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The maximum-entropy formalism provides an exponential ansatz, p, for the phase-space distribu-

tion that can be used in the information-theoretic entropy functional to calculate nonequilibrium

thermodynamic potentials. p, like the Grad function, gives a finite number of moments exactly. Ifp
is used to derive a Gibbs equation, the thermodynamic pressure is not in general one-third the trace
of the momentum flux, as commonly assumed phenomenologically. One can modify the exponential

ansatz by adding terms. Coefficients in these terms satisfy physical conditions such as requirements

that thermodynamic pressure and entropy flux have their classical forms. These conditions alter the

thermodynamic forces. However, in terms of the new forces, one can modify the projection opera-
tor of Grabert to derive a set of nonlinear extended thermodynamic kinetic equations exhibiting On-

sager symmetry. Depending on conditions imposed, one has statistical bases for several equivalent

forms of nonlinear extended thermodynamics.

I. INTRODUCTION

The maximum-entropy formalism was originally pro-
posed' on the basis of information theory as a means of
calculating the best nonequilibrium entropy S consistent
with the available information represented by specified
values of the state variables. In this approach, one max-
imizes the information-theoretic entropy, expressed as a
functional of the phase-space distribution, subject to the
conditions that the variables have their given values, and
one obtains an exponential distribution to use in calculat-
ing nonequilibrium thermodynamic potentials. This
scheme has been used recently ' to calculate the depen-
dence of the Helmholtz free energy on the heat flux J in a
fluid, treating J as a state variable in the framework of ex-
tended thermodynamics. A much more general applica-
tion has shown that if the exponential distribution is
substituted into a Fokker-Planck equation for the distri-
bution of values of the state variables, and moments tak-
en to yield the kinetic equations of nonequilibrium ther-
modynamics, then Onsager-Casimir reciprocity should
hold in the general, nonlinear regime.

Via these earlier applications, we have been able to
erect a statistical foundation for extended thermodynam-
ics. It resembles the work of Grad in that the exponen-
tial ansatz yields a number of exact moments, on which it
depends parametrically, and self-consistent equations are
obtained for these moments by substituting the ansatz
into the equation for the distribution function and then
taking moments of the latter.

A problem arises, however, when we try to use the
maximum-entropy formalism to derive the Gibbs equa-
tion. The latter is fundamental in phenomenological ap-
proaches to irreversible thermodynamics, although it is
not used in Grad-type approaches. The "modified-
moment method" apparently shows that to obtain a
Gibbs equation one must impose restrictions on the ther-
modynamic forces that appear as parameters in the ex-

ponential ansatz. When this is done, it is found that the
ansatz no longer yields exact values of the state variables.
The discrepancies are quantitatively negligible in liquids
and dense gases, but their presence leads us to seek a
modification of the maximum-entropy formalism which
removes all discrepancies and gives a Gibbs equation pos-
sessing all the properties usually assumed in pure phe-
nomenological approaches. Among the latter is a ther-
modynamic pressure that is one-third the trace of the
momentum flux. The latter is not found in general if one
uses the unmodified "maximum-entropy" or "modified-
moment" methods.

In the following section we show how the maximum-
entropy formalism may be generalized through imposi-
tion of physical conditions in addition to the self-
consistency requirements that the exponential ansatz give
a limited number of correct moments. The physical con-
ditions in question remove the need to impose the kind of
restriction that the modified-moment method places on
the thermodynamic forces, and they eliminate any non-
classical terms that otherwise would prevent us from giv-
ing its usual interpretation to the thermodynamic pres-
sure in the Gibbs equation. The generalization in ques-
tion modifies the entropy ansatz through introduction of
additional Lagrange multipliers and additional terms in
the exponential phase-space distribution.

When the maximum-entropy formalism is generalized,
we must go back and look at the arguments justifying re-
ciprocity in the nonlinear, extended case. In Sec. III it is
shown that a modification can be effected in the projec-
tion operator used by Grabert' to derive the kinetic
equation for which the exponential ansatz affords an ap-
proximate solution. The modified projection operator is
set up in such a way that the arguments used to justify
reciprocity go through as before via a redefinition of
some of the functions appearing therein.

