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Exact enumeration data have been analyzed by the partial-differential-approximation method for
the adsorption (special) transition in self-avoiding walks attached to penetrable and impenetrable
surfaces. Estimates of the crossover exponent y are consistent with 0.28+0.05 (D=2) and

0.40+0.01 (D=3) for the penetrable surface and 0.51+0.04 (D=2) and 0.54+0.07 (D=3) for the
impenetrable surface.

I. INTRODUCTION

The self-avoiding walk (SAW) on a D-dimensional lat-
tice and interacting with a (D —1)-dimensional surface
has been considered as a model for the study of polymer
adsorption. The monomers of the SAW interact with the
surface, which can be penetrable or impenetrable, with
energy co. The impenetrable surface corresponds to the
adsorption of polymers at a solid-liquid interface, while
Hammersley et al. ' suggest that the penetrable surface
may correspond to the problem of polymer adsorption at
a liquid-liquid interface. They have proved that the two
models exhibit a phase transition at a (different} critical
energy mo with desorbed phase for co &coo and adsorbed
phase for co&coo. ' The crossover exponent y, defined
near the critical point in each model to describe the be-
havior of the phase transition, is believed to take
different values for the two cases. (In the language of sur-
face critical phenomena the singular behavior near co=coo
corresponds to the special transition. ) For impenetrable
surfaces, series analysis, the results of the transfer-
matrix approach and conformal invariance theory are
consistent with a value for y of 0.5 for D=2; for D=3,
series analysis and Monte Carlo estimates give q=0.59.
For penetrable surfaces, the scaling prediction q=1 —v
gives y=0.25 for D=2 and y=0.41 for D=3. Nakan-
ishi obtains an estimate of 0.25 based on a small-cell
renormalization-group calculation. The series analysis of
Ishinabe yields an estimate of y=0.5 for D=2 and
y=0.59 for D=3, inconsistent with the scaling predic-
tion. His analysis seems to suggest that the two models
have the same critical behavior for D=2 and D= 3.

In this paper we analyze the available series for SAW's
for the penetrable and impenetrable problems on a num-
ber of lattices in two and three dimensions for bond and
site data. %'e analyze the two variable series using the
method of partial-differential approximants (PDA) intro-
duced by Fisher' in connection with spin systems. This
method may be more appropriate for the analysis of mul-
ticritical behavior than a standard one-variable analysis.
Our results indicate that the crossover exponent y is
different for the two models and consistent with the pre-

II. THE SCALING FORM AT THE CRITICAL POINT

Let a„be the number of n-step SAW's in a D-
dimensional lattice starting at the origin with m steps in
the surface. We assign to each step of the walk a fugacity
x in the bulk and a fugacity y in the (D —1)-dimensional
surface. The generating function is

G(x,y)= gga„e
n m

(2.1)

or

G(x,y)=G(x, co)= g A„(co)x", (2.2)

where e =y/x and

A„(to)= g a„e

The generating function is assumed to have singularities
at x, (co)=e "' 'of the form

G (x,y) —[x,(co) —x]r'"' . (2.3}

A (co) is a convex nondecreasing function of to and non-
analytic at coo, which is defined as the critical point.
A (to) satisfies the inequalities

max(tc, tc'+co) A (co) max(tc, tt+to), (2.4)

where ~ and ~' are connective constants in D- and
(D —1)-dimensional spaces, respectively. As to —too

~0+, A (co) behaves like

A ( to )
—A ( coo) —( co —

coo )
' ~ . (2.5)

y is the crossover exponent, which from the inequalities

diction of scaling. In Sec. II a scaling form for the two-
variable generating function for the number of n step
walks is given. Section III includes the result of the two-
variable analysis based on the method of partial-
differential approximants (PDA) and a one-variable
analysis to point out the possible source of the discrepan-
cy in Ishinabe's analysis.
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(~)—e
—A(co)

y (~)—eau —A(ri)) (2.6)

(2.4) is not greater than l.
The trajectory of the singularities in the xy plane is

then represented in terms of the parameter co by

(a) For co(coo, the trajectory is a vertical line corre-
sponding to x, (cu):=e . As co crosses coo, x, (co) begins
to decrease. coo corresponds to the "special transition
point" defined by

From the property of A (cu), one can show the follow-
ing.

