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A reaction of the form A, + A,'+fiQ~ Af + Af has been referred to as light-induced collisional

energy transfer (LICET). In such a reaction, atoms A and A' collide in the presence of a radiation
field and absorb a photon during the collision, taking them from initial states (A„A ) to diferent
final states (Af, Af ). We calculate the final-state magnetic polarization produced in LICET for de-

tunings b =[(Ef+Ef.) (E; +E—, +A'0)]/A in the quasistatic wing: that is, for
~
tsar, && 1, where r„

is the collision duration. Our results are compared with analogous depolarization rates for so-called
"optical" collisions (reactions of the form A, + A +AQ~ A;+ Af ). Similarities and differences

between the LICET and "optical" collision theories are noted. Final-state LICET magnetic-state
polarization is evaluated for a number of different A-A level schemes, assuming a dipole-dipole col-
lisional interaction. Our results are shown to be in good agreement with experiment [A. Debarre, J.
Phys. B 15, 1693 (1982)].

I. INTRODUCTION radiatively aided inelastic collisions (RAIC)] involving
reactions of the form

A laser-assisted collision is one involving a combined
collisional-radiative interaction. A typical laser-assisted
collision can be written as a reaction of the form

where ~I) and )F) are composite initial and final states,
respectively, of atoms A and A

' which are undergoing
the collision, and 0 is the frequency of the laser field that
produces the transition from initial to final state. The
eigenkets ~I ) and ~F) may be expressed in terms of the
individual atomic-state eigenkets as ~I ) =

~i ) ~i ),
~F) =~f )~f'), where unprimed states refer to atom A

and primed states refer to atom A'. Laser-assisted col-
lisions have been classified into two broad categories.
First, there are the so-called "optical" collisions' [or col-
lisionally assisted radiative excitation (CARE)] involving
reactions of the form

A,-+A +RA~A;+ Af

in which the state of atom A is unchanged. The transi-
tion from state i ' to f ' in atom A

' is accompanied by the
absorption of a photon of frequency 0, which is assumed
to be nonresonant with the i'-f' transition frequency.
Consequently, the role of the collision is to provide or ex-
tract translational energy to compensate for the energy
defect between the photon and transition frequencies.
Second, there are the so-called "radiative" collisions [or
laser-induced collisional excitation transfer (LICET) or

A;+ A +fiQ~ Af+ Af. (1.3)

in which both atoms change their internal state. Any
difference between the photon and (composite) initial to
final state transition frequency can again be compensated
by a corresponding change in the translational energy of
the colliding atoms. Reviews of both CARE and LICET
can be found in the literature.

The initial thrust of experiment and theory involved a
determination of the initial to final state cross sections.
It soon became appreciated, however, that additional in-
formation concerning the collisional interaction could be
obtained by studying the final-state magnetic polarization
produced in the reactions. The origin of the final-state
polarization can be traced to the fact that excitation is
produced by a laser field having a well-defined direction
of incidence (and, often, a well-defined polarization). The
laser field excitation leads to a polarized distribution of
final-state Zeeman sublevels which is not totally des-
troyed during the collision. Such polarization effects
have been studied extensively both theoretically and ex-
perimentally for CARE. On the other hand, polariza-
tion effects for LICET reactions have received limited at-
tention. A theory of polarization effects was given for the
impact core of the LICET profile and a model (molecu-
lar) potential calculation of polarization effects for the en-
tire line profile was presented by Julienne. ' To our
knowledge, there has been only one experiment in which
the final state LICET polarization was measured. "
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It is the purpose of this paper to develop further the
theory of polarization effects in LICET. The general for-
malism that was presented in an earlier work and ap-
plied to the impact line core is now applied to the so-
called quasistatic wing of the LICET profile. The final-

state LICET polarization that we obtain differs from that
observed in CARE and can also differ from LICET polar-
ization obtained by Julienne. ' The reasons for these
differences are discussed in terms of a simple physical pic-
ture describing the LICET process. Dramatic differences
in final state polarizations are predicted for different
LICET excitation schemes, which, at first glance, may
seem quite similar. It is hoped that the predictions will

serve as a stimulus for further experiments in this area.
In Sec. II, CARE and LICET are compared, neglecting

effects of magnetic-state degeneracy. In this section, the
notation is established and differences between CARE
and LICET are discussed. In Sec. III, the results are gen-
eralized to include effects of magnetic-state degeneracy.
Detailed calculations for depolarization in the quasistatic
wing of the LICET profile are presented in Secs. IV and
V, assuming a dipole-dipole collisional interaction. A
"half-collision" picture of the excitation process ' is used
in Secs. III—V.

II. CARE AND LICET—NEGLECT
OF MAGNETIC STATE DEGENERACY

6—0 coFy (2.1)

is larger than the Doppler width and any decay rate asso-
ciated with the transitions, and that the applied field arn-

plitude does not vary significantly in a time of order
(v) the A - A 'internuclear separation R is calculat-

ed along a classical trajectory and can be considered as an
explicit function of time. (vi) There is no collisional ener-

gy transfer in the absence of the applied radiation field.
Both CARE and LICET can be treated by a similar

formalism. The Hamiltonian for the A-A' system in-

Both the CARE and LICET reactions are represented
schematically by Eq. (1.1), in which a single photon of
frequency 0 from a field having amplitude 6 is absorbed
during a collision, taking the A and A' atoms from some
initial composite state lI) = lii') to a final composite
state lF) = ff'). To simplify the discussion somewhat,
the following assumptions or approximations wi11 be
made throughout this paper. (i) LICET and CARE cross
sections will be calculated to lowest non vanishing
order ( 8 ) of the applied radiation field. (ii) The field fre-

quency is nearly equal to the composite frequency coF~ as-

sociated with the I~F transition, such that
l(n ~Ft)/(n+~„)l ((1 (resonance or rotating-wave
approximation}. (iii) Any Doppler dephasing or atomic
decay can be neglected on the time scale of the duration
of a collision r, . (iv) To insure that we are dealing with a
collisionally assisted process (negligible transition ampli-
tude in the absence of a collision), it is assumed that the
laser field is turned on and off in a time that is long com-
pared with the collision duration ~, . Moreover, for
CARE, it is further assumed that the magnitude of the
atom-field detuning 6 defined by

teracting with a radiation field is

H =Ho(r)+H, (r, R(t)} p—zC.(t), (2.2)

where Ho is the sum of atomic Hamiltonians for atoms A

and A ', (r represents the electronic coordinates of either
atom A or A'), H, (r, R(t)) is the A-A' collisional Ham-
iltonian, pz=p+p' is the sum of dipole operators for
atoms A and A', and C(t) is the applied field, assumed to
be of the form

g(t) I
( g e

—In[ +gke lnt) (2.3)

lq(t)) = ga„(t)lE(R)), (2.4)

where lE(R)):—lE(R(t))) is an instantaneous eigenket
of [Ho+H, (R )]; that is,

[Ho+H, (R )]lE(R })=E(R )lE(R ) ) . (2.5)

(The dependence of H, on the direction of R is

suppressed in this section. ) When Eq. (2.4) is substituted
into the Schrodinger equation and Eq. (2.5) is used, one
finds that the aF (t) satisfy

ilia@(t)=E(R )aF(t) g(E(—R )lprlE'(R )) C(t)aF (t)
E'

iR g (—E(R)l as.(t) .
E'~E dt

(2.6)

It is to be noted that H, (R )-0 as R —oo; consequently,
the eigenkets lE(R)) reduce to the composite state
eigenkets lE ) = ee') of Ho as R approaches infinity.

