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Unstable periodic orbits and the symbolic dynamics of the complex Henon map
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A numerical technique for the calculation of unstable periodic orbits of chaotic maps in the corn-

plex plane is presented. Applying this technique to the complex Henon map we show that it can
find all the 2 real and complex periodic orbits of any given order p. The real periodic orbits coin-
cide with those obtained by a similar algorithm for the ordinary Henon map that we have proposed
earlier, and thus verify its completeness. The method provides a new definition of symbolic dynam-

ics for the Henon map, which holds for both the real and complex periodic orbits. It provides a
computational framework that applies to all limits of this map on a common footing, unlike the
conventional techniques in which one needs different algorithms for calculations involving strange
attractors, strange repellers, and various types of Julia sets.

I. INTRODUCTION

Chaotic behavior in low-dimensional dynamical sys-
tems has been studied extensively in recent years in the
context of real maps (such as the Henon map), ' and also
in the context of complex one-dimensional maps.
Real maps exhibit strange attractors and repellers in
phase space, while the complex maps give rise to fractal
sets called Julia sets. These structures can be character-
ized by their scaling properties such as Liapunov ex-
ponents, fractal dimensions and topological entropies.

It is widely accepted that a most useful way to study
the chaotic dynamics and to characterize the underlying
fractal sets is by considering the set of unstable periodic
orbits embedded in them. ' It was shown that scaling
properties of these sets, such as the Hausdorff dimension
and the spectrum of singularities f (a) (Ref. 16) can be
directly related to properties of the unstable periodic or-
bits such as their Liapunov exponents. However, until
recently no useful technique for the calculation of unsta-
ble periodic orbits in dynamical systems had been avail-
able. Map iteration techniques can be applied only to
short unstable cycles since chaotic attractors exhibit sen-
sitivity to initial conditions and numerical errors grow
exponentially with the length of the cycle. ' In the case
of a strange repeller' the situation is even worse since for
almost all initial conditions the trajectory tends to escape
to infinity.

In a recent paper we have presented a different numeri-
cal technique that allows us to calculate unstable periodic
orbits of arbitrary length to any desired accuracy for a
certain class of maps. ' Our method is based on the ob-
servation that the dynamics of maps such as the Henon
map, although dissipative, can be derived from a Hamil-
tonian. This Hamiltonian is constructed in such a way
that its spatial degrees of freedom are equivalent to the
temporal degrees of freedom of the map. In particular,
there is a one-to-one correspondence between trajectories
of the map and extremum static configurations of the
Hamiltonian. This equivalence applies in both the regu-
lar and chaotic regimes. Therefore, by calculating the ex-

tremal configurations of the corresponding Hamiltonian,
we could find unstable periodic orbits of the map to any
desired accuracy even in the chaotic regime. We applied
the method to the Henon map, which is a two-
dimensional quadratic map of the form

X„+l
=a —X„+be„,

Q~+) Xn o

dx~

dt
= —S„I'„n=1, . . . ,p,

For this map we performed a systematic calculation of
unstable periodic orbits and used the results to calculate
the topological entropy and fractal dimension.

Here we brieAy describe the general procedure of cal-
culating the unstable periodic orbits of a given map. The
calculation is done in a few steps: (a) We first find the
Hamiltonian H( I x„j ) (for which the Euler-Lagrange
equation is equivalent to the map). The static extrema of
this Hamiltonian are in a one-to-one correspondence with
the trajectories of the map. (b) We examine the sym-
metries of this Hamiltonian and find how many extrema
it may have (since we are interested in periodic orbits we
count only extrema which have the appropriate boundary
conditions). Then we try to identify these extrema by
giving them symbolic names, such that each of these ex-
tremum configurations x„.. . , x will be identified by a
sequence S&, . . . , S, where S, are integers. This symbol-
ic representation depends on the particular map and
there is no general way to find it. For the Henon map,
S, =+1.' (c) We choose random initial conditions x„,
n =1, . . . , p, and impose a periodic boundary condition
x +, =x, . (d) In order to find the extremum
configuration (and thus the periodic orbit) associated
with a given symbol sequence S„, n =1, . . . ,p, we intro-
duce an artificial dynamics that converges to this particu-
lar extremum. The symbols S„appear as parameters in
this dynamics. The dynamical equations take the general
form
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II. METHOD