COO K

x, =x, (coo)=e ", y, =y, (a)0)=e '

(b) Near the special point, we have as co —coo~0+,

(2.7)

y —y, =e"x —e 'x, =(e —e ')x+(x —x )e '-x, e '(co —coo)+e '(x —x )

-x, e '[& (~)—&(~o)]~+e '(x —x, )-x,e '(x, —x)~+e '(x —x, ) .

(2.8)

Since q 1, we may write

y —y, =(x, —x)+ .

(c) As co —+0(), x, (co)=e "' )~0and

y, (m)=e" "' ' const&e

(2.9)

G(R, r)-t 'Z((R R, )/t~), — (2.10)

and indicated that (2.5) and (2.10) define the same cross-
over exponent ()(). From (2.8), the scaling form can be
written, in terms of x and y, as

(y —y, )+e '(x, —x)
G(x,y)-(x, —x) rZ

(x, —x)~
(2.11)

III. ANALYSIS

The two-variable series were analyzed using the
method of partial-differential approximants. The method
has been previously applied to spin systems. ' However,
this is (to the best of our knowledge) the first application
to geometrical phase transitions, such as SA%'s attached
to an interacting surface. The series for the penetrable
surface were a1so analyzed using a one-variable analysis.

Hence, (2.6) gives the phase boundary as has been previ-
ously described. ' '

In the limit X~O, it is well known that the problem of
SAW's interacting with a surface is closely analogous to
surface magnetism for either a semi-infinite ¹omponent
spin system or a system with a planar defect. The gen-
erating function G(x,y) for SAW's corresponds to the ex-
pansion of the high-temperature susceptibility y, while
the fugacity x is the interaction parameter J!kT in the
bulk and y is the coupling constant in the surface defined
by y =Rx. Thus, R is related to co by identifying e =R.

From the assumption that 6 is a generalized homo-
geneous function near the special point, Binder has given
a scaling form of G in terms of R and t =(T —T, ) /T„
that is,

I

f (x,y) of two variables with a truncated expansion
around the origin. The assumed scaling form for the
function near its multicritical point (x„y, ) is

f (x,y)-(bx ) rZ{hy/(hx )~) (3.1)

where bX=bx —(1/e2)by and by=by e(bx—; e) and

e2 are two scaling parameters to specify the derivative of
x and y near the multicritical point and y is the crossover
exponent. Near the multicritical point, the scaling form
satisfies

1— Ax-
e2

1 —
(p Bf

hy

+ e, (1—(p)bx—
e& a

b,y

e&=y 1 — f . (3.2)
ep

where PI (x,y), QM(x, y), and R)v(x, y) are the defining
polynomials with L, M, and X terms, respectively, and
are chosen such that the series solutions of F(x,y) in
powers of x and y agree with the known expansion of
f (x,y) to some predetermined order.

The estimate for (x„y, ) is given by

QM(x„y, ) =0 and R)v(x„y, ) =0,
while the other parameters are determined by

1 R2 —Q) 1 Rz —Q)
2 Q2 2 Q~

1/2
1—4

Q2

(3.4a)

A partial-differential approximant FIM&(x,y) to such a
function f (x,y) is a solution of the linear partial-
differential equation

QM(x, y)
' +R)v(x, y) ' =PL, (x,y)F(x,y),BF(x,y) dF(x,y)

x y

(3.3)

A. Partial-differential approximants

The method of partial-differentia1 approximants is a
generalization of d log Pade approximants for a function

r = P, /(e2Q—2 R»—
(I()=y(Q(+R2)/P, —1,

(3.4b)

(3.4c)
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where

P, =PL(x„y, ),
Q, = —(BQM /Bx)(x„y, ),
Q~ = —(BQM/By)(x, y, »
R, = —(BR /Bx)(x„y, ),

and

R2 = —(BR&/By)(x„y, )

(Refs. 10 and 14).

