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We consider the rf superconducting quantum interference device above its homoclinic threshold.
The effects of weak additive (i.e., Langevin) noise on the dynamics of the system are analyzed from
the standpoint of the effects on the chaotic attractors and the maximal Liapunov exponents that
characterize the system in this regime. It is seen that noise has a ‘‘smoothing” effect on chaotic at-
tractors. On the other hand, the injection of noise can lead to a change in sign of the Liapunov ex-
ponent that characterizes a periodic point in its absence, leading to “noise-induced chaos.” We also
consider the cases of additive fluctuations that manifest themselves as a fluctuating dc driving term,
and multiplicative fluctuations (at initial times) in the nonlinearity parameter. In these cases, we
study the motion of the system, in the mean, by averaging over numerous realizations of the fluc-
tuating driving term. Depending on the strength of the fluctuations, one obtains mixtures of period-
ic and chaotic motion in the multiplicative-noise case.

I. INTRODUCTION

When one considers the dynamics of a nonlinear sys-
tem in the real world, the presence of noise in the exter-
nal perturbation cannot be ruled out. Early work on the
effects of weak Langevin noise (such noise manifests itself
as an additive term in the external perturbation) on sim-
ple deterministic maps was carried out by Crutchfield,
Farmer, and Huberman,' who found that the noise intro-
duced a gap in the period-doubling bifurcation sequence
of the map; as a consequence, a scaling behavior in the
characteristic exponent at the chaotic threshold was pos-
tulated. Their work complemented the investigations of
Mayer-Kress and Haken.? Similar calculations have been
carried out by Svensmark and Samuelson® on the Joseph-
son junction; they found that in the presence of noise and
a resonant external perturbation, the bifurcation point
shifted by an amount proportional to the square of the
perturbing amplitude. Wiesenfeld and McNamara* have
investigated the amplification of a small resonant periodic
perturbation in the presence of noise near the period-
doubling threshold, Kautz® has investigated the problem
of thermally induced escape from the basin of attraction
in a dc-biased Josephson junction and Herzel and Ebel-
ing® have investigated the effects of weak noise on the Sel-
kov oscillator that describes glycolytic oscillations. More
recently, Kapitaniak’ has observed that the probability
density function that characterizes a dissipative nonlinear
system driven by random and periodic forces displays
multiple maxima in the chaotic regime (such
nondifferentiable probability density functions have also
been postulated by Graham and Tel® in the chaotic re-
gime). Finally, Lima and Pettini® have shown that chaot-
ic behavior in a Duffing oscillator may be suppressed
through the addition of a small parametric perturbation
of appropriate frequency.

In this work, we consider a specific nonlinear dynamic
system, the rf superconducting quantum interference de-
vice (SQUID). The homoclinic threshold (defined by the
zero of the Melnikov function) has been computed for
this system in Ref. 10. Further, the effects of weak
Gaussian -correlated additive and multiplicative noise
on the homoclinic threshold has been investigated by the
authors.!"!2 It has been found that on average, additive
noise elevates or postpones the homoclinic threshold.
Multiplicative noise (characterized by fluctuations in the
nonlinearity parameter) may either elevate or lower the
homoclinic threshold depending on one’s choice of the
ensemble average of the velocity variable x(¢) at initial
times t=0. In this work, we consider the rf SQUID
above its homoclinic threshold. The dynamics of the
SQUID are reviewed below. We then consider the effects
of Langevin noise on a deterministic chaotic attractor
and its associated multimaximum probability density
function. This is followed by a study of the effects of
noise on a periodic solution; the noise induces chaoslike
behavior. The behavior of the maximal Liapunov ex-
ponent in the presence of noise is analyzed in detail in
this section. The case of multiplicative fluctuations (in
the nonlinearity parameter) has been briefly considered;
for sufficiently weak noise, the results are seen to be qual-
itatively similar to the additive-noise case and are not
reproduced in this work. A similar result has been re-
ported in Ref. 1, where it is shown that for a simple one-
dimensional (1D) map the net effects of additive and
“parametric” noise are the same for small fluctuations.
Finally, we consider the special case of a random dc-
driving term on the averaged dynamics of the SQUID.
The results, particularly for the multiplicative-noise case
(corresponding to fluctuations at time =0 in the non-
linearity parameter), are seen to be quite different from
the time-dependent case considered through the early
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part of the paper.