By assumption, collisions do not produce any transi-
tions in the composite A - A

' system in the absence of any
radiation. Consequently, the last term in Eq. (2.6) can be
dropped since it corresponds precisely to transitions of
this nature. The resulting equation for az(t),

ilia~(t) =E (R)a~(t)
—y (E(R)lp, lE'(R)) @(t)a (t), (2.7)

can be given a simple interpretation in terms of a quasi-
rnolecular picture of the reaction. The A-A' system can
be viewed as a quasimolecule with energy eigenvalues
E(R) and corresponding eigenkets lE(R)). The field in-
duces transitions between these quasimolecular states at a
rate which depends on the dipole matrix element
&E(R }lp,lE (R)&.

%'ithin the context of the model, it is appropriate to
approximate E(R} and lE(R)) using time-independent
perturbation theory on the Hamiltonian [Ho+H, (R )].
Labeling the eigenkets and eigenenergies of Ho by lE )
and E, respectively, it is an easy matter to show that

«'IH, (R ) IE &

lE(R)) =lE)+ g ', lE') (2.8a)
pt~g E E

and

where the field amplitude Co is taken to be constant dur-

ing a collision.
It is sometimes convenient to expand the wave function

as
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E(R)=K+AU~(R),

with

i & Z[H, (R ) [Z'& ['
Us(R }=—

(2.8b)

(2.9)

~oF( oo }~
= J yr(R(t})exp —J h(R (r'))dt' dt

00 o

The quantity Uz(R) is the collisional frequency shift as-

sociated with level E. It is assumed implicitly that
&Z~H, (R)IZ & =0.

We are interested in the solution of Eq. (2.7) to lowest
order in Bo. If the atoms are in the state ~I &

= ~ii'& at
t = —~, then, in the resonance approximation and to
lowest order in ho, the probability amplitude for the
atoms to be in the state ~F &

=
~ ff '& at t = ~ is

consequence of this asymmetry, the RAIC and LICET
cross sections possess a marked asymmetry for detunings
~A~r, &&1. For the illustrative example given above, the
quasistatic wing falls off as an inverse power of 6 for
6)0, while the antistatic ming falls o6'much more rapid-
ly, exponentially with b, ~r, . [If UF~(R) decreases mono-
tonically with decreasing 8, the quasistatic wing occurs
for b (0 and the antistatic wing for b, &0. ] Experimen-
tal CARE and LICET profiles exhibit this asymmetric be-
havior.

Although the molecular picture of excitation in the line
wings is qualitatively similar for both CARE and LICET,
there are some intrinsic differences between CARE and
LICET that are particularly relevant to the present dis-
cussion. Consequently, it is helpful to examine the exci-
tation mechanism a little more closely.

A. CARE

where

(2.10) A typical level scheme for the CARE reaction

3, + A,'+RA~A, + Af'. ,

and

&+(R )IpTII(R) &

yr(R }=
2' g

A(R)=Q —coF~(R),

(2.1 1)

(2.12)

in which ~I&=~ii'&, ~F&=~if'&, is shown in Fig. 1. The
corresponding quasimolecular energy level diagram is
given in Fig. 2, assuming UFr(R) &0. We consider only
the situation in which levels i ' and f' have opposite pari-
ty, from which it follows from (2.8a) and (2.11) that the
Rabi frequency

with

a)q, (R)=F(R) I(R) . —

Note that one may also write

corq(R ) =coF~+ UFr(R ),
and

b, (R ) =5—UF~(R ),

(2.13a)

(2.13b)

(2.14)

X,(R ) =&FlpTII & @,I2e

= &f'Ip'li''& g,nr =y' (2.16)

is independent of R to lowest order in the collisional in-
teraction. The corresponding CARE profile, calculated
from Eq. (2.10), exhibits a b, dependence for ~b, ~r, ((1
and a quasistatic-wing falloff that would vary as

"' for a collisional shift operator of the form

UFi (R ) = C/R ".
where UFr(R) is the radiative collisional frequency shift
defined by B. LICET

UFr(R) = UF(R) —Ur(R) . (2.15) A level scheme for the LICET reaction

Equations (2.10)—(2.15) represent a formal solution to
the CARE and LICET problems, neglecting effects of
magnetic-state degeneracy. The LICET or CARE cross
sections are defined as the value of ~aF(~)~ averaged
over the distribution of co11ision impact parameters and

relative speeds. The detailed structure of the
profiles depends on the form of y(R ) and UFJ(R). How-
ever, in the line wings ( ~b, ~r, &&1), the qualitative depen-
dence of both the LICET and CARE cross sections on 6
is similar. For ( ~

5
~ r, && 1), the magnitude of the CARE

or LICET cross section depends critica11y on whether or
not there are internuclear separations R for which b, (R),
as defined by Eq. (2.14), is equal to zero. Suppose for ex-
ample, that the relative collisional shift UF~(R) increases
monotonically with decreasing R. Then, there are inter-
nuclear separations R for which b,(R)=0 if b, &0, but
none if 5 &0. Another way of stating this result is that
the applied field can be resonant with the 3-A' quasi-
molecule for 6)0, but not for 6&0 if U~~(R))0. As a

& II~, IF &
=

& ii'I y, +p, 'Iff' & =0 . (2.17)

Thus, in contrast to CARE, the Rabi frequency yz. (R )

A

FIG. l. Energy-level diagram for the CARE (collisionally
aided radiative excitation) reaction A, + A,'+AQ~ A, + Af'.

3;+A +AQ~ Af+ Af'

is shown in Fig. 3. Since both atoms change their internal
states, it follows immediately that
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F(R)
f „)
d

a'

(a)
A A

FIG. 2. Excitation scheme for the CARE reaction of Fig. l
in the molecular-state picture. In the quasistatic wing, excita-
tion occurs at an internuclear separation R =R, for which
Q=mFI(R, ).

given by Eqs. (2.11) and (2.8a) vanishes asymptotically as
R —~. The combined radiative-collisional coupling
gT(R ), obtained from Eqs. (2.11) and (2.8a) is

&FlplE&&EIH, (R)li& C,
yT(R ) =

2R z N)E

&FIp, 'IE)&EIH, (R)II& 4,+
%IN iE

&FIH, (R)IE&&EII Ii& c,+ i' FE

&FIH, (R) E) &El@'ll & @0+
ANFE

. (2.18)

As has been discussed elsewhere, the four terms ap-
pearing in Eq. (2.18), can be given a simple physical inter-
pretation in the composite atomic basis according to the
diagrams of Figs. 4(a)—4(d). In Fig. 4(a), the collision acts
to produce a virtual intermediate state IE) =Ief') and
the field acts in atom 3 to complete the LICET transi-
tion to state IF) =

I
ff'). In Fig. 4(b), the collision pro-

duces the virtual intermediate state IE) =
I
fe') and the

field acts on atom A' to complete the reaction. In Fig.
4(c), the field acts on atom A to produce virtual state
IE) =Iei') and the collision completes the reaction to
final state IF) = Iff'). In Fig. 4(d), the field acts on
atom 2 ' to produce virtual state IE ) = Iie'), and the col-
lision completes the interaction.