To illustrate the new maximum-energy approach, we
consider in Sec. IV the case of heat conduction in a
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dense hard-sphere Quid, treated earlier via phenomeno-
logical" and unmodified maximum-entropy approaches.
The exponential ansatz in this case acquires two addition-
al terms and Lagrange rnultipliers associated with these.
The additional multipliers assure that the therrnodynam-
ic pressure is one-third the trace of the momentum Aux.
The modified estimate of the 0 (J ) term in the free ener-

gy is found to yield better agreement with the earlier
purely phenomenological estimate" than did the
unmodified maximum-entropy calculation. A discussion
of these results is presented in Sec. V, together with im-
plications such as nonuniqueness of nonlinear extended
thermodynamics.

cal theory based on (1) and (3) and phenomenological
treatments which postulate (4a) resides in the usual inter-
pretation of P. If we consider an N-particle system in
volume V, one can calculate dS/dt from (1):

dS pdp Nv dV
(5)

The last term in (5) provides for possible change with
time of the boundaries of the system. Such a change can
be introduced while maintaining constant integration
limits by scaling the particle positions r, ~r,'I, I = V'
It is shown in detail in a separate paper' that, on substi-
tuting from (3) into (5), one obtains (4a) provided

II. GENERALIZATION
OF THE MAXIMUM-ENTROPY FORMALISM

Existing information-theoretic approaches' ' ' to cal-
culation of entropy determine a phase-space distribution
P(x) which makes

n

P=P ,
' ga—T—y,fP dRIvdP~ g r (BA, /Br, )V

(6a)

(6b)

E= p x x. (2b)

The set Ia; j, in addition to particle number N and
volume V, are the thermodynamic state variables. The
solution to this variational problem is

p=Z 'exp PH gy—; A, — (3)

where I3=(a T) ', the I y; j are Lagrange multipliers; and
Z normalizes p to unity. The multipliers are determined
to satisfy conditions (2a).

Unfortunately, Eq. (3) cannot satisfy all the physical
conditions we wish to impose upon it. If we consider the
case of a dilute gas, interpreting S for that case as entro-
py per particle and p as the solution of the Boltzmann
equation, it has been found' that the set I y, j from (2a) is
apparently inconsistent with the Gibbs equation. The
latter asserts that

Tds dE+Pdv+XX
dt dt dt ,

' dt

X;=AT@, (i =1, . . . , n) .

(4a)

(4b)

A set of differential equations has been derived for X;
from the condition that dS/dt from (4a) should agree
with the entropy production from (1) and the Boltzmann
equation, i.e., from the Boltzmann H theorem (Ref. 16, p.
413). These differential equations are not satisfied' by
the set Iy, j calculated from (2a). Alternatively, we find
that the solution of the differential equations in question
does not obey (2a) above lowest order in X.

A second source of disagreement between the statisti-

S = lr fp—lnP dx

a maximum, subject to the condition that a set I 2;(x) j
of dynamical functions of the phase coordinates x plus
the Hamiltonian A'(x) have specified average values,

a; =( 3;(x))= fP A;(x)dx (i =1, . . . , n), (2a)

with P, the pre"ssure tensor. The integral in (6a) is over
phase space. The second term on the right in (6a) arises
because the scaled particle positions in A; acquire an
explicit time dependence. However, if the thermodynam-
ic pressure P does not equal P, Eq. (4a} and the hydro-
dynamic equation of energy conservation show that
S V(JT ') —contains a term (P P)V that —is not posi-
tive definite. This calls in question applications" of an-
tireciprocity to the kinetic equation for J. These applica-
tions were predicated on the positive definiteness in ques-
tion. This problem could be obviated if p were deter-
mined to make P =P, as usually assumed, by modifying
the exponential ansatz.

Another reason for imposing the condition P =P stems
from arguments" to the effect that the term coupling the
kinetic equation for BJ/Bt to VT is proportional to P,
which is equated to P and calculated via the Gibbs equa-
tion. An information-theoretic determination of F that is
inconsistent with the latter assumptions cannot be ex-
pected to yield results that we can try to compare with
the purely phenomenological theory. "

We note that the condition P =P does not have to be
satisfied by a generalized Grad-type theory that uses the
exponential ansatz (3) as an approximate solution of the
Boltzmann equation. Theories of this type do not use
(4a}, and so the interpretation of P is inconsequential.
The question of whether P and P are the same arises only
when we want to use the maximum-entropy formalism to
calculate a free energy F, from which we can calculate P
by equating it to dF/dV. Evident—ly, depending on the
conditions we impose on p, we can generate a number of
Grad-type theories, each with its own F and P, and the
simplest of these will yield thermodynamic potentials
that are not the same as those calculated" from theories
that invoke reciprocity and identify part of dS/dt, calcu-
lated from (4a), as being positive definite.