B. Results

(y —y, )
—e '(x, —x)

G(x y)-(x —x) Z
(x, —x)~

(3.5)

Comparing with the generalized form (3.1), the two scal-
ing axes for SAW's are

The analysis we report is for bond and site data for
C„on the square lattices and the simple cubic lattices
and bond data on the triangular lattices. The source of
our data includes Refs. 1—3 and previously unpublished
data that we have generated (Tables III—VI). Generally,
the results for site data on all lattices were worse for both
the penetrable and impenetrable models. From (2.5), we
have that

e2 = (I)0

A PDA depends on three labeling sets which define the
polynomials P, Q, and R and a matching set which is a
subset of the labeling set of F(x,y) specifying the powers
of x and y of F(x,y) that are to be matched. We con-
structed the approximants in two ways: (1) We let the
three labeling sets have full triangular forms with
M =X =L. The matching set of F(x,y ) is then selected
to be as symmetrical as possible with the main diagonal
of the labeling set of F(x,y). (2) We choose a full tri-
angular subset as the matching set and if the number of
entries is J, we let M=X and choose L such that
M +E+L =J +1. The entries for the polynomials were
then chosen to be as close to the triangular form as possi-
ble. In all of our approximants, e2~ ))1,while e& varies
in a rather large interval and depends on the estimate of
(x„y, ).

The estimates of y„y, /x„y, and g are tabulated in

Table I. Figures 1—3 are representative plots of y, versus

x„y versus q, and y versus y, for a number of lattices for
bond (or site) data as examples from which the estimates in
Table I were obtained. The estimate for y, as a function of
x, for all lattices lie on a curve resembling the critical
phase diagram (Fig. 1). They do not converge to any par-
ticular value, as in a one-variable analysis. For values of y
less than some critical y„ the approximants concentrate
around the bulk value for x, . The point at which x begins
to decrease is taken as the critical point (x„y, ). The linear

TABLE I. The estimates of the critical parameters obtained using partial-differential approximants (PDA) for the square (SQ), tri-
angular (T), and simple cubic (sc) lattices for (a) impenetrable and (b) penetrable surfaces.

Variable

Lattice
Bond Site

T
Bond

sc
Bond Site

xc

y, /x,
r
y(x, )

y(y, )

0.379 05'
0.780+0.050
2.060+0.10
1.450+0.050

+0.050
—0.030
+0.100
—0.080

0.500+0.090

(a) Impenetrable
0.379 05'
0.690+0.010
1.820+0.030
1.400+0.050
0.520+0.020

0.520+0.030

surface
0.240 92'
0.688+0.015
2.850+0.070
1.400+0.100

+0.050
—0.070

0.450+0.050

0.500+0.010

0.2135'
0.314+0.040
1.470+0.020
1.550+0.150

0.540+0.070

(b) Penetrable surface

xc
yc

y, /x,
y

cp(x, )

y(y, )

rp(y)

'Reference 15.

0.379 05'
0.380+0.010
1.000+0.020

+0.050
1e350

0.260+0.060
0.250+0.030
0.270+0.040

0.379 05'
0.400+0.020
1.050+0.050

+0.080
1 + 350

0 100

0.260+0.060
0.350+0.100

0.240 92'
0.250+0.010
1.030+0.050
1.340+0.040

0.400+0.200

0.350+0.150

0.2135'
0.200+0.020
0.940+0.080

+0.1101.200

0.400+0.010
0.420+0.020
0.450+0.090

0.2135'
0.225+0. 150
1.050+0.050
1.210+0.030

0.580+0.090

0.045+0. 100
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FIG. 1. Plots of y, against x, for (a) square-lattice {site) impe-
netrable surface, (b) square-lattice (bond) penetrable surface,
and (c) simple cubic lattice {bond) impenetrable surface.

FIG. 2. The exponent y is plotted against the crossover ex-
ponent y for (a) square-lattice (bond) impenetrable surface, (b)
simple cubic (bond) penetrable surface, and (c) triangular lattice
(bond) impenetrable surface.
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correlation seen in the graphs of y versus y (Fig. 3) is that
would be expected if G(x,y) is a general homogeneous
function in the vicinity of (x„y, ) (Sec. II). The values of q&

in Table I are read from a plot of the estimates of y against
the estimates of y by assuming y(D =2)= ~ (Ref. 6) and

y(D =3}=1.44 (Ref. 8) for an impenetrable surface and

y(D =2)=—'„' (Ref. 15) and y(D =3)=1.162 (Ref. 15) for

a penetrable surface. Correlations of y with x, and y, are
consistent with these values.

