) =k+5f (r ).
Equation (4.12) may be expanded in 5f to quadratic order
and solved explicitly for 5f to yield

J= —8ak +4f, (a D„k—, ro )k

D+ak=4- 1—k —=J(k),
3k,

(4.41)

E = Uo(a, ro) —3ak +2f i(a D„k2,—ro)k~

2
D+a

+2k
~

1—:E(k—},
b ' 2k,' (4.42)

as follows from (4.38) and (440) with (4.8). Solving Eq.
(4.40) for V r we obtain

We are interested in states coinciding with a plane-wave
attractor r =rp, y=kx+const for x ~+~, hence
Jk(r(+ ~ ) ) =J and

Vr =+ 1

2

[E+3ak Uo(a, r)]f—~(a D„k,r) ——(J+8ak ) /8

f3(a D„k,r )f—~(a D„k,r )
——fz(a D„k,r )— (4.43)

I

Equation (4.46) gives, in implicit form, an extremum r(x )
of the potential 4, which satisfies

The numerator in the large parentheses is a polynomial of
third order in r . It must have a double root at
r =ro=(a D„k )/b„—because r =ro, y=kx is a
minimum of 4. Denoting its second root by r, the
numerator takes the form b„D„(r ro ) ( r ——r

&
). The

value of r, can be evaluated with the help of (4.41) and
(4.42). After some algebra we find

2
aD

r] =rp 1— (4.44)
D„/b /' k'

(4.47)r(0)=r, , r(+~)=ro .

We shall evaluate the quadrature (4.46) only approxi-
mately by replacing the slowly varying part of the in-
tegrand by its value taken at y =r p, i.e., we write

A/y +B/y+C= A/ro+B/ro+C .

Equation (4.46) then yields

r2(x ) =ro —(ro r& )sech Ix [(ro —r
~

)v/—2]'

with

(4.48)

where k, is defined in Eq. (4.35). The denominator in the
parentheses of (4.43) may be evaluated by using (4.8).
is of the form ( Ar +B+Cr ) with

D (a D„k )—
A = (b; —3b„),

12b b„

(4.49)

D„[b['
D„D+ +D,D

(4.50)
—(a D„k )D—

[~b~ b, D„+(3b, b, )D /2], —
3b b„

(4.45)C=D„+b;D„D /(3b„) —(D /4b„) .

Equation (4.43) can be integrated to yield

26 D p2 y(r2 y )

' 1/2
A +By+ Cy

r 2

Note that I~ is positive by (4.31) and (4.34}. Equation
(4.49} gives the saddle-point configuration between two
plane-wave attractors with slightly different wave num-
ber. To determine the relation between k;, the wave
number of an initial plane-wave state, and k, the wave
number of the asymptotic (x ~+0o ) part of the saddle-
point configuration (4.49) separating this plane-wave state
from another, it must be required that the total phase
change over the length I ( I~ &n ) is fixed,
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I/2
b,q—:y(1/2) —y( —l/2)=k, l= I Vq(x)dx,—I /2

(4.51)

where p(x) is the phase belonging to the saddle-point
configuration. This condition ensures that the phase per-
turbation is merely local. The potential barrier 54 is
then expressed as

8&2 Qb„( A /ro+8/ro+C)'54=
15 QQD ~o

aD+
X 1—

D„lbl'
(4.59)

54=—I [L ( t r(x ), V(p(x ) } ) —L( I r„k, I )]dx (4.52)—I /2

with

Inserting the expressions for A, B,C, r o, r &, k, we find

4&2 b, (3D+b„+2D b;)

15Q D3lb l6

a D, k—
,2—

b,
(4.53)

5/2

XQD„D++D;D (aD+) ~ 1—
k,

(4.60)

We use Eq. (4.18) and evaluate the difference in the in-

tegrand of Eq. (4.52) to first order in 5k =k, —k. From
Eqs. (4.42) and (4.41) we evaluate 5E=E(k;)—E(k) and
5J=J(k;)—J(k),

ZE
aE(k )

fik 4k
Bk

(4.54)

i.e., 54-(1—k /k, )
~ . Equation (4.60) generalizes a

well-known result for the real Ginzburg-Landau equation
(thermodynamic equilibrium) to which it reduces for
b; =O=D, .