In its simplest form, the rf SQUID consists of a single
Josephson junction shorted by a superconducting loop of
inductance L. An external magnetic field produces a
geometric flux @, in the loop together with a circulating
current i (8)=—1Isin(27® /¢,), where ®=®, +Li is the
actual flux sensed by the loop, with @, being the flux
quangum. The flux @ in the SQUID ring obeys the equa-
tion!

.. ., dU(x)
X +kx +T=(oéxe , (1)
where
Y Y
U(x)=—x2— B osamx | 2)
2 2T

Equation (1) describes a particle moving in a sinusoidally
modulated parabolic potential U(x). The dot denotes
time differentiation, x =®/®,, x,=®, /P, w3=1/LC,
k=1/RC, and B=LI,/®, C and R are the capacitance
and normal-state resistance of the loop, with I, being the
critical current in the junction. In the absence of a dc-
driving term, one obtains multivalued solutions to (1)
above a critial value B, =0.7325.

The homoclinic threshold for the system (1) in the
presence of a periodic driving term has been computed
via the Melnikov function in Ref. 10. In this work we
consider an external driving term of the form

x,=gq sinwt +F(t) , (3)

where F(t) is taken to be Gaussian, §-correlated noise,
with zero mean and variance 0%

(F(1))=0; (F(t)F(t+7))=0%(7). (4)

Equation (1) is numerically integrated (on an Apollo
DN3500 work station) using the integration algorithm of
Manella and Palleschi'* for stochastic differential equa-
tions. As a test of this algorithm, we show (Fig. 1) the re-
sults of integrating the stochastic differential equation (1)
with B=0 (i.e.,, the harmonic oscillator) and fitting a
probability density function to the resulting stationary
solution x (¢) (the x variable is integrated out). For this
problem, the stationary probability density is well
known'® and is shown on the same figure (data points).
The agreement in the figure is very good. This approach
must be contrasted with that of Kapitaniak,” who uses a
Fourier decomposition of the random force into a trig-
nometric series with uniformly distributed random
phases (such a procedure has been described in the litera-
ture by Rice'®), after which the differential equation is in-
tegrated using standard deterministic techniques. Kapi-
taniak appears to have used only thirty terms in the
Fourier decomposition, suggesting that this number
might be sufficient to provide an accurate representation
of the noise for most applications of interest. In practice,
however, the number of terms required to provide agree-
ment of the kind depicted in Fig. 1 is extremely large,
rendering calculations via this procedure very slow and
cumbersome. The parameter set (3, w(z,, k,w)=(2,1,1,2.25)
is considered throughout this work. For this parameter
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FIG. 1. Steady-state probability density function computed
via integration of (1) with 8=0, using algorithm of Ref. 14. The
data points represent the analytic (Gaussian) probability func-
tion from Ref. 15.

set, the homoclinic threshold in the absence of noise has
been found!® to occur at g =~ 1.25. Throughout the rest of
the work we assume the periodic driving term amplitude
q to be above this value.