For the impenetrable surface, our result of y=0. 51
0.04 in two dimensions is consistent with a value of

q=0.5, obtained previously from transfer-matrix, con-6

forrnal in variance theory, and one-variable exact
enumeration work on the square lattice. The value of y
(Fig. 2) is consistent with the result 9~3 given by Guim and
Burkhardt. The estimate of 2.05+0.01 for the ratio

y, /x, agrees with Ishinabe's result for the square-lattice
bond problem and the estimate 1.80+0.02 agrees with

the estimate of Hammersley et al. for the site data. ' In
three dimensions, y=0. 54+0.07 for the simple cubic lat-
tice is in accord with Monte Carlo results of y=0.59
(Ref. 8} and our estimate of 1.46+0.01 for y, /x, agrees
with 1.45 from Monte Carlo work (Ref. 11) and the esti-
mate 1.50 by considering the zeros of the partition func-
tion.

For the penetrable surface, our estimate of
y=0.28+0.05 in two dimensions is not consistent with
Ishinabe's result (y=0.5), but is in accord with the scal-
ing prediction (y=0.25). Our value y=0.40+0.01 for
the simple cubic is consistent with the scaling prediction
((p=0.41), but does not agree with Ishinabe's result
(/=0. 6).

For the simple cubic lattice, most of the approximants
are either poorly conditioned or give good estimates for
(x„y, ); however, because the argument under the
square-root sign in (3.4) is negative, it is difficult to calcu-
late all critical parameters.

Partial-differential approxirnants are useful in repre-
senting critical properties such as the critical line in a
plane and the linear correlation of y and y near the spe-
cial point. However, since an approximant depends on
both the degree and form of the defining polynomials,
convergence such as that obtained in a one-variable
analysis is not easy to detect and accurate estimates are
diScult.

C. One-variable analysis for penetrable surface

The problem of estimating y may be reduced to a one-
variable analysis if y and the ratio y, /x, are known with
sufFicient accuracy, by differentiating the scaling function
(3.1) with respect to y and setting the ratio y/x to its
value at the critical point. ' The resulting function has a
power-law dependence on x, —x which may be analyzed
using standard one-variable analysis techniques:

C,

1.9

df (x,y)
By y/x =y /x

-(x, —x) 'r++'Z(0) . (3.7)

1.8

1.7

16-

1.5.

Jl 0
g %

W

1.4

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 3. The exponent y is plotted as a function of y, for (a)

square-lattice {bond) impenetrable surface and {b) triangular lat-

tice (bond) penetrable surface.

In the present case, y, /x, is belived to be 1 for the pe-
netrable surface problem' and, consequently, y has its
bulk value, which is known to a high accuracy. We have
applied a number of standard one-variable analysis tech-
niques' to the resulting series to this case. The results
are summarized in columns (a) to (d) of Table II. (We
have included results for a number of lattices where the
series are too short to allow a reasonable test of the PDA
method or the PDA approximants are too scattered to
give meaningful estimates. The data for these lattices are
given in Ref. 4, Tables 7 and 8. In the case of the irnpe-
netrable surface, the ratio y, /x, is not known with
sufficient accuracy to give us any confidence in this
method. )

The results for y in columns (a) to (d) of Table II show
reasonable consistency amongst themselves for a given
lattice dimensionality but are too high to be consistent
with the predictions y(D =2)=0.25 and q&(D =3)
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TABLE II. The estimates of y for the body-centered-cubic (bcc), face-centered-cubic (fcc), simple cubic (sc), diamond (Di), triangu-

lar {T),and square (SQ) lattices from the one-variable analysis of the series f'(x) described in Sec. III B by the method of (a) Neville

tables, (b) d log Pade approximants, (c) biased d log Pade approximants, (d) Baker-Hunter conAuent singularity analysis. Estimates of y
obtained by applying the Baker-Hunter method to the modified seires {x, x—)rf'{x) are reported in column {e).