The transition matrix element gT(R ) contains a sum

A' A

(c ) ( d)
FIG. 4. Various LICET excitation schemes for the reaction

A, + A,'+AO ~ Af + Af . The curved arrows represent the col-
lisional coupling and the straight arrows the radiative coupling.
The reactions proceed via an intermediate state which is nearly
resonant with either the initial or Anal state. For (a), the inter-
mediate state is ID ) = Idf'); for (b), it is ID) =

I
fd'); for (c), it

is ID ) =
Idi '); and for (d) it is ID ) = Iid').

over all intermediate states e and e' which enter the prob-
lem as virtual levels. However, as is often the case exper-
imentally, there may be a "real" atomic level whose ener-
gy is nearly equal to that of the virtual state in atom A or
A '. If one such level exists, its contribution to the sum in
Eq. (2.18) is dominant, and the entire summation reduces
to a single term. Nearly resonant intermediate levels are
indicated by the solid lines labeled d or d in Fig. 4. In
our discussion of LICET, we always assume the existence
of a nearly resonant intermediate state. Consequently,
the summation in Eq. (2.18) reduces to a single term with
intermediate state IE ) = ID, ) = Idf ') [Fig. 4(a)],
E&=ID, &=lfd') [Fig. 4(b)], IE)=ID, )=Idt'& [Fig.

4(c)], or IE ) = IDd ) = Iid') [Fig. 4(d)]. Although the in-
termediate states are nearly-resonant and dominate the
sumination in (2.18), they still differ in energy sufficiently
from the virtual energy levels [represented by the dashed
lines in Fig. 4], to justify their virtual-state status. The
population of state ID ) is negligibly small during and fol-
lowing the collision. '

In a quasirnolecular picture, the existence of nearly res-
onant intermediate states affects the molecular energy
levels as well as the transition rates For Figs. . 4(a) and
4(b), it is the initial-state energy I(R) which is seriously
perturbed, whereas the final-state energy has no nearly
resonant contributions. Explicitly, from (2.8), one finds

A'

FIG. 3. Energy-level diagram for the LICET (light-induced
collisional excitation transfer) reaction A, + A +AO
~Af+ Af.

I(R)=I + F(R)=F;
Nra

(2.19a)

(2.19b)

On the other hand, for Figs. 4(c) and 4(d), it is the final-
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state energy F(R ) which is strongly perturbed. One finds

F(R)=F+ I(R)=I;
'Rco FD

(2.19c)

(2.19d)

The molecular state diagrams corresponding to Figs. 4(a)
and 4(b), and to 4(c) and 4(d) are drawn in Figs. 5(a) and
5(b), respectively. For the range of internuclear separa-
tions shown, it is assumed that variations in the energy of
the weakly perturbed level are negligible.

In contrast to CARE, the LICET cross section varies
as I(. ,

—K2b, for lb, lr, «1, where E( and E2 are con-
stants. For a transition matrix element yT(R ) which
varies as R and a collisional shift that varies as
R "(m, n ) 3) the quasistatic wing falls off as

[i+(3/n) —(2mln)]

The qualitative nature of the total LICET cross section
does not depend on the details of the excitation path.
That is, independent of whether excitation is achieved via
the nearly resonant level schemes of Figs. 4(a), 4(b), 4(c),
or 4(d), the LICET profile is the same. When effects of
magnetic-state degeneracy are taken into account, how-
ever, we will see that final-state magnetic coherence de-
pends critically on the excitation path, yielding dramati-
cally different results for Figs. 4(a)-4(d) (composite atom-
ic basis) and for Figs. 5(a) and 5(b) (quasimolecular basis).

III. CARE AND LICET CROSS SECTIONS,
INCLUDING EFFECTS OF MAGNETIC DEGENERACY

and is incident in the y direction. This field can give rise
to a final-state magnetic polarization which is only par-
tially destroyed in the collisional-radiative excitation pro-
cess. As such, the final-state polarization, monitored
through the ratio P, serves as a measure of the collisional
interaction, providing significantly more information
than total cross section data alone.

The ratio P can be related directly to final-state re-
duced density matrix elements for atom A'. In other
words, one must calculate the final state distribution of
magnetic sublevel population and coherence in atom A'
to determine the polarization ratio P. To achieve this
goal, the calculation of Sec. II must be modified to in-
clude effects arising from magnetic state degeneracy.
Each state of the composite atomic basis is now labeled
lEmm') = lem ) le'm'). For a given total angular mo-
menta j, and j, of levels e and e', respectively, the state
lE) is (2j, +1)(2j, +1)-fold degenerate. Collisions can
mix these degenerate sublevels even in the absence of any
applied fields. It turns out to be convenient to use a cou-
pled basis in the composite atomic basis defined by

l EJFM ~
= g C (j„j,,Jz, m, m ', M ) l ej, m il e 'j, m

' ),
mm'

(3.2)

where C(j, ,j~,j 3; m, , m2, m 3 ) is a Clebsch-Gordan
coefficient and Je varies from l j,—j, l

to (j,+j, ).
It is sometimes convenient to use a molecular basis

rather than the composite atomic basis. As in Sec. II,
molecular state eigenkets are defined as eigenkets of
Ho+H, (R(t) },i.e.,

F{R}

O{R}

I{R}
R~

F {R)
)

0(R}

4l I (R}

Re
(b)

FIG. 5. Quasimolecular energy levels as a function of /t-A'
internuclear separation R. The asymptotic values I and F are
the energies of the composite atomic states. (a) corresponds to
the LICET excitation schemes of Figs. 4(a) and 4(b) while (b)
corresponds to that of Figs. 4{c) and 4(d). For the frequency
shown, the I(R)~F(R) transition is resonant at 8 =8,.

The discussion of Sec. II is now extended to include
effects related to the magnetic degeneracy of the atomic
levels. In particular, we wish to calculate a quantity P
defined by

S, —S„
S, +S„

where S, (a=x,z} is the intensity of fluorescence polar-
ized in the a direction emitted from final state f' of atom
A' following CARE or LICET excitation. It is assumed
that the incident field participating in the CARE or
LICET reaction is linearly polarized in the z direction

[Ho+H, (R(t))]lE;AF,MA;t }=AF(t)lE;AF, M„;t ) .