II. FLUCTUATIONS AND CHAOTIC DYNAMICS:
“SMOOTHING” OF CHAOS

Figure 2 shows the maximal Liapunov exponent A as a
function of the periodic driving amplitude g. One ob-
serves, above the homoclinic threshold, the characteristic
“windows” of periodic and chaotic behavior character-
ized by negative and positive values of A, respectively.
On the same figure we show the results of including addi-
tive noise of variance 0>=0.0025 in the system dynamics.
The noise has the effect of destroying the windows of
periodicity (this will be discussed in Sec. III). At the
same time, points that are already chaotic in the absence
of the fluctuations retain the positive sign of the
Liapunov exponent in the presence of noise. To gain a
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FIG. 2. Maximal Liapunov exponent A as a function of the
deterministic driving coefficient ¢ [Eq. (3)] for Langevin noise
variance o> =0 (solid curve) and 0.0025 (dotted curve).
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deeper insight into the effects of noise on chaos, one must
examine its effects on the chaotic attractors and the asso-
ciated probability density functions in phase space.
Figure 3 shows a deterministic chaotic attractor ob-
tained for the case g=1.43. The attractor possesses the
well-known fine-structure property (shown in Fig. 4), and
its power spectral density resembles that of broadband
noise on which harmonics of the driving frequency
©=2.25 are superimposed. In the presence of small
amounts of noise, a smearing occurs in the attractor, as
seen in Fig. 5; a greater area of phase space is made ac-
cessible to the system in the presence of noise and the
fine-structure property is lost (Fig. 6). It is readily ap-
parent that an arbitrary, small amount of noise will be
sufficient to destroy the fine-structure property of the
deterministic attractor on some small scale. The power
spectral density corresponding to the variable x displays
(in the absence of noise) the features characteristic of
deterministic chaos: a broadband component on which
are superimposed harmonics corresponding to multiples
of the driving frequency w. In the presence of additive
noise the broadband floor in the spectral density is elevat-
ed, leading to a progressive washing out of the peaks cor-
responding to the higher harmonics of w. Eventually, for
large enough noise strengths, even the peak correspond-
ing to the fundamental harmonic is obliterated. At this
point, the system dynamics are dominated by the noise
and the deterministic driving term may be ignored in the
analysis. The effects of noise are also seen in the phase-
space probability density function (or histogram in this
case) that characterizes the variable x at long times. In
the absence of noise, the probability density function
P (x) displays the multimaximum character suggested by
Graham and Tel® and Jauslin!” who postulate that, above
the homoclinic threshold, the probability density func-
tion is nondifferentiable. In Fig. 7, we show the probabil-
ity density function corresponding to the deterministic
chaotic case together with the probability density func-
tions in the presence of noise. These probability density
functions, which correspond to the attractors (e.g., Figs. 3
and 5) could also be obtained by setting up and solving
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FIG. 3. Deterministic attractor in the absence of noise;
qg=1.43.
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FIG. 4. Section of the attractor of Fig. 3 showing the fine-
structure property.
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FIG. 5. Noisy chaotic attractor for (g,02)=(1.43,107%).
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FIG. 6. Section of the attractor of Fig. 5; the fine-structure
property is absent.
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FIG. 7. Phase-space probability density function P (x) for the
attractors corresponding to ¢=1.43 and o?=0 (solid curve),
0.001 (dotted curve), and 1.0 (data points). The lower solid
curve is obtained from Eq. (5) (62=1.0).

the Fokker-Planck equation corresponding to the sto-
chastic differential equation (1). The probability density
function represents the frequency with which each area
of phase space is traversed by the system. In the presence
of noise, its peaks are seen to have a greater width but
smaller height; the noise tends to “‘smooth” the probabili-
ty density function, coarse graining the deterministic ran-
domness of the attractor itself. This effect is a direct
consequence of the greater area of phase space that is
made available to the system in the presence of noise.
For very large noise variances, the transitions between
the different wells of the potential (2) become purely noise
driven and P(x) reduces to the characteristic broad dis-
tribution corresponding to this situation. In this case, we
may ignore the deterministic driving term in (3) and write
down a two-dimensional (2D) Fokker-Planck equation
corresponding to the stochastic differential equation (1).
The long-time solution of this Fokker-Planck equation
(after integrating out the X variable) is'®

B

kwd 5
X“——cos2mx
T

—3 , (5)
o

P(x)=exp

up to a normalization constant. This probability density
function has been plotted in Fig. 7 for 02=1.0. It yields
a curve that fits the corresponding curve, computed via
numerical integration of (1), reasonably well. One must
realize that Eq. (5) is the probability density correspond-
ing to the orbits x (¢). This explains the differences be-
tween the two bottom curves in Fig. 7 even for the rela-
tively large noise strength o2=1 (recall that the numeri-
cally obtained curve corresponds to the Poincaré plot,
not the orbits). As the noise strength increases, the
points on the Poincaré plot fill almost the entire phase
space and the distinction between the probability densi-
ties corresponding to the Poincaré plot and the orbits be-
come increasingly tenuous. Ultimately, for very large
noise strengths, one expects the probability densities ob-
tained via the two approaches to coincide.
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III. NOISE-INDUCED CHAOS