In the opposite extreme case k =0, the integral (4.57)
changes because then r, = r &. We find, using the approxi-
mation (4.48) again,

5J= 5k =4 1 — 5k .
Bk b' 54= QD„D+ +D;D (aD+ )'

3 b D„
(4.61)

With Eqs. (4.18) and (4.19), we may write

L =JVy+K(r)(Vr)

+ f (r, J)+4f2(a, J)f(r,J) Vr E, —
T

(4.55)

The potential barrier vanishes as D+ for D+ ~0, i.e., if
the Newell-Kuramoto instability is approached and it
vanishes like (D„D+ +D; D )

' ~ near the newly found
stability border (4.31). Similarly, the potential barrier
disappears also for a ~0. For the discussion of lifetimes
in the real TDGL model see Ref. 28.

and Eq. (4.52), for trajectories with r(l/2)=r( —l/2),
reduces to

I/254= —J K(r)(V'r) dx hy5J+5EI —. (4.56)—I/2

with

D b,

D, lbl' ' (4.58)

Equation (4.57) is exact (within our D expansion) and gives
the potential barrier by a quadrature. We evaluate the in-

tegral (4.57) close to the Eckhaus-Benjamin-Feir instabili-

ty, i.e., for k ~k, . Asymptotically we obtain

As Eq. (4.56) needs to be accurate only to first order in 5k
we may write Aq=k;l =kl in the first-order term Ay5J.
From Eq. (4.54) it follows that (5E —k5J) =0, hence the
last two terms in Eq. (4.56) cancel. It is remarkable that
the difference 5k therefore cancels out completely in Eq.
(4.56), which is fortunate, as its computation is tedious in
our general case. Introducing y=r as new variable of
integration via Eq. (4.46) we find the compact result

2&2+b„~o (ro —y )(y r~ )'~—
54=

QQD, ~
~ (y r)—

1/2

dy (4.57)
y

V. CONCLUSIONS

In this paper we gave the first example of a nonequili-
brium potential with field variables which correctly
reAected all known instabilities of the deterministic sys-
tern and which enabled us to also derive global properties
not obtainable via a deterministic analysis. We surnma-
rize the features of the potential which are not present in
systems with a finite number of degrees of freedom and
which may be typical for spatially extended cases.

(i) In systems possessing degenerated attractors (in at
least one variable) the determination of the value of the
potential C(A ) on these attractors is unavoidable. This
is a much less trivial task than for discrete systems (where
it required to fix a few constants of integration only' )

and can be solved by working out suitable local expan-
sions around such attractors.

(ii) Boundary conditions may play an important role
and can properly be taken into account by means of sur-
face contributions to the potential.

(iii) Our approximation breaks down at the repeller
state 1l

—=0 for a &0, where our result becomes singular;
however, a singularity of the exact potential at this state
cannot be excluded and may occur also in other cases.

(iv) At least in the one-dimensional case extremizing
states of the potential (attractors, repellers, and saddles of
the deterministic system) can always be obtained as solu-
tions of certain Euler-Lagrange equations with a finite
number of degrees of freedom, where the "potential den-
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sity" plays the role of the Lagrangian and the spatial
coordinate is the analog of time. This opens the possibili-
ty for finding systematically a11 such states including,
perhaps, also ones which have not yet been found by oth-
er methods.

(v) The vanishing of potential barriers among certain
attractor states signals the fact that these states lose their
stability and are no longer attractors.

(vi) The potential depends on the spatial dimension in-

volving the appearance of nonanalytic terms in higher
than one dimension.

Besides these new features, of course, all properties
known for the nonequilibrium potential in systems with a
finite number of degrees of freedom like, e g. ,
nondifferentiality, can, in principle, be observed also in
spatially extended cases. While this feature did not show

up in the one-dimensional case studied in the present
work we obtained indications that it is present for the
case d ~ 2.

APPENDIX A: THE LIMIT
OF DOMINATING DIFFUSION

In order to give another limiting solution of Eqs. (2.3)
and (2.4) and to compare with earlier work let us consider
the case where the terms with a, b in Eq. (1.2) or (2.1) are
both small ( -e) of the same order and the diffusion term
D is of order e . Then we may expand both 4 and g in
powers of e. In order to solve the resulting functional
differential equations for the coefficients we introduce the
Fourier-transformed field, in a finite volume V with cyclic
boundary conditions

y —I/2 J d erkxy(& )

and its complex conjugate. With the expansion

4=40+ g4)+

Xo+ ~X]+
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we have the zero-order solutions

e,=—yD„k'/y„[',2

k

go=0= const,

and the first-order equations:

(A3)

D*q'gq +Dq'gq 4, = — D„g q' a—
l Pq

l'—
q q q

g b P& gq gk'PI + q I +c.c.
2V& k,

(A4)

2, 8 —2aV r4b
2

B4
1

' sq* ' x' vx" ' aq ay*
q q

(A5)

These inhomogeneous linear partial differential equations of first order are easily solved by the methods of characteris-
tics. The characteristics satisfy

4q(&) =D*V'4q(&) . (A6)

Physically, they describe the most probable paths, to zeroth order in e, by which the system leaves the deterministic at-
tractor at q= —~ and moves to the end point 1( at time r=0 To zeroth o. rder in e the attractor is given by the
minimum of 4o, i.e., by