We consider a complex version of the Henon map
which takes the following form:

z„+,= A —z„+Bw„,

wn +1 zn

(2.1)

where z„and w„are complex variables given by
z„=x„+iy„and w„=u„+iv„, and the parameters
2 =a +i a and B=b+i P can have a nonzero imaginary
part.

When A and B are real, this map coincides with the or-
dinary Henon map, provided that the initial conditions
for the variables z and w are real. In particular, the b=1
case corresponds to the Hamiltonian Henon map. For
0 ~ b ( 1 the map is dissipative, while for b =0 it becomes
the logistic map, which is one dimensional. The real
Henon map exhibits a rich variety of dynamic behavior
with stable fixed points or periodic cycles in some regions
of parameter space and chaotic motion on a strange at-
tractor in other regions. It also exhibits strange repellers,
from which the trajectories tend to be repelled. These
trajectories either escape to infinity or converge to a
stable periodic orbit that may coexist with the strange re-
peller. The real Henon map has been studied extensively
in recent years. Another case that has been previ-

where t is an artificial time and I'„ is the force which is
derived from the corresponding Hamiltonian. The sym-
bols S„=+1 play an important role in choosing the
direction in which this dynamics flows and thus deter-
mine which extremum it will converge to. We previously
applied these ideas to real maps such as the Henon map'
and the dissipative standard map. '

In this paper we generalize the method to chaotic maps
in the complex plane and apply it to a complex version of
the Henon map. Using Bezout's theorem we find that
the Henon map has 2p isolated periodic orbits of order p
(including cyclic permutations, repetitions of shorter
periodic orbits, and degeneracies). For generic values of
the parameters our method finds all the 2p periodic orbits
of a given order p, and in particular all the real ones.
These real periodic orbits coincide with the ones obtained
from the algorithm that we proposed for the real Henon
map. ' This provides a strong argument of completeness
that could not be derived from the real algorithm, namely
that no periodic orbits are missed.

Our numerical tests show that the symbol sequences
S„,n = 1, . . . , p, identify the periodic orbits uniquely and
can be used as an alternative definition of symbolic dy-
namics of periodic orbits. This symbolic dynamics ap-
plies for both real and complex orbits. Moreover, it al-
lows us to follow any particular periodic orbit associated
with a given symbol sequence, while the parameters of
the map are varied continuously.

The paper is organized as follows. In Sec. II we de-
scribe the algorithm for finding periodic orbits of the
complex Henon map. Our numerical results are present-
ed in Sec. III and the symbolic dynamics is considered in
Sec. IV. In Sec. V we summarize our results.

ously studied is the b=0 limit of the complex map. In
this case the map exhibits fractal objects called Julia sets.
There are a few diA'erent types of Julia sets. In some
cases the Julia set is the boundary between two basins of
attraction while in other cases it is the set of points that
do not escape to infinity under iteration of the map.
There are a few methods for the calculation of these ob-
jects, but not one of them is general enough to apply in
all cases.

In the following we present our algorithm for the cal-
culation of unstable (and stable) periodic orbits in the
complex Henon map. This algorithm applies in all limits
of the map and therefore allo~s us to treat all cases such
as strange attractors, strange repellers, and all types of
Julia sets on a common footing. In this analysis we will
eliminate the variable w„ from the map and obtain

z„+&

= A —z„+Bz„2 (2.2)

By decomposing the map (2.2) into real and imaginary
parts we find

x„+,=a —x„+y„+bx„,—Py„»
y„+,=a —2x„y„+by„, +f3x„

(2.3)

(2.4)

This is a four-dimensional map since each step depends
on the two previous values of both the real and imaginary
parts.