In the preceding section, we considered the effects of
additive noise on a chaotic solution of the deterministic
problem. As seen in Fig. 2, the maximal Liapunov ex-
ponent corresponding to a periodic solution changes sign
under the influence of noise. This ‘“noise-induced chaos”
is investigated in this section. For simplicity, we consider
a specific deterministic periodic solution, the case g=1.79
in Fig. 2. In the absence of noise, this corresponds to a
period-two limit cycle. The Poincaré plot for this motion
consists of two dots and the associated probability densi-
ty function P(x) consists of two 8-function peaks at the
values of x corresponding to these dots. We now consid-
er the effects of nonzero noise. In Fig. 8 we see that in
the presence of very small amounts of noise, the motion is
noisy period four, with a corresponding phase-space
probability density function consisting of four noise-
broadened peaks. As the noise is increased further, we
obtain (Fig. 9) what appears to be a chaotic attractor.
The attractor does not possess the fine-structure property
of deterministic chaos and its probability density function
(Fig. 10) consists of four distinct peaks with some inter-
vening low-level structure. A closer analysis of the
motion (by watching the orbits) shows that the system is
driven, by the noise, between two period-two limit cycles
and a chaotic attractor. This motion is extremely unsta-
ble (the Liapunov exponent is small and positive). As the
noise strength is increased the two period-two limit cycles
are washed out and the system spends more time on the
attractor (the Liapunov exponent becomes larger and
more peaks begin to appear in the probability density
function at the expense of the four large peaks in Fig. 10).
Ultimately, for very large noise, the effects of the deter-
ministic driving may be ignored, and the probability den-
sity function resembles the third curve in Fig. 7. Once
again, the effects of noise are manifest at the level of the
power spectral density corresponding to x. In the ab-
sence of any noise, the spectral density consists of well-
defined peaks located at multiples of w/4m (Fig. 11). As
the noise level is increased, the broadband floor in the
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FIG. 8. Poincaré plot showing the effects of noise (¢?=10"%)
on initially period-two motion (g=1.79). The motion is noisy
period four.
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FIG. 9. Same as Fig. 8 with ¢>=5X107% the motion is
driven between two period-two limit cycles and a chaotic attrac-
tor, by the noise.
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FIG. 10. Phase-space probability density function corre-
sponding to the attractor of Fig. 9.
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FIG. 11. Power spectral density corresponding to the vari-
able x for (q,w,0%)=(1.79,2.25,0.0). The peaks occur at multi-
ples of w /4.
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FIG. 12. Same as Fig. 11 with ¢?=5X 1075,

spectral density rises (Fig. 12), eventually obscuring the
peaks for large enough noise strengths; in this limit, the
spectral density resembles that which characterizes deter-
ministic chaos.

The preceding paragraph indicates that even weak
Langevin noise may introduce chaoslike behavior in a
system that is periodic in the deterministic case. Such be-
havior occurs for all the points for which the Liapunov
exponent in Fig. 2 is negative in the absence of noise.
The behavior of the maximal Liapunov exponent as a
function of noise strength for a given set of system and
deterministic driving parameters is shown in Fig. 13 for
three different values of the parameter q. Evidently there
exists, for a given set of system and driving parameters, a
critical noise strength o at which the Liapunov ex-
ponent vanishes; this critical noise strength is analogous
to an order parameter if we treat the change in sign of the
Liapunov exponent as a phase transition. In Fig. 14 we
show values of (Ina2) /A, (A, is the Liapunov exponent in
the absence of noise) for ¢ values corresponding to the
minimum of the corresponding window of periodicity in
Fig. 2. Hence, the value of o2 corresponding to each g
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FIG. 13. Maximal Liapunov exponent A vs Inc? for g=5.35
(bottom curve), 4.001 (middle curve), and 2.05 (top curve).
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FIG. 14. A¢ 'Ing? vs periodic driving parameter g. o2 is the
critical noise variance at which the Liapunov exponent is zero,
Ao being the Liapunov exponent in the absence of noise.

represents the minimum noise that completely erases this
window. In connection with Figs. 13 and 14 we must
point out that the dynamics in the parameter range near
the zero of the Liapunov exponent are very unstable and
time consuming. Hence, the quantitative results in this
parameter range become dependent on the numerical al-
gorithm used to integrate the stochastic differential equa-
tion (1).

