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The dynamical properties of two measures to probe ergodic behavior in Hamiltonian systems
with a large number of degrees of freedom are investigated. The measures, namely, the energy
metric d (¢) and the fluctuation metric €}(¢) are both based on the time-averaged energies of the indi-
vidual particles comprising the system. The energy metric d (¢) is obtained by following the dynam-
ics of the system using two independent configurations, whereas () is expressed in terms of the
properties of a single trajectory. Both measures obey a dynamical scaling law for long but finite
times. The scaling law for d(¢), which was previously established numerically, and for Q(¢) is de-
rived for systems that are effectively ergodic. The scaling function suggests that the configuration
space is explored by a “diffusive” process in the space of the variables used to construct d(z) and
Q(t). Furthermore, a single parameter, namely Dy and D, characterizes the time scales needed for
effective ergodicity to be obtained. These ideas are used to study the behavior of supercooled and
glassy states of soft-sphere binary alloys using microcanonical molecular dynamics. The scaling
forms for d (¢) and €(z) are explicitly demonstrated. The temperature dependence of the numerical-
ly computed diffusion constants (D and D) reveals that the nature of phase-space exploration
changes both near the fluid-solid transition and near the liquid-to-glass transition. The changes in
Dy and D with temperature are well described by a Vogel-Fulcher equation close to the glass tran-
sition temperature. In addition, the distribution of the time-averaged individual particle energies
P(e;t), moments of which are related to €(¢), is shown to be broad in the glassy state. We argue
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that the time dependence of P(e;?) can be used to probe local structural relaxations in glasses.

I. INTRODUCTION

Recently we showed that one can assess the time inter-
vals needed for effective ergodicity to be established by
following the dynamics of Hamiltonian systems using two
distinct initial conditions.! The essence of our idea is to
note that for ergodic systems any two dynamical trajec-
tories lying on the same energy shell with different initial
conditions would become equivalent, in the sense of sam-
pling phase space, in some finite observational time inter-
val T.2 As a consequence numerical values of any ob-
servable computed from using either of the two trajec-
tories for the interval 7 would be identical and the trajec-
tories would be statistically equivalent. This is the situa-
tion in the equilibrium liquid state. On the other hand, it
is generally accepted that structural glasses are nonergod-
ic systems on the time scale for observations.® In
statistical-mechanical language, the motion of a noner-
godic system is confined to only a part of the energy sur-
face in phase space.* This is to be contrasted with the
trajectories of effective ergodic systems which uniformly
cover the entire energy surface. The widespread use of
computer simulations for accurately predicting various
thermodynamic properties of liquids (provided the intera-
tomic or intermolecular potentials are adequately known)
is an indication of the acceptance by the physics and
chemistry communities of the general validity of the er-
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godic hypothesis.> However, given an N-particle Hamil-
tonian system with N very large, the time interval for ap-
proaching equilibrium (if it exists on the experimental
time scale) is still an open problem.

It is therefore of great interest to examine the condi-
tions for which ergodicity is obtained in simulations of
dense systems. In a recent paper! (to be referred to as I)
we introduced a quantity called the energy metric which
could be used to estimate an approximate time for a
dynamical trajectory to uniformly cover the allowed
phase space. Furthermore, if ergodicity is broken, the
long-time limit of the energy metric approaches (approxi-
mately) a nonzero constant indicating that a bottleneck in
phase space restricts the range of the configurations ex-
plored by the individual trajectories. The system is thus
prevented from sampling overlapping parts of phase
space. In this way the energy metric is a measure of the
degree of statistical equivalence of the two trajectories.

Consider what happens in undercooled liquids and in
glasses where two initial configurations lie in two
separate local metastable minima of the free-energy hy-
persurface of the system. The rate at which equivalent
configurations are sampled will depend on the free-energy
barrier separating the two minima and often the time re-
quired for a transition from one minimum to another can
be very long. It will take a correspondingly long time for
the energy metric to approach zero. The sampling of
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equivalent configurations is necessary for the develop-
ment of the statistical equivalence of the trajectories.
Physically the process of moving from one minima to
another involves the structural rearrangement of several
particles, at least on a local scale.