We will now describe the method and calculate the
periodic orbits of the complex Henon map. We will first
construct a Hamiltonian in such a way that its spatial be-
havior will be equivalent to the temporal behavior of the
map. In particular, we will require a one-to-one
correspondence between trajectories of the map and ex-
tremum static configurations of the Hamiltonian. Then
we will introduce an artificial dynamics which converges
to any particular extremum identified by a sequence
S

& Sp where S„=+ 1 and p is the length of the cor-
responding periodic orbit.

In the case that the parameter B is real (namely p=0),
we can construct a real Hamiltonian Hz for which there
is a one-to-one correspondence between its extremum
configurations and the trajectories of the map (when B is
complex, H~, which still takes the same form, turns out
to be complex). This Hamiltonian takes the following
form:

HR = g( B) " x„(x„+,——x„,)
—y„(y„+,—y„,)

1—+ 1 (ax„——,'x„+x„y„—ay„)

(2.5)

It can be interpreted as describing an infinite chain of
atoms in a two-dimensional potential. Here (x„,y„) is the
position of the nth atom in the x-y plane. Since we are
interested only in static extremum configurations, in this
paper we neglect the kinetic energy associated with (2.5)
and consider only the potential energy.

The potential energy (2.5) contains two terms: the first
one describes the interactions among the atoms while the
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F„,= —aH, /ax„ (2.6)

and

Fny
—0Hz /B&n

where

(2.7)

second term describes their interaction with the underly-

ing potential. Note that the nth atom interacts only with
the (n —1)th and (n +1)th atoms, which are not neces-

sarily its nearest neighbors in the two-dimensional
configuration space. In this Hamiltonian the ordinary
cyclic permutation symmetry x, ~x„+,, y„~y, +] is re-

placed by a lower symmetry which is a combination of a
cyclic permutation and a rescaling transformation of the
form x„~x„+„y„~y„+,, H~( 8)—'H. This proper-

ty rejects the dissipative nature of the corresponding
map. The potential (2.5) is not bounded from below and
therefore this model does not have a ground state but
only metastable states.

The force that applies on the nth atom has two com-
ponents

Since these two Hamiltonians correspond to the same
map they must have the same set of extrema.

Our aim now is to find a systematic scheme which will
allow us to calculate any particular extremum of these
Hamiltonians. In particular we concentrate on the calcu-
lation of extrema associated with periodic orbits. This
calculation is done as follows. We first construct a family
of symbol sequences such that any symbol sequence cor-
responds to one particular orbit. This construction de-
pends on the problem at hand and there is no general way
to find it. For the Henon map one needs two symbols
such that each periodic orbit of order p corresponds to a
sequence S&, . . . , S, where S„=+1.We then introduce
an artificial dynamics that converges to the extremum as-
sociated with that particular sequence. This artificial dy-
namics is based on a combination of the forces generated
by the two Hamiltonians described before. We find that
the Hamiltonians Hz and HI can be combined to a com-
plex Hamiltonian H=H~+iHI from which the desired
artificial dynamics can be derived. This complex Hamil-
tonian, associated with the map (2.1), takes the form

1
dH /Bx = —

(
—8) " —+1R n 8

X( —x„+,+a —x„'+y„+Bx„,) (2.8)

H= Q( —8) "[z„(z„+)—z„ 1)

—+1 (Az„——,'z„)] .
1 3 (2.1 1)

and

8Hz /By„= ( 8) " —+—1
1

X( —y„+,+a —2x„y„+By„ (2.9)

H, = g ( —8)-"[x„(y„+,—y„,)+y„(x„+,—x„,)

When the chain is in a stable or unstable equilibrium

Fnz Fny 0 In this case the equation F« =0 is
equivalent to the real part of the map (2.3) while F„=O
is equivalent to the imaginary part (2.4). We thus con-
clude that there is a one-to-one correspondence between
the trajectories of the complex Henon map (2. 1) and ex-
tremum static configurations of the Hamiltonian (2.5).
According to the general framework presented in Ref. 19,
one should now introduce an appropriate artificial dy-
namics which will converge to the extrema of this Hamil-
tonian. However, it turns out that such a dynamics is un-

stable and does not converge to the desired extrema.
This is due to the fact that the present system is more
complicated and has more degrees of freedom. We find
that the complex Henon map can be derived from two
different Hamiltonians and they both should be combined
in order to obtain a convergent dynamics.