A third type of consistency condition that needs to be
imposed, in general, if the phenomenology based on (4a)
is to agree with the maximum-entropy formalism, is that
the entropy Aux J, =JT '. In cases where the viscous
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pressure P,' is an extended variable, the H theorem and
the exponential ansatz (3) lead" to a term g, P,', J, in J, .
It is shown elsewhere' for the dilute-gas Boltzmann
equation that this nonclassical contribution to J, can be
made to vanish by imposing a suitable condition on p. To
do this, however, one requires a microscopic operator for
J, . In the present paper, we do not use P as a state vari-
able, and so the problem does not arise. The structure of
J, needs to be considered, however, if we try to use the
maximum-entropy formalism to erect a statistical basis
for the extended thermodynamics of ther moviscous
effects.

By imposing these additional physical conditions, in
addition to (2a) and (2b) in the maximization of S, we set
up statistical bases for earlier phenomenological treat-
ments" and a means of calculating the J dependence of
an F which should be consistent with those treatments.
However, the calculation of F is complicated by the eval-
uation of the additional Lagrange multipliers, and we are
unlikely to carry it out in practice except in the simplest
cases.

The required generalization of (2a) and (2b) is effected
by adducing a set of functions B,(x)(i =1, . . . , v) and
augmenting (2a) and (2b) by requiring that

(B;(x))= fPB, (x)dx (7)

be specified functions of N, V, T, and the set Ia; j. In
place of (3), we find

quired for appreciable heat diffusion into or out of the
system. In this time, the constants of the motion should
indeed be constant to a good approximation. If
d(B, ) IdtWO, the thermodynamic forces are given by
Eq. (9) rather than (4b), and their calculation is more
complicated. This makes it di%cult to demonstrate On-
sager reciprocity in the general, nonlinear regime as we
do in Sec. III. Accordingly, we shall show in Sec. III
that, for a particular choice of the set I B j satisfying
(10), the Grad-type approach leading to nonlinear re-
ciprocity also implies d (B ) /dt =0. We can continue to
use (4b) rather than the more complicated expression (9)
for the thermodynamic forces IX; j.

The consistency conditions (2b) and additional condi-
tions like P =P lead to equations coupling the sets I y; j
and I y; j, and so replacing (3) by (8) complicates the cal-
culation of the thermodynamic forces. An example is
given in Sec. IV where the heat flux J is the extended-
state variable. The J dependence of F calculated from
Eq. (8) is compared with a phenomenological calculation
based on the Gibbs equation and the application of re-
ciprocity to the rate equation for BJ/Bt We al.so examine
the J dependence for F calculated without the additional
multipliers I y, j.

III. MODIFIED PRO JECTION OPERATOR
FOR NONLINEAR RECIPROCITY

p=Z 'exp PH —g y;A—; —g yJB~ (8)

The averages (B ) can be specified to give the set ty;j
any value, and so Iy, j can be determined to satisfy the
newly imposed conditions, e.g., P =P. These new condi-
tions are equivalent to Eqs. (7).

There is fiexibility in the choice of the set IB~ j, and we
take advantage of this to choose a set which makes
minimal changes in the formalism based on Eq. (3). If
we substitute Eq. (8) into (1) and differentiate with respect
to time, we obtain a dS/dt which agrees with (4a) and
(4b) except for an additive term g~yj(d/dt)(B~ ) in the
right-hand member. If (d/dt)(BJ )%0, this implies that
the thermodynamic forces in the Gibbs equation obey

dF a(B, )
PX;= — =y;+ g y (9)