1( =$05 0, (A7)

with arbitrary complex 1(o. We note that the attractor (or union of all attractors) to zeroth order in e is a two-
dimensional manifold, parametrized by go. The characteristics satisfying the required initial and final conditions at
~= —~ and ~=0, respectively, are

yq(r)=qqe
' '(1 —Sqo)+qofiqo (AS)

It satisfies tt (
—~ ) = 1(O5 oE A, because we can always choose ltjo= lto in Eq. (A7). It is now easy to determine p, from

Eq. (A4) by integrating the inhomogeneity in this equation along the characteristics (AS). We obtain

I

br''A*0q*4k PI + q k-
Q

~ ' I,~. D(k'+q')+D*[k'+(k+q —k')'] (A9)
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where g' excludes the value q =0. The function

C( [go, Po j ) is not determined by Eq. (A4). It gives the
value of the nonequilibrium potential, to first order in e
(i.e., in a and b), in the point go=go of A, Eq. (A7). For-
tunately, it is easy to determine C( ( Po, go ) ) by projecting
Eq. (1.2} on A, i.e., on the spatially homogeneous field

P(x, t ) =(I/V' )go(t ), yielding

4o=a4o —
V

Iform'Co+Co(t )

with

(go(t)go*(t')) =riQV5(t t') .—

(A 10)

(A 1 1)

The exact nonequilibrium potential of Eq. (A10) then is

of first order in a and b and can be identified with

«0o 4o)

C(go, go)= —
~go~ + ~go +const .

Q
'

QV
(A12)

It should be noted that the addition of C( ( Po, PP ) is not
equivalent to including the q =0 terms in g, because it
removes the indeterminacy of the quartic term for the
case where all wave numbers vanish. We also note that
the potential 4=4o+ 4, has local minima for g =0 for
all q if a &0 and for g~

= V'~ (a/b„)' 5 o if a )0, as it
should.

In order to determine y, we have to evaluate the inho-
mogeneity of Eq. (A5) by using the result (A9), (A12).
We find that remarkably, the inhomogeneity vanishes
(after each individual term has been regularized by using
the short-distance cutoII), i.e., we obtain the solution

Xi =const+pi([ q„qP ), (A13)

«t 4o 4o ) )
IV( [ go, PP ) =const X exp (A14)

we conclude that f,([go, gP)=0. In conclusion, we
have therefore succeeded to determine the steady-state
probability density in the form

where, again g& remains undetermined, and has to be
found from Eq. (A10). As the steady-state distribution of
Eq. (A10) is given exactly by

IV( [g, 1(*) ) =const Xexp +O(e /r), ii)

(A15)

APPENDIX B: SECOND ORDER OF THE D EXPANSION

Here we provide the second-order calculation whose
result is given in Eq. (3.46). From the Hamilton-Jacobi
equation we obtain in second order

542 642
dx —a+6' + —a+6

5$ 5p
lit

5e '
Q fa—x —'

5

64,
D dx — i V y —Vq +c.c.

5
(Bl)

where, on the right-hand side we have already used the
fact that only the gradients of the phase q are retained in
our second-order analysis. For the same reason only the
phase-gradient terms of M&, /5$ need to be retained, i.e.,
we may use

where the parameters a and b are assumed to be small (of
order e) compared to Dq for q&0. The expansion can
be continued, if desired, generating in 4 the higher even
powers of the Fourier amplitudes gq. The coefficients of
these powers contain increasing powers of the wave num-
bers in the denominators, but the wave-number sums
remain constrained in such a way, that vanishing denomi-
nators do not appear.

Finally, let us note that a power series expansion of 4&
can also be used directly to find a solution of Eqs. (2.3}
and (2.4). This method has been employed in previous
work. However, for reasons discussed and exemplified
in detail in Ref. 25 an expansion in terms of a small pa-
rameter is more systematic and therefore preferable. In
particular, as the calculation reported in this section has
demonstrated, the crucial boundary conditions (minima
in attractors), which a solution of Eq. (2.3) has to satisfy
in order to determine the true nonequilibrium potential,
can be systematically satisfied when expanding in a small
parameter, while the boundary conditions may or may
not be satisfied if a direct power-series solution is con-
structed.

D„P'(Vp) i D„~Q~ — D +iD 1 —' 1— (B2)

Using this expression and Eq. (3.6), Eq. (Bl}can be reduced to

d42(r)
d~

D2= ——f dx[V y(r)]
Q b,'lq(. ) I' b,

2D;D+
b„

(B3)
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Remarkably, the (Vg) terms have dropped out. In-
tegrating along the characteristics (3.7) using the in-

tegrals (3.11) and (3.42) we obtain Eq. (3.46) for a & 0.

with amplitude and phase perturbations 6r and 6y, re-
spectively. Equations (C4) and (C3) are equivalent if
5y(x ) remains small everywhere, in which case we have

APPENDIX C: EXPANSION AROUND
PLANK-WAVE ATTRACTORS

5(x)=5«(x)+iro5y(x) . (C5)

rp=
a —D„kp

1/2

(C2)

The method we use is a direct generalization of the calcu-
lation for kp =0 performed in Ref. 16. Let us write

g(x ) = [ro+ 5(x ) ]e (C3)

where 5(x) is a sinall fiuctuation 5(x)I «ro. Alterna-
tively we may write

g(x ) = [ro+5r(x }]e (C4)
!