The second Hamiltonian HI is constructed such that
F„„=O is equivalent to the imaginary part of the map
(2.4) while F„~=0 is equivalent to the real part (2.3). This
Hamiltonian takes the form

Note that when the parameter 8 is real (namely P=O),
HR and HI are the real and imaginary parts of H, while
for /3%0 they also become complex. However, our
method, which will now be formulated on the basis of
(2.11), applies even for complex B.

In this complex formulation the force which applies on
the nth atom in the chain is given by F„= BH/dz„, —
which takes the form

F„=( 8) " —+1—(
—z„+,+ A —z„+Bz„,) .1 2

(2.12)

When the chain is in a stable or unstable equilibrium
[namely an extremum static configuration of (2.11)],
F„=O for all n. One can easily see that this set of equa-
tions is equivalent to the map, and therefore there is a
one-to-one correspondence between trajectories of the
map (2.1) and extremum configurations of the complex
Hamiltonian (2.11). In the following we will use the com-
plex Hamiltonian to calculate unstable periodic orbits of
the Henon map.

In our calculation we identify each periodic orbit z„,
n =1, . . . , p by a symbolic name S„, n =1, . . . ,p, where
S„=+1. One can construct 2~ such symbol sequences
which correspond to the 2~ real and complex periodic or-
bits of order p. Consider a particular periodic orbit of or-
der p, associated with a given symbol sequence
S, , . . . , S . To calculate this particular orbit we intro-
duce an artificial dynamics defined by—+1 (ay„+ —,'y„' —x„y„+ax„)].

(2.10)

dz. =C„F„n=1, . . . ,p (2.13)
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where III. RESULTS AND DISCUSSION

C„=(—1)"[S„—i sgn(y„)] (2.14)

Since we are interested only in the resulting fixed point
to which this dynamics converges, where F„=O, it is al-

lowed to neglect the prefactor (B) "(1+I/8) on the
right-hand side of (2.12) and (2.15). This involves no ap-
proximation, and no information is lost. As a result the
set of dynamic equations exhibits a cyclic permutation
symmetry which is not a symmetry of the Hamiltonian.
This higher symmetry is important in order to obtain fast
convergence, since otherwise the atoms on one side of the
chain evolve very fast while the ones on the other side are
very slow. In case that B is complex it is necessary to
eliminate this prefactor since it is complex and mixes the
real and imaginary parts of the force.

We then obtain the following equations:

" =S„(—x„+,+a —x 2+y„'+bx„,—Py„, )
dt

+sgn(y„) —y„+,+a —2x„y„+Px„,+by„

(2.16)

and

=S„—y„+,+a —2x„y„+Px„,+by„dt

—sgn(y„) —x„+,+a x„+y„+bx„—,
—Py„

(2.17)

In practice we solve Eqs. (2. 16) and (2.17) until all
forces become smaller than a test value ( ~F„~ & e where
typically m&10 ). Since only the final configuration is
of interest we can use a fourth-order Runge-Kutta
method with a relatively large step size (typically h =0.1).
A similar technique was previously applied to the study
of critical behavior in the Frenkel-Kontorova model.
The initial condition is chosen such that ~z„~,
n = 1, . . . , p, are all small with respect to &~ A ~. Periodic
boundary conditions are then imposed by taking
z +, =z, . This dynamics converges to a fixed point such
that z, , . . . , z is the extremum of H (and thus the
periodic orbit) specified by the given symbol sequence.
This allows us to perform a systematic calculation of all
the periodic orbits of a given order p. In some rare cases
the dynamics converges to a limit cycle rather than a
fixed point. In order to obtain convergence in these cases
one needs some numerical tricks discussed in Sec. III.