Ba,- ' . ' Ba,-

which modifies (4b). To preserve (4b), we take the opera-
tors B, (j =1, . . . , v) to be constants of the motion, satis-
fying

iLB =0 (j=1, . . . , v),

where L is the self-adjoint Liouville operator.
Equation (10) does not automatically assure that

d(B )/dt =0, and so we cannot conclude immediately
that the sum in (9) vanishes, although it seems reasonable
that this should be the case. In extended thermodynam-
ics we write kinetic equations describing the relaxation of
fast variables over times short compared with the time re-

We proceed here to show that an earlier derivation of
phenomenological rate equations exhibiting reciprocity
and based on Eq. (3) can be extended to the case where
Eq. (3) is replaced by Eq. (8). This derivation is shown to
be consistent with (4a) and (4b) and with d(B~ )/dt =0.
We consider a system of N particles which interact with a
heat bath at temperature T. The state of the system is
characterized by two classes of variables. Let I A, (x) j be
a set of functions of the phase coordinates x which are
even under momentutn reversal, so that I A; j, with

A; =—iLA, are odd. The state variables, in addition to E,
V, and T, are

a,'—(A, ), (1 la)

(1 lb)

The ensemble averages in (1 la) and (lib) are first mo-
ments of a distribution,

g(a, u)= fp6(& —a)5(A —u)dx, (12)

where 5( A —a) is a product of factors 5( A; —a;).
5( A —u) includes a factor 5(P —v ), where P is the total
momentum. One of the set y can be chosen to make
(P) =0, since thermodynamics is done in a frame in
which the center of mass is at rest. p is the exact phase-
space distribution which satisfies the Liouville equation,
and g is obtained by operating on p with a projection
operator which projects out' the part relevant to a ther-
modynamic description based on the set of variables
Ia, rij. If po(x) is the phase-space distribution at t =0,
we have
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g (a, u, t) = fpo(x)exp(iLt)i//, dx,

i//, :—5( A —a )5( A —v) .

(13a)

(13b)

we choose one of the I y ] to inake

yy, (B,)=0. (17)

Grabert' introduces a projection operator P, which he
uses to define an operator identity for exp(iLt) In. terms
of this operator, we can show that (13a) implies a
Fokker-Planck-type equation:

Bg (v;g)+ (q;g)

Putting (16) and (17) into (15), we find

g =Z,p/sexp /3F(a, 7))+ g [y, (a, —a, )

+y,'(i); —
v, )] (18a)

+ f dsg fD; (a, a', t —s) p&
——Z, exp /3H ——g y B

j= 1

(18b)

X [g (a', s)/p&(a')]

X da'dU',

v, —:fp p p/3 A; I)/~ dx

p p pp g 1L Aidx

D;J
—= f dx p/si//, A~"( I P)exp[i—L (1 P)(t ——s)]i//, A,

(14a)

(14b)

(14c)

(14d)

pp =
pp gdX (18c)

(19a)

(19b)

Equation (17) causes g in (18a) to have the same form as
the g calculated from Eq. (3), with the replacements

pp~pp and pp~pp. To express g in terms of forces, we
set

A; =(iL) A

pt/
—=Z, 'exp( /3H }, —

Z, —= f ( /3H )dx, —
exp

Pp = Pp gdX

(14e)

(14f)

(14g)

(14h)

The phenomenological equations for a; and g; are
found by taking the first a and u moments of (14a). To
express the right-hand side in terms of thermodynamic
forces, we approximate g in a manner inspired by Grad's
approach to the solution of the kinetic theory Boltzrnann
equation. Define g by

g = P gdX (15)

All the first moments of g agree with those of g, and so g
should approximate g if enough o. and g variables appear
in g. Thus g has the property of Grad's solution to the
Boltzmann equation that it is set up to give a number of
moments exactly. If g is substituted into (14a) and then
first moments taken of this equation, self-consistent equa-
tions for n and g are derived, corresponding to Grad's
generalized hydrodynamic equations. Since p depends on
X, it has been shown that terms in the self-consistent
equations can be grouped to exhibit reciprocity in the
general case where the rate equations for a and q are
nonlinear in L.

This demonstration of nonlinear reciprocity rested on
Eq. (3) and the Grabert operator P. ' If we use Eq. (8)
instead of (3) in (15),g is changed, and so the previous dis-
cussion must be generalized. If Eq. (8) is written in the
form, appropriate to the present choice of variables,

subject to verification that B(Bi ) /Bt =0, so that the sum
in (9) can be omitted.