IV. THE CASE OF RANDOM dc DRIVING TERMS

In the preceding sections we have considered the case
of a time-dependent Gaussian 8-correlated noise term
defined in Eq. (4). We now consider the case when F (1) is
a constant (i.e., dc) perturbation that fluctuates about
some mean value (taken to be zero in this work) with
variance o2. In this case, the calculations of the preced-
ing sections must be modified. Instead of integrating the
nonlinear differential equation continuously over time for
very long times, we now generate a particular realization
of the dc term and then integrate the differential equation
(1) up to a certain final time (the final time is selected
after allowing the transients to decay). We then select a
new realization of F (with the same variance as before)
and integrate up to the same time once again. This is re-
peated for 40000 realizations of the random dc term F.
It is evident that, since the dc term is kept constant
throughout each integration (it takes on a new value only
at t=0 in each of the 40000 integrations), we are
effectively solving a deterministic problem 40000 times.
For each of the realizations of the noise, we start the sys-
tem at the right end point of the separatrix. This end
point is recalculated for each different realization of the
force. Hence, we are effectively changing the potential
(2) for each of the 40 000 solutions and the Poincaré plots
are obtained by plotting x(¢,) versus x (z;), t, being the
final time (an integer multiple of the Poincaré period)
used in the integrations. The results for the case of addi-
tive noise acting on an initially chaotic solution are quali-
tatively the same as those obtained in Sec. I. Each reali-
zation of the noise, (i.e., each realization of the potential)
leads to a slightly different region of phase space that is

accessible to the system. Accordingly, in the presence of
small amounts of additive noise, one obtains maps that
are similar to the original (noise-free) attractor. The
probability density functions corresponding to these
noisy attractors display the same properties as those
shown in Fig. 7; increasing the noise strength tends to
smooth and broaden the probability density function.
This case has been discussed in detail in Ref. 11 and will
not be addressed further in this work. Before concluding
this paragraph, one must point out that, unlike the situa-
tion of the preceding section, a solution that is initially
(in the absence of noise) periodic, does not become chaot-
ic in the presence of the fluctuations in the dc-driving
term, as considered in this section, unless the variance of
these fluctuations is very large. In the latter case there
exists the possibility that a few realizations of the dc-
driving term (and, hence, of the potential) may lead to
chaos. For moderate variances in the fluctuations of the
dc-driving term (we reiterate that we are assuming a
mean value of zero), however, we usually obtain noisy
periodicity, characterized by fuzziness surrounding the
discrete points that make up the Poincaré plot in the ab-
sence of noise, accompanied by a broadening in the 8-
function peaks comprising the noise-free probability den-
sity function. This case is to be contrasted with the
effects of time-dependent additive fluctuations discussed
in the preceding section.