(3.3)

The eigenkets are labeled as follows: E refers to the
(2j, +1)(2j, +1) manifold of levels, Az is the energy of
the state, M~ distinguishes among degenerate states

E

having the same Az, and t is a reminder that these eigen-
kets are a function of the interatomic separation R(t). As
R —ec, the eigenket lE;Az, MA;+ac } goes over into a

E

linear superposition of eigenkets lEJFMF }. We will em-

ploy a shorthand notation in which a label E stands for
(E;AF,M„) and a label E' for (E;Az, M, ) (E and E'

F. E

are in the same manifold). In this notation, a sum over E
represents a sum over Az and M~ within the E manifold

of levels.
The generalization of the calculation of Sec. II to in-

clude effects of magnetic degeneracy is straightforward.
The resulting equations must be solved numerically in the
most general case. In the quasistatic wing of the profile,
however, it has been shown that there is some
justification for using a "half-collision" picture of the ex-
citation process, for which analytical results can be ob-
tained. ' The basic ingredients of such a theory which
are relevant to the present discussion are outlined below.
Details of the calculations may be found in Refs. 7, 9, and
13.
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The collision is basically broken down into two spatial
regions. A decoupling radius R ~ =R (+t& ) is introduced

(R~ is approximately equal to the so-called Weisskopf
radius of pressure broadening theory and is of order 0.5
nm) such that, for A - A

' internuclear separations
R (R~, the molecular states form a "good" adiabatic
basis. On the other hand, for R )R ~, the collisional in-

teraction is assumed to be suSciently weak to allow one
to neglect all effects of depolarization in this region. ' '
For a given detuning in the quasistatic wing, CARE or
LICET excitation occurs for internuclear separations
R, =R (t, ) such that

A=a)t;t(R, ) =A~(t, ) At(t, )—, (3.4)

that is, for molecular transition frequencies equal to the
incident laser frequency.

A "half-collision" picture emerges in which excitation
occurs at one or more internuclear separations for a given
frequency. Following excitation, the rotation of the
molecular axis during the collision produces phase
changes in each of the molecular states. The phase
changes in the molecular basis correspond to depolariza-
tion in the composite atomic basis. The depolarization
continues until an internuclear separation R =R~ is

reached, after which no further depolarization occurs.
This picture has been very useful in explaining CARE
depolarization in the quasistatic wing. ' '

Assuming that atoms A and A
' enter the collision in

an initially unpolarized state, one finds that the cross sec-
tions for CARE or LICET excitation in the quasistatic
wing, suitably averaged for all collision orientations and
impact parameters is given by

R, M M

Q, Q', F, F', I

JF —M

S~ ~ (R, )(2E+1) 'Gxg( —1)g( —1) B(A~,M~, J~)B(A~,M', ,J~)*

XC(1,1,K;M, M', —Q)C(Jp, Jp, K;M~, —M'„, , Q')

x(dgxg, (q —8))(F;t, l( 1)~(p—, ) Mlr;t, )(1;t,l(
—1) (pT) M, lF';t, )5„„,.

F F
(3.5)

x ldcg)q ~ IdR„„(t,)l (3.6)

where v„ is the 3-3' relative speed. The factor GzQ is

defined as

Gxg= g (
—1)gC(1, 1,K;M, M', —Q)6'o (60)~, (3.7)

MM'

where Co is a spherical component of the laser-field am-

plitude vo (expressed in the laboratory frame). The quan-

tity B (Az, M~, Jz) is a coefficient that relates the molec-
F

ular basis eigenkets

lF;t ) =lF;A~, M„;t ) (3.&)

to the composite state eigenkets lFJ~M~;t ) in a system
quantized along the internuclear axis at time t via

IF;t~t= y B(A, , M,, J,')lFJ,M, ;t&sM M . (3.9)
JFMF

The quantity

( dgg (y —8) ) = (2)'gg (0,q
—8,0)),

where X)' ' is a rotation matrix, is given by

The symbols appearing in this equation are defined as
JFJF .

follows. The quantity o.
zQ is the cross section for exci-

JFJF
tation of density matrix element p+Q, written in an irre-
ducible tensor basis. The quantity Nt =(2j, +1)(2j, +1)
is the total number of sublevels in the initial-state mani-
fold. The quantity S~ ~ (R, ) is given by

F I

S„„(R,)=m R U„'[R~ ~ (t, )]

( dgg (g —8) ) =
—,
' J cos8dgg (p —8)d 8 .—m/2

(3.10)

The angle 0 is the angle between the impact parameter b
and R„while p is the angle between b, and R(tz ) [i.e.,
(p —8) is the rotation angle of the internuclear axis be-

tween excitation and "decoupling"]. The quantity (pT)M
is a component of the total dipole moment operator ex-

pressed in a spherical basis in a system of coordinates
quantized along the internuclear axis ot the time of exci
tation.

Equation (3.5) is a general result for CARE or LICET
excited-state cross sections in the coupled angular-
momenta composite atomic basis, assuming that the ini-

tial state is unpolarized and that collisions occur along
straight-line paths. It was derived using the method of
stationary phase, neglecting any terms arising from the
interference of different excitation channels t, . '

Furthermore, all depolarization beyond a decoupling ra-
dius R ~ =R (tz ) was assumed to be negligible; the radius
R ( tz ) was chosen to coincide with the maximum internu-

clear separation for which the adiabatic molecular basis
is a "good" basis [generalization of the results to allow
for depolarization for R &R (tz) is easily incorporated
into the formalism if desired]. All matrix elements are
now written in the molecular basis lE;Az, M~;t, )

which are related via the coefficients B (A, M~, Jz) of Eq.
', 3.9) to the composite atomic basis eigenkets
lFJzMJ ', t, ) in a system quantized along the internu-

E
clear axis at the time of excitation. Equation (3.5) can be
traced over states of atom A to get cross sections for ex-
citation of atom 3 ' in an irreducible tensor basis.

Although Eq. (3.5) applies to both CARE and LICET
excitation, there are qualitative differences in the polar-
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izations produced in the two types of reactions. These
differences are linked to the fact that the coupling from
initial to final state involves an E.-dependent matrix ele-
ment for LICET but not for CARE. Moreover, the
LICET excitation schemes employ a nearly resonant in-
terrnediate state which strongly infiuences the structure
of the coupling. As a result, the polarization produced at
excitation depends critically on which of the excitation
schemes of Fig. 4 is applicable. For example, owing to
near-resonant enhancement involving the initial-state
manifold in Figs. 4(a) and 4(b), the final-state manifold of
levels is not significantly perturbed at the excitation ra-
dius R, . Consequently, depolarization following excita-
tion can be neglected for the excitation schemes of Figs.
4(a) and 4(b). A similar situation does not arise in
CARE.