We can now see that the demonstration of nonlinear
reciprocity should go through as before. We can rewrite
(14a) in terms of a new projection operator P, obtained by
replacing pp~pp and pp~pp in the definition given by
Grabert. ' For arbitrary y(x), such an operator is
defined by

Py(x)= f da du dx'p/3(x')i//, (x')y(x')[pt/(a, u)]

Xi//, (x) . (20)

One can readily show that

P y(x)=Py(x), (21a}

(21b)

[P"], /,
=PP ' '

P/, .

P=gp, .

(22a)

(22b)

P'(i ~}=P/P& (21c)

where P is the transpose of P. If we put P~P in (14a),
take (18a) to be an approximate Grad-type solution, and
calculate first moments, we find the equations for 6 and q
exhibit nonlinear reciprocity exactly as was demonstrated
previously. The demonstration relies on (21c) and the
fact that pp commutes with L. The latter property fol-
lows from (10).

If Eqs. (19a) and (19b) are to be consistent with the for-
malism, we must choose the IB j so that Eqs. (10) hold
while (d/dt)(B ) =0. A set IB ) which are constants of
the motion and have this property are

/v=Z 'exp /3H —g(y, A, +y,'A, )
——g y, B,

(16)

We shall take n ) 1 for the present model, since random
interactions with a heat bath do not tend to make the
center of mass move, and we need not impose a condition
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to keep it fixed. p is not, therefore, simply a displaced
Gaussian in the mornenta.

With this choice of the set [B,), we have

fp P"dx = fgv" da du . (23)

Multiplying (14a), in which we have put P ~P, by v" and
integrating over a and u, we find

a gv"da du =0 .
Bt

(24)

A route to (24) more transparent than via (14a) can be
found by observing that the assumption dg/r}t=-dglr)t
implies

B(B) Bg „Bg= f v"da du =f v"da du

=f Ppdx8
at

= —f iLpp"dx =fpiLP"dx=0.

The fact that 8 is a constant of the motion does not au-
tomatically make d(S)dt =0. This could only follow if
p obeys the Liouville equation which it does not. Howev-
er, our assumption, in the spirit of Grad, that g satisfies
approximately the equation for g when a and g are deter-
mined self-consistently leads to constancy of (B ) within
the range of validity of the same approximation.

Thus, to the extent that g is an approximate solution of
the equation for g when a and g are determined self-
consistently, we can carry over both the Gibbs equation
(4a) and reciprocity to the case where additional
Lagrange multipliers are introduced to satisfy conditions
like P =P. If these extra multipliers Iy; I are not intro-
duced, we still have a Gibbs equation and reciprocity, but
we cannot use the Gibbs equation to calculate, e.g. , the g
dependence of P via the condition r}P/r}rt=3f/dV. The
more conditions and Lagrange multipliers we introduce,
the more difficult it is to calculate X and X. It is of in-
terest to show, however, that this can be done in princi-
ple, so that there exists a statistical theory which can
serve as a basis for the usual phenomenology.

(25b)

(25c)ij =
g

In (25a) h is the enthalpy per particle and P," the pair po-
tential for interaction of particles at r; and r . J is an g-
type variable in the notation of Sec. III, and there is no
associated a variable.

Equation (16), specialized to the present model, as-
sumes the form

p=Z 'exp( PB——
yo J—y, B, yzB—2) . (26)

Following Eq. (22a}, we shall take

B,=/P/'P

(27b}

with P the total momentum. yo and y, are determined

by the coupled conditions, from (2a) and (6a):

J=fpJdx, (28a)

P P= —
—,
'—
yo fpdx gr, (8/Br )JV aT

J

+KTyO. V 'J=O .

(27a)

The first term on the right in (28b) arises from specializ-
ing the integral in (6a) to the present case, while the
second term in (28b) is added because J is proportional to
l which depends explicitly on time. Such a time
dependence is not assumed in the A functions discussed
in connection with (6a). This additional t dependence
adds a term to P when we derive (4a) by substituting (16)
into (5). yz in Eq. (26) is evaluated to satisfy Eq. (17). Its
determination does not affect yo and y, , and so it plays
no role in the physical results obtained in the present sec-
tion. The coupling of Eqs. (28a) and (28b) for yo and y,
means that the elimination of y, between them modifies
the earlier determination of yo= "r)F/r)J. We—seek to
determine whether the modified 0 (J ) term in F agrees
better with the one obtained via reciprocity' than does
the result' which calculates this term using only (28a)
without (28b) and with y, =0.