and F„ is given by (2.12). If 8 is real, our dynamics can
be written in terms of the real variables

2X„BHg aH,= (
—1)"+ ' S„+sgn(y„)

dt BX„ BXn
(2.15)dy„BH& BH=( —1)" Sn +sgn(y„,

dt Byq ~yn

To test our procedure we have computed all the real
and complex periodic orbits up to order p = 16 and select-
ed periodic orbits up to order 1000 for 3=1.4, B=0.3.
The method allows us to eliminate the calculation of cy-
clic permutations as well as orbits which are repetitions
of lower-order cycles, leading to savings in computation
time of at least a factor p.

Using this method we find all the 2~ periodic orbits of
order p and in particular all the real orbits, which coin-
cide with the ones obtained from the real algorithm. This
provides a strong argument for the completeness of the
method, namely that no orbits are missed.

Each periodic orbit of order p corresponds to a root of
F„=O, n = 1, . . . ,p, where F„ is given by (2.12). This is a
system of p coupled quadratic polynomials, and there-
fore, according to Bezout's theorem, has at most 2~ iso-
lated roots in the entire complex plane, which add up to
exactly 2~ if the multiplicity of roots is taken into ac-
count. As a result we find that there are 2~ real and com-
plex periodic orbits of order p.

The method provides a natural way to identify periodic
orbits using the sequences S&, . . . , 5 . Since our method
finds all the periodic orbits, and each one of them has a
unique symbol sequence, we suggest that this sequence
can be used as an alternative definition of symbolic dy-
namics for the Henon map. These aspects will be dis-
cussed in Sec. IV.

The complex periodic orbits of the Henon map occur
in a four-dimensional space defined by (z„,z„,) or
(x„,y„,x„ i,y„,) and therefore are hard to visualize.
Here we project the set of periodic orbits on the real
plane (x„,x„,), on the imaginary plane (y„,y„,), and on
the (x„,y„) plane. The projections are shown in Fig. 1.
for a=1.4 and b=0.3, including all periodic orbits up to
order 10.

When B=O the map becomes one dimensional. In this
case the periodic orbits are two dimensional, in the
(x„,y„) plane. The closure of the set of periodic orbits is
called Julia set. Julia sets are typically repellers, and
therefore are not easy to calculate. Two methods are or-
dinarily used for their calculati. on: the boundary scan-
ning method and the inverse iteration method. The first
method is useful only for Julia sets which are on the
boundary between two different basins of attraction. In
this method one divides the phase space into a large num-
ber of pixels, and then identifies the pixels which are on
the boundary between the two basins of attraction. In
the inverse iteration method one first finds the unstable
fixed point of the map and then calculates its preimages
by iterating the map backwards. The preimages are
dense in the Julia set. In Fig. 2 we show the periodic
points up to order 10 for 3 = —i, B=O. The closure of
this set of points is a Julia set of the dendrite type, while
its complement diverges to infinity under iteration of the
map.

When the parameters of the map are varied smoothly
and the periodic orbits change in a continuous fashion.
Typically, when the parameters 3 and B are real, period-
ic orbits become complex in pairs when the parameter a
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two or more regions and giving each one of them a sym-
bolic name. It was observed that for the ordinary Henon
attractor (1.4,0.3), the line x=0 provides an approximate
partition by choosing S„=1 for x„)0 and S„=O for
x„&0. However, this is not a good partition since in
some cases two orbits may correspond to the same sym-
bol sequence.

In order to obtain a unique symbolic dynamics
Grassberger and Kantz suggested a different partition.
Their partition is constructed by first calculating a set of
points of homoclinic tangencies, then choosing a subset
of them as primary tangencies and connecting them with
a line. This line provides a good partition in the sense
that each periodic orbit has a unique symbol sequence.