Method
Lattice

bcc

fcc

sc

SQ

0.420 +0.020

0.430 +0.008

0 413
+0.030
—0.015

0.3062+0.0035

0.307 +0.004

0.450+0.01

(a) Bond

0.463+0.005

0.444+0.003

0.317+0.001

0.3262+0.003

0 450
+Oep 10
—0.020

0.450+0.020

p 440
+0e020
—0.030

Q 32Q
+Oe002
—0.003

0.319+0.001

+0.030
—0.050

0.480+0.060

0
+Oo050
—0.080
+0.002
—0.003
+Oo008
—0.009

p 380
+Oo030
—0.040

0386+' '
—0.014
+0.080
—0.060

p 270
+Oo003
—0.002

0.290+0.010

Di

sc
SQ

0.473 +0.015

0.470 +0.020
0.356 +0.005

0.530+0.010

0.530+0.010
0.370+0.010

(b) Site

0 50p
+Oe030
—0.010

0.480+0.020
0.375+0.010

0.510+0.060

0.500+0.080
0.263+0.013

0.4
+0.020
—0.054

0.400+0.050
0.270+0.040

f (x)=(x x)r a„r(x,3)
By

7

y /x =1
(3.8)

which is expected to have the form

f'(x)-(x, x)~+8(x), — (3.9)

where 8(x) is a (background) term which is not singular
at x =x, . Estimates of y obtained by a Baker-Hunter

=Oo408+0.002, which result from the scaling relation
q=1 —v.

The only exception to this is the analysis of the
square-lattice site series by the Baker-Hunter method, '

which is consistent with the predicted value of y=1 —v.
Inspection of the approximants to the Baker-Hunter aux-
iliary function for the square-lattice site series showed
that a second pole on the real positive axis was also
resolved. This indicates that a confluent singularity is
present and the position of this secondary pole provides
an estimate of the exponent of this confluence. ' ' By
plotting the position of the secondary pole against the po-
sition of the primary pole for the approxirnants con-
sidered and using the expected value of the leading ex-
ponent y+q= », we estimate that the confluence has an

exponent approximately equal to y. The existence of a
confluence with exponent y is not surprising and will, in
fact, always occur if the crossover function
Z(by /(bx )~) contains a multiplicative factor or additive
term that is analytic in y.

To test the assumption that it is the influence of this
confluence that results in the discrepancy with the ex-
pected value of q, we have formed the series

analysis of this series are shown in column (e) of Table II.
For both the two- and three-dimensional cases the results
are in reasonably good agreement with the predicted
value. That the central estimates in two dimensions are
still a little high is perhaps not surprising since the singu-
larity of the series analyzed in this case is somewhat
weak. The weak nature of the singularity also leads to
difficulty in analyzing the modified series by other
methods. For example, if the Neville table method is
used to analyze the square and simple cubic lattice series,
the columns of the table do not converge (for the number
of terms presently available). This may be attributed to a
singularity at x = —x, which, now, is stronger than the
singularity at x =x, . Applying a Euler transform, which
moves the singularity on the negative axis to a position
further from the origin, results in reasonably converged
Neville tables with results consistent with those given in
column (e) of Table II.

IV. SUMMARY AND CONCLUSION

In this paper our aim has been to analyze existing
series' and new series (Tables III—VIII) to estimate the
crossover exponent g for a self-avoiding walk interacting
with a penetrable and an impenetrable surface. We have
used the method of partial-differential approximants to
analyze the two-variable surface series. For the impe-
netrable problem, we estimate that y=0. 51+0.04 (D=2)
and can=0. 54+0.07 (D=3), in agreement with other anal-
yses. For the penetrable problem, unlike the analysis of
Ishinabe, our results [g=0.28+0.05 (D=2) and
y=0.40+0.01] are consistent with the scaling prediction.
For the penetrable surface in two dimensions, a one-
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TABLE III. Values of a„(bond) on the square lattice for a penetrable surface.