On substituting (26) into (28a), we have to terms linear
in J,

IV. HEAT CONDUCTION
IN A DENSE HARD-SPHERE FLUID

J= p XJ yo J+y 'B1 (29)

(p; /2m ) —h + —,
' g P,, 5

j(&t)

r;~F; .p;/m,
g(41)

(25a)

To illustrate the generalized entropy-maximization ap-
proach described in Secs. II and III, we invoke a model
employed in earlier phenornenological" and
information-theoretic treatments. The system has N
hard spheres of diameter o. in a cube of side I —10 m
immersed in an infinite homogeneous Quid phase. The
density is high enough so that diffusion across the boun-
daries during relaxation of the heat fiux toward a steady-
state value proportional to V T should be negligible. The
only extended variable is the heat fiow J= (J ), where5"

i J=g

where pp is the equilibrium canonical distribution. The
integral proportional to yo has been evaluated previously
[Ref. 5, Eq. (42)]. For the remaining integral, we have

p xy1B]J=y1N22mV 12mKT2

X[n '(Po —naT) —h+ —", a.T]

=y,E (2m V) '(151rT/4), (30)

where Po is the pressure given by the equilibrium equa-
tion of state. The virial equation of state enables us to ex-
press integrals involving P'(r)r in terms of Po —naT. For
hard spheres, h =(3aT/2)+Pon '. With Eq. (30) and
the earlier result for the first integral, Eq. (29) assumes
the form
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J= —
yov2 'aT —y, N (2m V) '(2m~T) (15~T/4),

KTV2 =[n (aT) lm V] [211(1—rI) [4—(211)/2)+(13il l2)]
—(2+ ,'Ii —)(PolnaT —1) ——"+(—', +Po/naT)],

(31a)

(31b)

(31c)

(31d)

I, has been evaluated from the exact solution' ' to the Percus-Yevick equation for the radial distribution function g2,
'

y:—r/o. . The numerical value of I, is listed in Table I.
Using methods similar to those applied to the integrals in (29), we can evaluate the integral in (28b) to terms linear in

yo and y],

fP dx gr; =
—,'Ny, (2maT) n fg(r)[r V,$5—r V,(rF)]dr

j j
+ —,'yot —n '[(5aT/2) —h]6(P& nirT—)

—
—,
' f ng(r)[P'(r)r]24mr2dr

—
—,
' f n g' '(1,2, 3)P'(r, z)P'(r»)r, 2r»dr, &dr, 3I (32)

y'(o+ ) = —(9ri/2o')(1 —g')/(1 —g)",
c (o —) =( —1+—', ri ——,'q')/(1 —ri)

(33b)

(33c)

The integral involving [P'(r)r] is evaluated in Ref. 5. We
have

f g (r)[P'(r)r] 4m.r dr
0

4~P c—r y'(o+)+16' o c(cr —), (33a)

P'( r )= aT5( r ——o. ) (36)

for hard spheres. Equation (36) is also used in (31b) and
(33a). g ( o'+ ) and g '( cr + ) can be obtained froin
g(o+)= —c(o —), where c(r) for r (o is given analyti-
cally by the exact solution' to the Percus-Yevick equa-
tion [Ref. 5, Eq. (38a)].

The integrals in the term proportional to y, in (32) are

n fg(r)r V,gdr=n fg(r)P'(r)r dr
where (+ ) or ( —) denotes superior or inferior limit, re-
spectively. To evaluate the integral involving g' ', we in-
voke Kirkwood superposition:

g' '(1,2, 3)=—g2(1, 2)g2(1, 3)g2(2, 3) . (34)

We have

= —6(P& na T), —

n fg(r)r V,(rF)dr

n f—V g(r) r rFdr 3f n g(r—)rFdr

=4m n Sa Tcr [og '(cr + ) +g ( +o) ] .