A good partition can also be obtained by taking the
x=0 line as a starting point and then examining the sym-
bolic dynamics hierarchically for periodic orbits of in-
creasing order. When two different orbits are found to
have the same symbolic dynamics the partition line is
shifted locally such that the point which has the smallest
~x„~ in one of the two orbits moves to the other side such
that the degeneracy is removed.

One can gain insight concerning the symbolic dynarn-
ics by considering the topology of the Henon attractor,
which behaves like a pruned horseshoe map. Numerical-
ly it was found that in the topological pruning space
there is a line which divides it into two parts; one associ-
ated with the allowed symbol sequences and the other
part with the disallowed ones. ' ' This line is called
pruning front.

In all these approaches one should first calculate a
large number of periodic orbits, and then start organizing
them according to some rule. In case of the Henon map
one needs a single partition which will divide the phase
space into two parts. The partition should be refined step
by step for periodic orbits of increasing order. This cal-
culation becomes more complicated and less reliable for
high orders.

In our method the symbolic dynamics is an integral
part of the method and does not need any extra computa-
tion since we first choose a symbol sequence and only
then calculate the periodic orbit associated with this par-
ticular sequence. We obtained numerical evidence that
the method applies in all regions of parameter space that
have been studied and a unique symbol sequence was
found for both real and complex periodic orbits. Note
that for the complex orbits the partition is a three-
dimensional manifold in a four-dimensional phase space
and thus hard to construct and to visualize.

By varying the parameters of the map we can follow
any particular orbit over all the parameter space. We
find that as the parameters are varied the structure of the
periodic orbit ( z„] changes continuously, while its identi-
ty is kept via the symbol sequence

r 5„). We used these
ideas to examine the relation between unstable periodic
orbits on the attractor at a=1.4, b=0.3 and their coun-
terparts at a=1.0, b=0.54. We found that by varying
the parameters between these two points, following a par-
ticular periodic orbit, the variables (z„) change continu-
ously and the procedure is reversible. Therefore we con-
clude that any symbol sequence that we examined corre-

sponds to the same periodic orbit for both values of the
parameters.

This result is interesting in light of the observation
made in Ref. 31 that our symbolic dynamics is identical
to the one of Grassberger and Kantz for a=1.4, b=0.3
but not for a=1.0, b=0.54. It may indicate that in their
procedure, in which they find the primary tangencies nu-
merically and then connect them by lines to form a parti-
tion, the symbol sequences associated with two different
periodic orbits may switch as the parameters a and b are
varied.

V. CONCLUSION

We have presented a numerical technique for the cal-
culation of unstable periodic orbits in complex maps.
For the complex Henon map we found, using Bezout's
theorem, that there are 2~ real and complex periodic or-
bits of order p. Applying our method to this map we
have shown that in generic cases it can find all the 2~

periodic orbits of order p. In the calculation we identify
each periodic orbit z~, . . . , z by a symbol sequence
S„.. . , S where S, =+1. Since we find that these sym-
bol sequences uniquely identify the periodic orbits, we
propose that they can be used as an alternative definition
of symbolic dynamics. Our method allows us to follow
any particular periodic orbit while varying the parame-
ters of the map. We find that when the parameters vary
smoothly, the structure of each periodic orbit changes
continuously, while its symbol sequence remains un-
changed.

We have shown that in typical cases our method ap-
plies automatically with no need to adjust any parameters
or any other human intervention. In some cases, howev-
er, which we identified to occur around the point where a
real periodic orbit becomes complex, one needs to adjust
a parameter in order to obtain convergence, otherwise
the method converges to a limit cycle.

Further study is needed in order to obtain a theoretical
understanding of the method. The artificial dynamics
that we use can be cast into the framework of coupled
differential equations. Such systems, in general, can ex-
hibit not only fixed points but also limit cycles and
strange attractors. The success of our method results
from the fact that in typical cases the artificial dynamics
converges to a fixed point. It will be interesting to study
the method within the framework of coupled differential
equations in order to obtain a better understanding of its
properties.
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