H, (R(t, ))lDJDMD ) (DJDMD lH, (R(t, ))
Hii+

l MD D
flCOED

H, (R(t, ) ) = —
( —', )

'
V20( 1, 1;t, ),

(&(t, ))' ' (4.1)

F =I,F
where D is any of the intermediate-state manifolds shown
in Fig. 4. If one diagonalizes this Hamiltonian, he ob-
tains eigenkets lE;t, )' ' which are correct to zeroth or-
der in H, and eigenenergies AF(t, ) which are correct to
second order in H, . It is convenient to carry out this di-
agonalization using the composite atomic state basis
eigenkets l FJzMz, t, ) . The dipole-dipole interaction
takes on the particularly simple form in this coupled
angular-momenta basis given by'

IV SPECIFIC EVALUATION OF THE CROSS SECTIONS where V ( 1 1 t ) is an ii reducible tensor opet ator

Equation (3.5) is now evaluated for the various LICET
excitation schemes of Fig. 4, assuming a dipole-dipole
collisional interaction between atoms A and A'. All
molecular eigenstates in the initial- and final-state mani-
folds will be calculated to first order in the collisional in-
teraction H, (R), while the molecular state eigenenergies
will be calculated to second order in H, (R).

Approximate values for the eigenkets and eigenvalues
can be obtained from Eq. (3.3). In a given manifold E,
the energy levels of Ho appearing in Eq. (3.3) are degen-
erate. To remove this degeneracy, one must go to second
order in the perturbation H, (R). To carry out this pro-
cedure, ' it is necessary to diagonalize the Hamiltonian

V20(1, 1;t, )= g C(1, 1,2;q, q', 0)Ti (A, t, )Tiq. (A', t, )

(4.2)

and T, ( A, t, ) and T, ( A ', t, ) are irreducible tensor
operators associated with atoms A and A', respectively,
expressed in terms of basis eigenkets quantized along the
internuclear axis at the times of excitation. Consequent-
ly, we are left with the problem of diagonalizing subma-
trices in the initial- and final-state manifolds having ma-
trix elements given by

(EJ~MF, t, l V20( 1, l, t, )lDJDMq, t, )
(DJ M;t, l V„(1,l, t, )lEJ M;t, )5JeJE MeMe 3(R (t ))6 i6COED

D E& e 20» e E E~ e

E =I,F . (4.3)

B (A MF„,J )=F5 jJy Jf 0 . (4.4b)

In addition, the cross section (3.5) is written directly in
terms of atom A ' coordinates as

l lF F Jf'jf' t
~Kg (~k'q') +k'q'(Jf') Jf (4.4c)

The explicit expressions for the cross section depend
on which of the excitation schemes of Fig. 4 is used. In
each case, a single, nearly resonant, composite
intermediate-state manifold lDJDMD;t, ) enters the cal-
culation. These states are not seen explicitly in Eq. (3.5),
but are contained implicitly in the molecular-state eigen-
kets. The matrix elements (I; t, l (p T )M l F;t, ) needed in

Eq. (3.5) vanish for LICET if the zeroth-order eigenkets
are used (they would not vanish for CARE). Consequent-
ly, it is necessary to go to first order in H, (R) and use the
eigenkets obtained by perturbation theorylF;t, )' ':—lFjf mf, t, ), jf=0; (4.4a)

As is implicit in Eq. (3.9), the molecular-state eigenkets
are not necessarily identical to the internuclear basis
eigenkets. This is seen explicitly in expression (4.3); al-

though the submatrix is diagonal in the magnetic index

Mz, it need not be diagonal in Jz. The B(A,M„,J) of
Eq. (3.9) are chosen in a manner to produce molecular-
state eigenkets lE;Az, M~;t, )' ' which diagonalize the

E
submatrix (4.3). In the specific examples to be considered
below, we ultimately choose a final state for which the
angular momentum of atom 3 is equal to zero, jf =0. In
that case, there is only a single value J~ =jf (the final-

state angular momentum of atom A ') for the composite-
state coupled angular momentum. Since JF =JF =jf in

expression (4.3), it follows that, in the anal state mani--
fold, the molecular eigenkets are identical with the inter-
nuclear basis ones, i.e.,
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(DJpMp, 't, lH, (R(t, )) F. ;t, &' 'IDJpMp, 't, &

JD MD
flQ) ED

(4.5)

where H, (R) is given by (4.1).

A. Excitation schemes of Figs. 4(a) and 4(b)

For the excitation schemes of Figs. 4(a} and 4(b}, the
final-state collisional interaction can be neglected. The
eigenenergies are given by expressions analogous to those
in Eq. (2.19a) and (2.19b):

AF(t, a)=F,
I'"& I; tlH, «(t, ))ID.JpM p; t & I'

AI(t, a) =I +
JD MD ACOID

a =a, b (4.6)
where a=a, b labels the excitation scheme of Fig. 4 (re-
call that I' and I refer to the unperturbed final and
initial-state energies, respectively). The corresponding
eigenkets are given by

IF;t, ;a & = IFJ~Mt;, t, &,

(D JpMp', , IH, (R(t, ))II;t, &' 'ID JpMp, 't, &

JD MD ~ID

(4.7a)

(4.7b)

From Eqs. (4.7a) and (3.9), it follows that the 8(A+, MA, J) in Eq. (3.5) are equal to unity. Furthermore, since the
F

final-state collisional interaction is negligible, there is no depolarization following excitation and one can set y= 8 and

"aa (0)='aa ~ (4.8)

in Eq. (3.5).
When Eqs. (4.6)—(4.8) are substituted into Eq. (3.5) and some sums over magnetic substates are carried out, one finds

an excitation cross section:
I I

ag'g'(a}=2A't 'g g SpA (R, )(2Jp+1) '( —1}' '&D.JpllprIIFJp&&D. JpllprllFJt;&'Gtcq
R I JD

MD

F p I' '(I;t, lH, (R(t, ))ID JpMp, t, &l'JF1E (ftcotp )
a

a=a, b, (4.9)

where (. . . II. . .
If j&=0, then

cross section

. . . & is a reduced matrix element and [ ] is a (6-J) symbol. '

Eq. (4.9) can be simplified. For the dipole-dipole interaction (4.1) and jI=0, one finds an excitation

64m. —2ak' '(If' a) +I (~~Ip
3 a

X g Q R~A (t, )St;A (R, )6kq.
R AI, M~ I

I

x(2Jp+1) '&D.Jpllv"'(1, 1)IIIJ, &&D Jpllv'"(1, 1)IIIJ,'&*

X I&D JpllprII~JI &I ( 1}I &(At, MA, Jt)II'(At, Mp, Jt)

1 jI. JD
X ' .

1 k' C(Jt, 2,Jp;MA, O, 'M„)C(Jt,2,Jp;M„,O, MA ), a=a, b,I I
(4.10)

where an equation analogous to (3.9) has been used for
the initial-state eigenkets. We now consider some explicit
values for j;, j,', jd, jd, jI, and j&. All excitation schemes
refer to Fig. 4.