We now consider the case of dc-multiplicative fluctua-
tions. Specifically, the nonlinearity parameter  in (2) is
assumed to fluctuate about some mean value with vari-
ance 0%,. Once again, we assume that the fluctuations
cause the parameter to change its value at time =0 only.
The stochastic differential equation is integrated as de-
scribed in the preceding paragraph. We find that, unlike
the situation discussed in the preceding paragraph, initial
time fluctuations in the nonlinearity parameter 3 may in-
duce chaoslike behavior in the system. Further, a com-
putation of the maximal Liapunov exponent for this case
yields interesting behavior. At very low noise values, the
Liapunov exponent (which may be treated as a random
variable) displays a monomodal probability density func-
tion centered at some negative mean value. As the multi-
plicative noise strength is increased the probability densi-
ty P(A) develops a second peak centered about some posi-
tive value of A. The positive peak grows at the expense of
the negative peak until a certain critical value of the noise
variance at which point the reverse effect occurs: the
negative peak grows as the positive peak decreases in
height. These effects are summed up in Fig. 15 for the
g=1.79 case. The explanation of this behavior is obvi-
ous. Changes in the nonlinearity parameter 3 can induce
chaos in the system. When the differential equation (2) is
integrated for 40000 realizations of B (with B changing
only at the start of each integration), it is evident that
some of the B values generated by the random-number
generator will be such that they support chaos in the
deterministic problem (all other system and driving pa-
rameters remaining fixed), whereas other values of 8 will
not be able to support chaos. The result is a combination
of periodic and chaotic motions for a given strength of
the multiplicative fluctuations. The relative heights of
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nonlinearity 3. Curves correspond to ¢=1.79 and multiplica-
tive noise variance o3,=10"" (solid), 0.0005 (dotted), and 0.05
(dashed).

the maxima in the probability density functions of Fig. 15
are an indication of which motion is preponderant in the
mean for a given noise strength. One cannot distinguish
the motions at the level of the Poincaré plot; even if
chaos occurs for only a few realizations of 8 it would be
sufficient to obscure the periodic points on the attractor.
Obviously, it is meaningless, for this case to define a
single-averaged Liapunov exponent A. The probability
density function corresponding to the random variable x
reflects the effects described above. For a multiplicative
noise strength o03,=107° it consists of four well-
separated peaks with a very small amount of intervening
structure. Depending on the particular realization of the
parameter 3, the motion can exist in one of two stable
period-two limit cycles (recall that, in the absence of any
noise the motion is period two) and, for only a few reali-
zations of 3, we might obtain a deterministic attractor.
This case correlates with the solid curve of Fig. 15, which
is characteristic of mostly periodic motion. For this case,
the Poincaré plot of x vs x resembles the noisy attractor
of Fig. 9. As the noise strength increases, the Poincaré
plot becomes fuzzier (as seen in the preceding sections).
For 03,=0.0005 the probability density function P(x) is
still made up of four major peaks, but the intervening
structure is now far more pronounced at the expense of
the peak heights. This corresponds to the dotted curve in
Fig. 15, which is seen to indicate a coexistence of periodic
and chaotic motions. As the noise strength increases still
further, the probability density function P(x) becomes
broader and develops still more structure, indicating that
the chaotic behavior occurs more readily than the period-
ic behavior. This case is represented by the o3, =0.05
curve in Fig. 15. We note that allowing both multiplica-
tive and additive fluctuations simultaneously (3 as well as
the external dc-driving term F fluctuate but without mu-
tual correlations) does not change, qualitatively, the re-
sults of this paragraph; the additive fluctuations simply
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lead to a broadening of the peaks in the probability densi-
ty function P(x) but do not change the system behavior
as pointed out in the preceding paragraph.

V. DISCUSSION

In this work we have discussed, numerically, the effects
of Langevin noise on a nonlinear dynamic system above
its homoclinic threshold. This work extends the earlier
work of Crutchfield et al.! on the 1D logistic map (this
work is actually more analogous to the work of Herzel
and Ebeling,6 who also considered the effects of weak
noise on a system described by a nonlinear differential
equation), and complements our earlier work'""!? on the
effects of weak additive and multiplicative noise on the
homoclinic threshold as defined by the zeros of the Mel-
nikov function. We find that weak Langevin noise leads
to a “smoothing” of chaos: the deterministic attractor
occupies a greater region of phase space and the corre-
sponding probability density function is smoother and
broader. The noise actually enhances the observability of
the chaos. Further, if we start with a point that is period-
ic in the absence of noise, the noise leads ultimately to
chaoslike behavior (so-called ‘‘noise-induced chaos™)
characterized by a positive Liapunov exponent. As seen
from our example of Sec. III, however, one must take
care in the interpretation of these results; what appears to
be a chaotic attractor in Fig. 9 is actually a coexistence of
two period-two motions and a chaotic attractor with only
a relatively small amount of time spent on the attractor.
This motion is quite unstable (the Liapunov exponent is
approximately 0.03) and, for larger amounts of noise, it
settles down on the attractor (the Liapunov exponent be-
comes larger). The phase-space probability density func-
tion (Fig. 10) reflects the above statements. The case of
multiplicative fluctuations (in 3) was examined. Howev-
er, the results (at least for weak-to-moderate noise) were
found to be qualitatively similar to those for additive
noise. This has also been shown by Crutchfield, Farmer,
and Huberman.' It is important to point out that
whereas noise produces chaoslike behavior out of period-
ic motion, the reverse process does not occur: large
amounts of noise will not lead to higher-order periodicity
when applied to any of the points on Fig. 2 (solid curve)
for which the Liapunov exponent is initially positive.