(37a)

(37b)
g ]2~]2 ]3I J3 x]2 I ]3 KT g 0 + I), 35

where we use
Combining the terms in (32) proportional to yo and yi
and using the result in (28b) wherein we set P =P, we find

aT)2(mV2) 'y ( ', &T —h)(—PO nirT)+vT(3m V) —'Ny, (2mzT) [mn o «Tg'(o+)+3(Po 'na T)]= —aTV 'J . —

(38)

Eliminating y, between Eqs. (31a) and (38), we have

J= yo[(aT/v2)+v ",—m (aT) n], —'

[(KT/v2)+ 2aT(3mn V) '(Po naT) ]/I m—(a T) [—", naT
3

urn o a Tg
'—(o + ) 4(PO naT)] I— —

(39a)

(39b)

From yo, by integration, we obtain

F=FO(N, V, T)+ ,'J [v2 '+vm (vT) —",—n] '+

Fo+ —,'v~J +0(J )
—. (40)

obtained earlier via reciprocity. "
To complete the discussion, we derive an expression

for y2 from Eq. (17) which, in the present context, as-

sumes the form

The 0(J ) terin in (40) will be compared with the result y, .&k, )+y,(S, ) =0. (41)
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TABLE I. Calculation of coefficient v2 in the 0(J') term in F
[cf. Eq. (40)] and comparison with vz, the value obtained with

neglect of y„and v2, the value obtained in Ref. 11 via reciproci-

ty. Parameters are mass m, diameter cr for hard-sphere model

of Ar at number density n near the gas-solid transition.

T
V
no'
Po /n ~T
I[
V2

U

V2

V2/V2

V2/V2
(Vn)

V2

3.64 x 10-"
87.0
1.0x10-"
0.8
7.73
1.70
1.57 x 10-"
1.05 x10"
1.96x 10
1.24
6.14
1.27 X 10

m
K
m'

kgm6J -2

kg'm'
kgm J

kgm J

(B2)=3mN~T . (42b)

From (41) and (42b) we extract to O(J ):

y2= '3NmirTn '—yot9v maT+(nv/2m)[n '(Po naT)—
+ —",aT]I .

(43)

Numerical estimates for a hard-sphere fluid with m, cr

appropriate to Ar at 87 K and no =0.8 are listed in
Table I. These values correspond to those used in earlier
calculations. " We find v2/vz = 1.24, so that the
coefficient of the 0 (J ) term in F is raised when the term

y, B, is included in p with respect to the value v2 ob-
tained when y, and the condition P =P are neglected.
The factor 1.2 is still below the value 6.14 required to
bring the information-theoretic estimate of V2 into agree-
ment with the estimate based on reciprocity. " The latter
approach, as we indicate in Sec. V, invokes physical ap-
proximations and information not implicit in the sole
condition P =P. We have no a priori reason to expect
better than the close order-of-magnitude agreement
achieved here.

V. SUMMARY AND DISCUSSION

The maximum-entropy formalism' ' provides a way
of calculating the dependence of the Helmholtz function
F on extended variables such as J. It is difficult to find a
way of calculating terms beyond lowest order phenome-
nologically except in a few cases, e.g., Ref. 11, where in a
dense fluid one can evaluate the coupling of 8J/Bt to V T
in terms of the thermodynamic pressure P, and apply re-
ciprocity. P, however, was assumed" to be the trace of

The integrals are

(Bi)= —yt9N (2maT)

—yoN (2m V) '[n '(Po naT)+—", aT], —(42a)

the momentum fiux tensor, which we have found in (6a)
and (26b) not generally to be the case. We discovered this
in deriving the Gibbs equation (4a) and (4b) from the time
derivative of Eq. (1). Evidently, the distribution p used in

Eq. (1) must be modified if it is to yield and F and S con-
sistent with the assumption P =P used in the earlier phe-
nomenological theories. "

Such a modification of p is required, however, only if
we want the F function we calculate from it to be con-
sistent with phenomenological theories based on the
Gibbs equation. If g in (15) is calculated from P in Eq.
(3), without the modifications introduced in the present
paper, one can introduce this g into the Fokker-Planck
equation obeyed by g and, taking moments, obtain kinetic
equations for the rates c'z and g. These kinetic equations
can be cast in a form exhibiting Onsager reciprocity, us-

ing forces, r)F/r)a—and —BF/Bq, calculated from the
unchanged p. Thus, so long as no reference is made to a
Gibbs equation, we can erect a generalized, nonlinear
Grad-type theory using a p and g which yield a limited
number of moments exactly. When, however, we want to
use entropy maximization to calculate thermodynamic
potentials consistent with theories which use the Gibbs
equation to calculate P, it is necessary to impose addi-
tional conditions in the entropy maximization. These
conditions modify Eq. (3) through the addition of the B
terms in the exponential ansatz (14a). The additional
multipliers, I y ), are determined to satisfy the additional
physical conditions which we desire to impose.