Excitation scheme a: j; =j; =0, jd =jd =1, jf

j& =1. For this level scheme, Jr=0 so that the only in-
termediate state which enters has Jp=2 [otherwise the
reduced matrix element in (4.10) vanishes]. The nonde-
generate initial-state [see Fig. 6(a)] has an energy calcu-
lated from Eq. (4.6) equal to
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At(R, a)=I —C, /R

where

(4.11a)

(4.11b)

—32m(.AcotD )
I a

3/2
I I

1/2I
I

1/29A v, ~C, ~

x I &D, 2I I

v'"( 1, 1 )I IIO& I'

1 1 2
x I &D.21IPII+I& I' '1 (4.12)

Using Eqs. (4.6), (4.11), (3.4), (2.12), (2.1},and (3.6) in Eq.
(4.10), one finds an excitation cross section where Gk~ is given by (3.7) and b =0 coFt —is the detun-

ing.
Excitation scheme b: j;=1,j; =0, jd=0, jd =I, jf=0,

jf.=2. For this level scheme JI=JD=1 and the zeroth-
order initial state eigenkets [obtained from (4.3)] are
given by

Ap

(a)

(c)

C
lX

X
LLI

(b)

(d)

I;X,O;t, &' '=II;J =1,M =0;t, &,

II;II,+1;t, & =II'Jt=l, Mt=+1;t, &,

along with the corresponding eigenenergies

Ax(R, b) =I Cbx—/R

An(R, b) =I —Cbn/R

where

Cqx=C (1,2, 1;0,0, 0)Cs = —',Cq,

Cqn=C (1,2, 1;1,0, 1)C~ =
—,', Cg,

and

32m, 2

c,=
I &D„IIIv&'&(1, i)IIII& I'

b 9W~D,

(4. 13)

(4.14)

(4.15a)

(4.15b)

(e)

FIG. 6. Molecular energy-level diagrams for the six cases dis-
cussed in the text. (a) excitation scheme a (from Fig. 4):
j, =j, =0, jd=jd =1,jf =0, j, =0, Jr=0, JF=1. The final level
is three-fold degenerate. (b) excitation scheme b (from Fig. 4):
j, =1, j, =0, jd=0, jd =1, jf=0, jf =2, Jr=1 JF=2. The A»
level is two-fold degenerate and level F is five-fold degenerate.
(c) excitation scheme b (from Fig. 4): j; =j, =1, jd=jd =0,
jf =0, jf =1, Jr=0, 1,2; JF=1. Only the state having Jr=2,
Mi =0 (labeled A, ) has its energy modified by the collisional in-

teraction. The level labeled Ao is eight-fold degenerate and level
F is three-fold degenerate. (d) excitation scheme e (from Fig. 4):
j =j- =0 jd 1 jd =0 jf=o jf =1 Jr=0, JF=1. Level A» is
two-fold degenerate. (e) excitation scheme d (from Fig. 4);
j;=1,j, =0, jd =jd =1, jf =0, jf =2, JI=1 JF=2. Le~el I is
three-fold degenerate and levels A» and A& are each two-fold
degenerate. (f) excitation scheme d (from Fig. 4): j, =j, =1,
jd =1, jd =0, jf =0, jf =1, JI =0, 1,2, JF=1. Level I is nine-
fold degenerate and level A» is two-fold degenerate. Note that
for the level schemes of Figs. 4(a) and 4(b) that co» & 0 and for
those of Figs. 4(c) and 4(d) that co»&0. The sign of ~oi and

~DF determines the relative sign of the collisional shift of levels
I and F, respectively.

[see Fig. 6(b)]. From Eqs. (4.13) and (3.9) it follows that
the 8( A,tM~, J)tin Eq. (4.10) are all equal to unity.

I
From Eq. (4.10), one obtains an excitation cross section

32m—(%cot.D )

9A v„~ Cb

x
I & D~ 1 I I

v'"(1 1) I II 1 & I'

4 1 2 1
x I&D&lllp'll+2&I'

10

(4.16}

A(R, b) =I —
Ct, /R (4.17a)

where

Excitation scheme b: j;=j; = j, jd =jd.=0, jf =0,
jf =1. For this level scheme J1=0,1,2; however, since
JD =0, it follows from Eqs. (4.6} and (4. 1) that only the
state with JI =2, Ml =0 has its energy modified to second
order in H, (R). Thus, to this order, the energies of the
remaining eight states are not perturbed by the collisional
interaction and those states do not contribute to the
LICET cross section [Fig. 6(c)]. The energy level associ-
ated with state II, A, MA;t, &' '= II, Jt =2, Mt =0;t, & is
given by
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c„= I(I2llv'"(11)IID 0&l'
3'f2coD I

(4.17b)

x( —,')( —1)"Gk q (4.18)

The excitation cross section evaluated from Eq. (4.10) is

32—2r (ficotD )
o „' ( l, b) = (-')

q ' 9/3/2 IC I

1/2I/I1/2

X I & D1, 01 I
1""(1,1) I II2 & I'I & Di, 011p'I IF1& I'

B. Excitation schemes of Figs. 4(c) and 4(d)

For the excitation schemes of Figs. 4(c) and 4(d), the
initial-state collisional interaction can be neglected. The
eigenenergies are given by expressions analogous to those
in Eqs. (2.19c) and (2.19d):

At(a)=I,
(4.19)

I"'(F;tl H, (R(t) ) ID.JDMD; t & I'
AF(R, a) =F +

JD MD
'RQ) FD

The factor ( —,') represents the fact that only one of the
nine states in the initial-state manifold contributes to the
cross sections. The corresponding eigenkets are given by

a=c,d .

II;t, ;a&=IIJ M;t, &

(D JDMD, t, )IH, (R(t, ))IF;t, &' '

IF;t, ;a&=IF;t, &' '+ g ID JDMD;t, &, a=c,d .
JDMD i6COFD

(4.20)

When Eqs. (4.19) and (4.20) are substituted into Eq. (3.5), it is possible to carry out the summation over Mt, M, and
M ' to arrive at

I

atgc'«=)2A1t'«~FD. )
'

JF M,
SA t(R, )Gxg(2K+1) '( —1) C(JF,JF,K;M„,—M'„. , Q')

F,F',J
JD,JD, MD, Mp, g, g'

XB(AF, MA, JF )B'(AF, M'„, ,JF )(dgg, (y —8) &

x
x ' » J &D.J, I I prl IIJ, &(D.J,'I Ipr I IIJ, &'

I

x'"(F;t, IH, (R(t, ))ID.JDMD;t, & &F', t, IH, (R(t, ))ID.JDMD', t, &'&«
F F

a=c,d . (4.21)

For the dipole-dipole interaction (4. 1) and a final state with jf =0, Eqs. (4.1) and (4.4) can be used to reduce (4.21) to

64m —2ak' '(Jf' a) +I (~FD7 a

R I
JI JD Jo

AF, M, M', Q

SA t(R, )Gk .R /, t(t, )(2jf +1) '( —1) '(2k'+ 1)

X ( D JD I I p r I I IJ, & (D.JD I I p r I I IJt &*& Fjf I I

V'"(1,1) I ID.JD & & Fjf I I
V"'(1,1) I ID.JD &

*

JD JD k'
X (dgg(y 8) &

1 1 J C—(jf,jf,k;M, —M', Q)I

X C(JD, JD, k', M, —M', Q)C(JD, 2jf.,M, 0,M)

XC(JD, 2jf.,M', O, M')5~~(~~ ~, a=c,d . (4.22)
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IF;r,o;t, & ')=IF;J,.=l,o;t, &,

iF;II, +1;t, &( )= IF;j,=l, +1;t, &,
(4.23)

and the corresponding eigenenergies from Eqs. (4.19) and
(4.1) are

Ax(R, c)=F—C,x/R,

A„(R,c)=F—C,„/R
(4.24)

The 5 function rejects the neglect of contributions result-
ing from the interference of different excitation channels.