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

2
6

18
46

122
330
882

2 342
6 246

16 602
44 154

117 154
311 222
825 078

2 189434
5 800 702

15 380494
40 728 794

107 924 642
285 677 910
756 622 494

2
4

12
36

104
272
768

2 068
5 656

15 168
41 200

110304
297 376
794 848

2 134 516
5 695 960

15 252 188
40 648 592

108 614 812
289 162 460
771 398 732

2

12
40

116
328
932

2 648
7 316

20 336
55 824

153 744
418 792

1 144 504
3 102 688
8 432 552

22 773 776
61 637 628

165 981 712
447 773 612

2
4

12

128
364

1 088
3 100
8 880

24 904
70 288

195072
554076

1 498 712
4 144040

11 348 320
31 172 224
84 969 980

232 200 056

2
4

12
48

140
404

1 228
3 596

10 304
29 736
84 368

239 372
671 140

1 885 316
5 241 608

14 600 576
40 330468

111598 544

2
4

12
52

152
444

1 384
4 096

11 920
34636

100160
285 636
814488

2 299 768
6 492 300

18 172 296
50 897 812

10 12

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

2
4

12
56

164
484

1 548
4 640

13 624
40 192

117092
338 484
971 000

2778 152
7 883 704

22 337 896

2

4
12
60

176
524

1 720
5 216

15 464
46 208

136 152
396 620

1 150476
3 313656
9 501 848

2
4

12
64

188
564

1 900
5 824

17 424
52 756

157 044
461 736

1 350 772
3 927 176

2
4

12
68

200
604

2 088
6464

19 504
59 832

179 912
533 560

1 575 292

2
4

12
72

212
644

2 284
7 136

21 704
67 452

204 812
612 500

2
4

12
76

224
684

2 488
7 840

24 024
75 632

231 824

2
4

12
80

236
724

2 700
8 576

23 664
84 388

13 14 15 16 17 18 19 20 21

13
14
15
16
17
18
19
20
21

2
4

12
84

248
764

2 920
9 344

29 024

2
4

12
88

260
804

3 148
10 144

2
4

12
92

272
844

3 384

2
4

12
96

284
884

2
4

12
100
296

2
4

12
104

2
4

12
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TABLE IV. Values of a„(bond) on the simple cubic lattice for a penetrable surface.

1

2
3
4
5

6
7
8

9
10
11
12
13
14

2
10
50

218
962

4 370
19 858
90 968

414 394
1 900 130
8 716 706

40085 154
184 421 418
849 948 160

4
8

40
216

1 008
4464

20 736
95 288

441 888
2 034 848
9 430480

43 542 544
201 863 216
933 698 304

12
24

120
720

3 432
15 776
74424

351 088
1 647 016
7 719520

36 113618
168 975 024
789 458 080

36
72

360
2 312

11 408
53 032

257 584
1 233 832
5 904 128

27 976 960
132 908 352
627 622 944

10

100
200

1 000
7 040

35 176
167 272
827 208

4065 336
19 696 800
95 069 344

456 502 592

12 13

284
568

2 840
21 288

108 672
520 168

2 636 048
3 146 528

64 839 408
316327 064

14 15

780
1 560
7 800

63 168
325 000

1 578 216
8 127 992

41 409 568
206 471 376

16

7
8

9
10
11
12
13
14

2 172
4 344

21 720
185 880
971 248

4736 888
24 914240

128 616 528

5 916
11 832
59 160

541 296
2 844 936

14018008
74 856 984

16268
32 536

162 680
1 565 256
8 323 024

41 141 464

44 100
88 200

441 000
4498 624

24 030 840

120 292
240 584

1 202 920
12 850 632

324 932
649 864

3 249 320
881 500

1 763 000 237 444

TABLE V. Values of a„(bond) on the triangular lattice for penetrable surface.

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15

4
20
88

376
1 616
6 896

29 264
123 884
523 116

2 204 724
9 278 108

38 995 816
163 726 848
686 803 808

2 878 788 104

2
8

40
188
840

3 724
16 356
71 184

308 108
1 327 200
5 694 880

24 358 312
103 909 128
442 262 148

1 878 736624

2
8

44
216

1 020
4736

21 624
97 428

434 816
1 925 424
8 471 768

37 075 332
161 518 020
700 915 740

10

2
8

48
244

1 188
5 700

26 784
123 964
567 128

2 568 944
11 543 752
51 521 408

228 612 464

2

8

52
272

1 368
6 740

32 408
153 232
715 296

3 301 632
15 099 600
68 516 376

13

2
8

56
300

1 556
7 868

36 668
186484
886 276

4 159 572
19 322 788

6
7
8

9
10
11
12
13
14
15

2
8

60
328

1 752
9 076

45 556
223 992

1 083 224
5 165 288

2
8

64
356

1 956
10 364
53 076

265 868
1 307 664

2
8

68
384

2 168
11 732
61 244

312 304

2
8

72
412

2 388
13 180
70076

2
8

76
440

2 616
14 708

2
8

80
468

2 852

2
8

84
496

2
8

88
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TABLE VI. Values of a„(bond) on the triangular lattice for an impenetrable surface.