The introduction of these additional terms in the ex-
ponential ansatz for p removes a difficulty found to exist
in the modified-moment method. Attempts in the latter
method to derive the Gibbs equation from Eq. (3) lead to
restrictions on the set I y, ) in addition to those imposed
by (2a). In general, one cannot satisfy both sets of restric-
tions simultaneously. ' The apparent inconsistency in-
volved arises in the nonlinear regime and is, in most
cases, negligibly small quantitatively. It is of conceptual
interest to show, however, that such inconsistencies can
be removed altogether by adding terms to the exponent in
the ansatz for p. In cases where the viscous pressure P,'
is used as an extended-state variable, there is still another
potential inconsistency which cannot be eliminated so
easily. Phenomenological approaches suggest that the
entropy fiux has a term proportional to g, P,'J, . In
theories" which calculate the irreversible entropy pro-
duction from the Gibbs equation and invoke reciprocity,
we should like to make this nonclassical entropy flux con-
tribution vanish, since the reciprocity relation used is
predicated in part on this. When the relevant kinetic
equation is not the Boltzrnann equation, we have no
operator for the entropy flux, and so the modification of p
which will achieve a classical entropy flux awaits further
theoretical developments.

The possibility of calculating nonlinear extended ther-
modynamic potentials from a variety of functions p con-
structed to satisfy varying conditions implies an uncom-
fortable nonuniqueness. One can construct a set of non-
linear, generalized Grad-type theories, each with a
different P, S, F, and, potentially, entropy flux if a general
way is found to calculate the latter. Aside from the
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variety of conditions which may be imposed on an
information-theoretic p, there is a wide range of choices
for the functions IB I. Some choices may provide a
better statistical basis for phenomenological approaches
than others, although the differences, where it has been
possible to estimate them, are small.

%hatever choices are made, we have been able to show
that, provided the I B I are constants of the motion, and
an extra multiplier is introduced to satisfy Eq. (20), non-
linear reciprocity should still obtain when the kinetic
equations for Ic't; I and Iri;) in Sec. III are cast in terms
of the forces IX;] and tX;I defined in (19a) and (19b).
Care must be taken to assure that the entropy maximiza-
tion includes all the conditions implicit in the experimen-
tal situation to be analyzed and any assumptions one may
wish to make about P and the entropy flux.

The point that the information-theoretic entropy must
be calculated using all the information available has bear-
ing on the apparent improvement in V2 over vz listed in
Table I. Since the phenomenological theory" assumed
P =P, we might expect improved agreement when p is
modified to be consistent with this condition. However,
the phenomenology" included an additional condition

applicable to steady heat conduction. The latter requires
that Vn and VT be proportional to make P uniform
across the system as required for mechanical equilibrium
in the steady state. The free energy calculated from in-
formation theory should not be expected to agree with
that obtained via reciprocity unless the presence of Vn is
taken into account. This can be done by introducing an
additional function A(x), whose ensemble average is Vn,
and this is discussed elsewhere. ' It is shown there that F
acquires an additional term ,'v2—"'(Vn) which, since Vn

is proportional to V T in a steady state, and V T is propor-
tional to J, yields an effective free-energy contribution
—,'vz "'J . Kith the value of v~

"' listed in Table I, we
find' that (v2+v~2 "')/v~=1. 33, a small increase from
v2/v2=1. 24. The estimate' of vz

"' was difficult to make
accurately, and a better estimate of the integrals involved
might lead to still better agreement with the phenomeno-
logical theory. " The latter can be affected by the ap-
proximation which neglects self-diffusion out of the sys-
tern during the relaxation of J toward the steady state,
and so the remaining discrepancy between information
theory and phenomenology based on reciprocity is not
solely ascribable to inadequacy of the former of these.
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