Excitation scheme c: j,. =j; =0, jd=l, jd =0, jf.=l.
For this level scheme, JI=O, JD=1. The final-state
eigenkets to zeroth order are given by

iF;X,O;t, &' '=iF;JF =2,MF =0;t, &,

iF;11,~1;t, &"'=iF;J,=2,M, =~I;t, &,

~F;5,+2;t, &' '= ~F;JF=2,MF=+2;t, &,

(4.28)

along with the corresponding eigenenergies, obtained
from (4.19) and (4.1),

where the relationship doo(8)=1 has been used. The
value of g2Q depends on the manner in which the decou-
pling angle q is chosen.

Excitation scheme d: j,. =1, j; =0, jd=jd. =1, jf=0,
jf =2. For this level scheme J&=1, JD=0, 1,2„and
JF=2. The zeroth-order final-state eigenkets can be ob-
tained from (4.3) as

where

C,x=C, C (1,2, 1;0,0,0},
C,n=C, C (1,2, 1;1,0, 1}

and

(4.25a)

and

Ax(R, d) =F—C do/R

An(R, d)=F Cd, /R-

Aa(R, d ) =F —C~q/R 6,
(4.29)

32~2c,= i(D, iiiv"'(1, 1)iiFI&i'
9i6coD F

(4.25b) 32772 2

c,~= y l&F2llv"'(1, 1}IID,J &I'
DdF Jz ——0

[see Fig. 6(d)]. The excitation cross section, calculated
from Eqs. (4.22), (4.23)—(4.25), (4.6), (4.4), (4.1), and (4.12),
is given by

XC (JD, 2, 2;M, O, M), M=o, +1

(4.30)

32tr (fin)FD )
I I

9g3/2U i( )1/ (gi j/2

x I&D, IIIJ IIIO&i'

x )&FI /[V"'(1, i}iiD, I &['g„',,
where

(4.26a) ~dM Cd~M ~

where

(4.31)

[see Fig. 6(e)]. The Cdl can be expressed in terms of re-
duced matrix elements of atoms A and /I

' using (4.2) and
simple properties of reduced matrix elements. ' One
finds

gk q
= —G„(—1)"(2k'+1)

x y (d~k~(q —e) &

Q

X [C (1, l, k', O, O, Q)ic(1,2, 1;0,0,0}i

+2C (1, l, k', 1, —1,Q)ic(1,2, 1;1,0, 1)i] . and

32%2
cd = (-,')i &foll T"'( w)lid 1 & I'

316COn F

x
I
&f'2

I

~'"(/I ')lid'I & I' (4.31b)

(4.26b)

In the next section, we will need values for gQQ and g2Q.
Those are given by

'2
1 1 J

I I= g (2J+1) '2 2 1

' C (J,2, 2;M, O, M), (4.31c)
J=Q

such that

4
gQQ QQ 3~10

s
' = —6 (4.27a) I2= —,', . (4.31d)

g' = — [,'(d~ (q7
—8)&+—', (d (Ip e)&], (42—7b)

The cross section is obtained from Eq. (4.22). Ex-
pressed in terms of reduced matrix elements for the indi-
vidual atoms, ' this cross section is given by

327K (flCdFD

o k q (2, d)=,/~, /~, /q ( —,
' )( —,

'
) I (f0l I

T" '( 2 ) I I do & I'I &f '21
I
T" '( W ')

I
ld'1 & I'I & d'1

I lp'I lt'0 & I'gtdq (4.32)
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where

1 1 JD
gk, ~

— (2k'+1) Gk ~ g (2JD+1}(2JD+1)
JD'JD

1 JD

2 2 1

JD JD k'
x

1 1 1 g II ~l '"&d~k~(g —8))C(2,2, k', M, M—', Q)'
M, M, Q

XC(JD, JD, k';M, —M', Q)C(JD, 2, 2;M, O, M)

X C(JD, 2, 2;M', O, M')5~sr ~~.
~

(4.33)

32~2c„= I &D ill v' '(1, 1)lF1) I

9%coD F
(4.35)

The excitation cross sections are obtained from Eq.
(4.22). If the dipole-moment reduced inatrix elements are
expressed in terms of reduced matrix elements of atoms
A and A', then the sum over JI can be carried out and
one obtains

32ir (iris)FD )

o'i, . (l,d)=
9A' 'U IC I' 'I~5 I' '

x(-,')(,')l&d'ollq li'l &I'

x I & F I
I I
I""(1,1) I ID1 & I'g "o„.,S, ,

(4.36a}

~here

and I M is given by (4.31c). When the summations are
carried out for goo and g 2o, one finds

goo
= —0.3256oo,

(4.34)

g20 = —[0.0339&dao(y —8) ) +0.0605& d 22(y —8) ) ]Gio .

Excitation scheme d: j; =j,'=1, jd=1, jd =0, j&=0
jI =1. For this excitation scheme Jz =0, 1,2, JD =1, and
JF=1. Final-state eigenkets and eigenenergies are the
same as those given in Eqs. (4.23)—(4.25) with C, replaced
by

I

dcoFI(R)/dR at the times of excitation. This feature has
been exploited in CARE to obtain information on the
diference between initial- and final-state interatomic po-
tentials. The sensitivity of the analysis of CARE is
enhanced significantly when one monitors the final-state
magnetic polarization in addition to the total final-state
population.

In practice, the use of LICET experiments to map out
the interatomic potential is somewhat more restrictive.
All LICET experiments have made use of a nearly reso-
nant intermediate-state manifold to enhance the LICET
cross sections. As such, the dominant collisional interac-
tion is between this intermediate-state manifold and ei-
ther the initial-state [excitation schemes of Figs. 4(a) and
4(b)] or the final-state [excitation schemes of Figs. 4(c)
and 4(d)] manifold. Consequently, in contrast to CARE,
the collisional interaction in LICET significantly modifies
either the initial-state energies or final-state energies, but
not both. Moreover, since the collisional interaction is
nearly resonant, a single multipole term in this interatom-
ic potential usually provides the major contribution to
the collisional interaction (for the exainples of Sec. IV, it
was assumed that the dipole-dipole interactions produced
the dominant contribution). Owing to this feature, the
quasistatic wing of LICET profiles employing a nearly
resonant intermediate state probes only the long-range
part of the collisional interaction represented by the dom-
inant multipole.