The case of having noise present as a random dc input
has been briefly considered. Such noise often occurs as a
natural part of the measurement process when one is
faced with system (e.g., circuit, in this case) or external
parameters that do not remain constant but fluctuate
about some average values. If the measurement time is
less than or comparable to the critical time scale of the
fluctuations, then the results of Sec. IV might be expected
to provide a good insight into the mean behavior of the
system. The case of F(?) in Eq. (3) being colored noise
with extremely long correlation time also falls within this
category. In this case, the additive fluctuations lead to a
broadening of the deterministic chaotic attractor similar
to the effects observed in the example of Sec. II. The
multimaximum probability density function associated
with the deterministic chaotic attractor also undergoes a
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smoothing in the presence of the fluctuations, with more
regions of phase space becoming accessible to the system.
It is worth pointing out that one may further quantify the
effects of noise on the probability density by computing
the information dimension defined as'°

N(e)
> P,-lnPi_l
i=1
dj=——m7—", (6)
! lne™!

in the €—0 limit, where N (¢) represents the number of
squares of side € necessary to cover the attractor, and P;
the relative probability of each square being visited. In
the absence of noise, a relatively small area of phase
space is accessible to the system (corresponding to the
deterministic chaotic attractor of Fig. 3 and the associat-
ed probability density function indicated by the solid
curve in Fig. 7) and the information capacity of the deter-
ministic attractor is found to be approximately 1.18. As
the noise strength is increased, however, more regions of
phase space become accessible to the system and the in-
formation dimension increases. The information capacity
may also be calculated, in a similar manner, for the case
of the time-dependent fluctuations considered in the
preceding section. All calculations of the information
capacity in the presence of noise suffer, however, from
the basic drawback of a paucity of points at low box di-
mensions [a plot of InN(e) versus Ine ! begins to level off
at large values of € !]. Hence, these calculations yield
acceptable results only when one can generate attractors
with huge numbers of points, a process that is extremely
time consuming. Further, when a formula of the form (6)
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is used to calculate d;, one assumes that the graph of
SN p.InP, ! versus Ine ! is approximately linear (until
the box dimension € becomes very small) so that d; may
be calculated from the slope of this straight line. Such a
situation occurs, in fact for deterministic chaotic attrac-
tors; however, in the presence of noise, the linear regime
of these plots is extremely small, thereby introducing a
further element of unreliability into the calculation.

It has been pointed out that, unlike the case discussed
in Sec. III, fluctuations in the dc-driving term do not (for
moderate noise strengths) produce chaos out of initially
periodic solutions. Multiplicative noise (acting at initial
times) on the other hand produces effects similar to those
discussed in Sec. III: it produces mixtures of periodic
and chaotic behavior depending on the variance of the
fluctuations. Such behavior might be expected on purely
physical grounds since it is well known that small
changes in the nonlinearity parameter [ can trigger
chaos. As in the case of time-dependent fluctuations dis-
cussed in Sec. III, the system, depending on the particu-
lar realization of the multiplicative noise, can lie on a lim-
it cycle or a chaotic attractor. The net motion, averaged
over all the realizations of the noise, is characterized by a
bimodal probability function for the Liapunov exponent.
The relative heights of the peaks may be used as a mea-
sure of the frequency of each type of motion.
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