Here we wish to provide the potential locally expanded
near plane-wave attractors

l( koX ++0)—
g), (x)=roe (Cl)

with

It is convenient to introduce the Fourier transforms of
5, 5«, 5y according to Eq. (3.29). A straightforward cal-
culation along the lines of Ref. 16 then leads to the
Gaussian approximant

@(G)(I5 54
} )

—(g)(G)( I5 54
} )

iD r kp

Q b'r +D k
5k5 k

—c.c.

(C6)

where ro is given by (C2), which generalizes the result for
k0=0 reported in Eq. (3.30). Here @PL' is the local
Gaussian expansion of the Ginzburg-Landau potential.
For further use it is convenient to reexpress (A6) in

5rk, 5q

(C7)
2I 2+'"—Co,'= — g, , „,[I5«~ I' —«,'I5q), I'+)«0(5q i5«),'+5q f 5«), )]—c.c.b'ro+D*k

Equation (C7) is valid for small 5r, V5y, and arbitrary dimensionality. We now wish to compare the result (C7) with the
corresponding local expansion of our potential 4„oi+4z given by Eqs. (3.45), (3.46), and (3.51). Here the ansatz for
Cz( A ) [i.e., the second term of (3.51)] is assumed to be independent of ko and the coefficients a, a», a) z, az of Eq. (3.51) are
not yet determined. As the only goal is to determine these unknown coefficients it is sufficient to record merely the quad-
ratic form in V5y, V5r contained in the local expansion:

2D ba 2D a(b„—b )

+ [a(2b„b, )+b„IbI —ro](V5r) +4a(ko V5p) +2ako(V5qr)

2

+
z (V5r ) + [(ko V5r ) ko(V5r ) ]-

rp ro

a2kp2
2' 2+ (V5« V5g)+ . (ko V5y)(ko V5r }

rp ro
(C8)

We note that 4, of Eq. (3.46) does not contribute to Eq.
2

(C8) as it contains (V' y) terms only.
We now wish to compare the result (CS) with Eq. (C7)

and therefore need to consider Eq. (C7} only in
the limit k 0, where r pk /( b *r

o +D *k ) reduces to
k /b*. We take this limit and transform back to real
space. Then let us split V =VII+ V~ with V

II

=ko(ko. V)ko, Vi=V —Vi and let us first compare the
coefficients of the VII terms. These are the only possible
terms in one dimension. This comparison yields the re-
sults given in Eq. (3.52). In the general case d ~ 2 addi-
tional terms with Vi appear in Eq (CS). Of . these the
(Vi5«) term is matched with (C7) by choosing a»=0.

However, it is impossible to match the remaining
(Vi5y), (Vi5y) (Vi5« ) ter.ms without spoiling the
matching for the VII terms. The matching would be pos-
sible if still higher-order terms are included in our ansatz,
but the coefficients then contain divergencies for
r ~a/b„, which is not acceptable. We are forced to
conclude from this failure that the ansatz (3.51) is not
possible for d ~2 with coefficients quadratic in D. Non-
analytic terms appear because it is not possible for d ~ 2
to reconcile, within an analytical D expansion, the ap-
pearance of plane-wave attractors with rotational invari-
ance. More specifically, for d ~ 2 the contribution of Eq.
(3.51), for fixed VP, must depend on the direction of the
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wave vector ko of each plane-wave attractor A. The
minimum over A in Eq. (1.12) will then yield a nonana-

lytic dependence on Vg and D. This problem does not
occur for d = 1, hence nonanalytic terms are not to be ex-

pected there. In this connection we note that the result
for the potential for d=1 is not contained in the result
for d ~ 2 as the special case where r and y depend on one
spatial variable only. Rather the cases d=1 and d ~2
differ fundamentally. The reason is that the fluctuating

force ( in Eq. (1.2) can depend only on a single spatial
coordinate for d =1 (and therefore becomes highly aniso-
tropic if this case is embedded in d ~ 2), while for a rota-
tionally invariant system with d ~ 2 the force g must de-
pend on all spatial coordinates. This rotational invari-
ance enforced by the fluctuations, is the reason for the
appearance of nonanalytic terms in D for d ~ 2. Our ap-
plications in Sec. IV are restricted to the one-dimensional
case where the nonanalytic terms are not present.
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