The final-state magnetic polarization can be monitored
by fluorescence. As discussed in Sec. III, one measures
the ratio

4—Goo3~/10
(4.36b)

g"=—G g c'(1,1,0;M, —M, o)lc(1,2, 1;M,o,M)l
M S,—S,

S, +S„ (5.1)

The excitation scheme is shown in Fig. 6(f}.

V. DISCUSSION

General expressions for CARE (collisionally-aided ra-
diative excitation) and LICET (light-induced collisional
energy transfer) cross sections have been derived. The
method of stationary phase was used to calculate LICET
cross sections for detunings in the quasistatic wing of the
excitation profile. As in CARE, the LICET crass sec-
tions depend on the slope of the interatomic potential

6 ~kq

1/2
1 2~- &k O+v'3 (5.2)

and the polarization ratio P is equal to '

for radiation incident in the y-direction and polarized in
the z direction. The quantities S&(P=x,z) are the inten-
sity of fluorescence polarized in the P direction. The
fluorescence can be monitored on a transition from state
f' to g' in atom A'. For incident radiation polarized in
the z direction, the Gi, ~ defined by (3.7) are equal to
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2i/6( 1)~f'+~8' 1 1 2
P(b)=3

3(2j +1)'"

—
1

+1
o2o(J/ }

(5.3)

The polarization ratio P depends critically on which of
the excitation schemes of Fig. 4 is used.

A. Excitation schemes of Figs. 4(a) and 4(b)

bcosi9=
R,

and the angle y by

(5.7a)

There is no depolarization following excitation so that
all polarization information is produced at the time of ex-
citation. Had we started from a polarized initial state,
there would have been initial-state depolarization up to
the time of excitation; since we consider only initially un-
polarized states, they remain unpolarized up to the time
of excitation. The final-state polarization produced in
these excitation schemes is closely related to the impact
limit result neglecting reorientation following excitation.
The two results can be shown to lead to identical polar-
ization rates for excitation scheme a if JI =0 or if the in-

termediate state D ) = ~dd') has either jz =0 or jz =0 (if
several JD enter the calculation the polarization rates can
differ); for excitation scheme b the polarization ratios are
identical, independent of the values of the various angu-
lar momenta. All the specific cases studied in Sec. IV for
excitation schemes a and b give rise to polarization ratios
which are the same as those calculated in the impact lim-
it neglecting depolarization following excitation.

These detuning-independent polarization ratios are as
follows.

Excitation scheme a: j; =j, =0; j& =j& =1, jf =0,
j/ =1,j =0. From Eqs. (4.12), (5.2), and (5.3), one finds

b
cos+ =

fV

(5.7b)

where —n/2 8+m/2, —n/2 (p 0, and R& is the
decoupling radius. Equation (5.7) implies that

R,
cosy= cosO .

R~
(5.8)

d00(0)=1, d(g(8)=(, (d~ ——8 )=0,

Since R, is a function of detuning b, through Eqs. (2.1)
and (3.4}, the cross sections and polarization ratio acquire
a detuning dependence from the (d&&((p —8) ) terms. It
is not difficult to carry out the average (3.10) using (5.8).
However, we can get an idea of the range of possible po-
larizations by considering the two extreme limits y=8
(no depolarization following excitation) to (p=n /2 (depo-
larization out to R = ao following excitation). Of course,
the cross sections were derived assuming a finite R ~ with
no depolarization for R & R n, but taking (p =~/2
(R n, —(x) ) gives a lower bound for the polarization ratio.

The values of (d&&((p —8) ) needed to evaluate the po-
larization ratios obtained from (3.10), are

oI)o( l, a)

o zo( l, a)
10 p —1

1 0 '7

2
(5.4)

d22 ——0

(5.9)

Excitation scheme b: j, =1, j,'=0, j& =0, jz =1, jf =0,
j«=2, jg

= 1. From Eqs. (4.16), (5.2), and (5.3), one finds

o Ix)(2, b)

o2o(2 b) i/70 ' bp —21 (5.5)

o Ix)(1,b)

zo(1 b)

1 Pb=l .~2 (5.6)

The physical significance of these polarization ratios
has been discussed previously.

B. Excitation schemes of Figs. 4(c) and 4(d)

The depolarization ratio now depends on
(d&&((P—8)). In terms of the impact parameter b of a
collision, the angle 0 is defined by

This is the excitation scheme used by Debarre" in a
LICET experiment with Eu "A" atoms and Sr "A'"
atoms. She obtained a depolarization ratio
P =0.43+0.05 independent of detuning in excellent
agreement with (5.5) ( —,", =0.47). '

Excitation scheme b: j;=j; =1, j& =j& =0, jf =0,
j/. =1,j .=0. From Eqs. (4.18},(5.2},and (5.3},one finds

Exci a ion scheme c: j&' ji' 0 jd 1, jd' 0 jf
jj =1, j =0. From Eqs. (4.26), (4.27), (5.2), (5.3), and
(5.9), one finds

o t3o( l, c)

cryo( l, c)

20
(q =8)

11&2
10

2
(p=m /2),

(5.10a)

(q =8)
P ='l

(dP= n /2) (5.10b)

For this level scheme, it is possible to show that the
LICET polarization ratio is identical to that for a
j'=0~1 CARE reaction. The values of P, in Eq.
(5.10b) are identical to those calculated previously' ' ' for
CARE for the same values of y. This level scheme is also
implicitly the one considered by Julienne' in modeling a
LICET reaction. In the quasistatic wing, he found the
same polarization ratio as for CARE excitation of a 0~ 1

transition.
Excitation scheme d: j, =1, j; =0, j&=j&.=1, jf =0,

j/, =2, j .=f. From Eqs. (4.33), (4.34), (5.2), (5.3), and
(5.9), one finds
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ooo(2 d)

o zo(2, 1)

0.237 (y= 8)
0.0541 (y=m. /2) .

—3.44/&2 (q =0)
—16.1/&2 (y=m/2), (5.11a)

(5.11b)

mediate state having jd =0. In this case, it is the col-
lisional interaction that produces the intermediate to
final-state excitation [Fig. 4(d)]. The collision acts as an
unpolarized field incident from all directions on atom A ';
consequently it produces an unpolarized final state in
atom A'.

o oo( l, d)
Pd=0. (5.12)

As discussed previously, excitation occurs from an inter-

Note that this is not the same polarization produced in a
j' = 1~2 CARE reaction.

Excitation scheme d: j, =j; =I, jd=1, jd =0, jf =0,
j«=1, jg =0. From Eqs. (4.36), (4.2), (5.3), and (5.9), one
finds
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