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16

2
10

158
642

2 642
10750
44 184

181 SS4
749 612

3 092 220
12 764 548
52 721 134

217 853 078
900 553 022

3 723 882 338

2

20
86

350
1 442
5 942

24 442
100 730
415 442

1 714 674
7 081 192

29 257 292
120 929 818
500 009 024

2 067 981 806

2
4

22
96

406
1 722
7 250

30 298
126 294
525 436

2 183 698
9 069 060

37 646 550
156 221 490
648 115682

2
4

24
106
454

1 970
8 456

36000
152 516
643 106

2 702 964
11 333 082
47 430 536

19S220 204

2
4

26
116
506

2 228
9 682

41 732
179090
764 398

3 248 786
13 758 970
58 102 162

2
4

28
126
560

2 506
11016
47 966

207 784
895 036

3 838 360
16396 674

2
4

30
136
616

2 800
12 456
54 816

239 638
1 040 542
4495 834

10 12 13 14 15 16

7
8
9

10
11
12
13
14
15
16

2
4

32
146
674

3 110
13 998
62 268

274 798
1 203 070

2
4

34
156
734

3 436
15 644
70 336

313338

2
4

36
166
796

3 778
17 396
79 042

2
4

38
176
860

4 136
19256

2

4
40

186
926

4 510

2

42
196
994

2
4

44
206

2
4

46

TABLE VII. Values of a„(bond) on the face-centered-cubic lattice for a penetrable surface.

1

2
3
4
5
6
7
8
9

10

6
66

642
6 210

60 630
594 258

5 837 394
57 445 806

566 192 622
5 587 703 910

6
36

T T T

4 596
46440

469 356
4 729 716

47 544072
477 174 AAA

4 783 889 904

30
180

2 448
26 628

280 944
2 945 208

30 589 860
315 528 384

3 238 548 864

138
828

12 396
140 160

1 538472
16703 880

178 742 100
1 892 410260

618
3 708

60 672
707 028

8035 164
90033 648

990 158 280

10

5
6
7
8

9
10

'Reference 18.

273'
16 380

290 772
3 471 408

40 701 408
469 131072

11 946
71 676

1 371 432
16 704 696

201 576 984

51 882
311292

6 387 708
79 134 888

224 130
1 344 780

29457 432
964 134

5 784 804 4 133 166
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TABLE VIII. Values of a„(bond) on the body-centered-cubic lattice for a penetrable surface.

1

2
3

5

6
7
8

9
10
11
12

4
28

180
1 116
7 140

45 364
290 172

1 855 044
11 900 692
76 335 892

490 799 116
3 155 724092

4
16

128
864

5 640
37 128

344 192
1 592 232

10421 256
67 858 016

442 855 432
2 881 375 568

12
48

424
3 104

20 888
144 688
976 144

6 582 984
43 958 216

293 498 688
1 946491 368

36
144

1 392
10 536
73 920

528 152
3 686 856

25 413 144
174 319416

1 184629 312

100
400

4 224
33 600

241 896
1 802 528

12 881 664
91 500 784

640 267 888

10

5

6
7
8

9
10
11
12

284
1 136

12 960
105 344
782 584

5 987 728
44009 232

318 821 400

780
3 120

38 304
321 928

2 444 528
19 336040

144 943 376

2 172
8 688

113920
971 952

7 579 040
61 322 120

5 916
23 664

330 784
2 890 992

23 000 128

16 268
65 072

964 128
8 523 504

44 100
176400

2 765 136

12

11
12

120 292
481 168 324 932

variable analysis that takes into account confluent terms
also gives consistent results. The presence of these
confluent terms may be the source of the discrepancy in
the results of Ishinabe.
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