In I we showed that the energy metric could be used to
verify some of these ideas, and that it was especially use-
ful in assessing whether or not a system was effectively er-
godic. Explicit results demonstrating this were obtained
for a binary, glass forming system of soft spheres.! In
this paper we elaborate on the properties of the energy
metric for this system. The temperature and composition
dependence of the rate of decay of the energy metric to
zero for long times is determined for a wide range of
liquid and supercooled liquid states. Also, we introduce a
computationally simpler quantity, called the fluctuation
metric, and examine the temperature and composition
dependence of it for supercooled liquids. This quantity,
which is determined from a single trajectory in phase
space, also provides a measure of ergodicity. An explicit
demonstration of this statement is provided. A prelimi-
nary application of the fluctuation metric to probe the
time scales for ergodic behavior in several liquids, includ-
ing liquid water, has been presented elsewhere. ¢

II. PROBES OF EFFECTIVE ERGODIC CONVERGENCE

The ergodic hypothesis of statistical mechanics states
that time averages and ensemble averages are identical
for a system in thermodynamic equilibrium.” Thus, if
one waits long enough, the dynamical trajectory would
fill the phase space according to a well-defined measure,
independent of the initial conditions. To illustrate this
statement, suppose that g(¢) is a phase-space function
whose time average represents a physically observable
quantity. The ergodic hypothesis asserts that for 7T— oo,

<g>=i7f07dtg<t) : 2.1
where the ( ) indicates an ensemble average. The ap-
propriate ensemble for molecular-dynamics simulations,
where the energy and the volume of the system are held
constant, is the microcanonical ensemble. Thus for a sys-
tem with total energy E, and Hamiltonian %,

<g>:fdrgma(ﬁ(r)—Eo)/fdrS(W(F)—Eo) :
2.2)

where the integration is over the phase space ' of the
system. The & function determines the allowed set of
configurations, I', for a given value of E,,.

In practice, the appropriate value of 7 is determined
by requiring that the average value of g obtained using
Eq. (2.1) is not sensitive to the value of 7. Averages over
that interval are assumed to satisfy the condition, Eq.
(2.1), and effective ergodic convergence is said to have
been obtained in the interval 7.%

The necessary and sufficient conditions for the ergodic
hypothesis to be satisfied are not known for most physi-
cally interesting systems. A sufficient condition for ob-
taining global stochastic motion is that two trajectories in
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phase space, which are initially close, diverge as time ad-
vances. This instability condition is satisfied if the maxi-
mal Lyapunov exponent is positive.” While this ap-
proach has proven useful for systems with a few degrees
of freedom, it is computationally much more demanding
for systems of several hundred particles than is the solu-
tion of the equations of motion.!%!!' An alternative ap-
proach to the determination of effective ergodic behavior
is desirable and the energy metric d (¢) was introduced to
address this need.

The energy metric d(¢), which is straightforward to
compute numerically, is an especially useful probe of the
approximate time scale for effective ergodicity to be ob-
tained in systems with a large number of degrees of free-
dom. By effective ergodicity we mean that the trajectory
adequately samples all of the allowed parts of the phase
space. The allowed phase space, which in the micro-
canonical ensemble is a surface of constant total energy
of the system, is imagined to be coarse grained into small
subregions. If the density of points accessed by the tra-
jectory in every subregion is relatively uniform then the
system is effectively ergodic. Although our use of ergodi-
city is analogous to the concept of mixing in describing
stochasticity,!? we have refrained from using the termi-
nology ‘“mixing” because a numerical test of mixing in
principle should involve the computation of the density
of phase points in a finite volume of phase space.

The probes of stochasticity that we have constructed
should be viewed as a possible alternative for the infor-
mation that can be obtained (in principle) from Lyapunov
exponents. The scaling properties of the measures we in-
troduced seem to be the same as that obtained for the
finite-time properties of the maximal Lyapunov exponent
for billiard systems.!>'* In the case of the two-
dimensional billiard systems the finite-time scaling prop-
erty of the maximal Lyapunov exponent could be de-
scribed in terms of a Markov process. An analogous ar-
gument was suggested for the behavior of d(t).! For
measure preserving systems with large numbers of de-
grees of freedom, the energy metric provides a reduced
description that seems general enough to be applied to
both liquids as well as highly supercooled states of
matter.

In what follows, we define two measures for probing
effective ergodicity in N-body Hamiltonian systems. We
also prove the scaling property of the two measures for
ergodic systems. Consequently any deviation from the
expected scaling of the probes is an indication that ergo-
dicity is broken at least on the observational time scale.
For simplicity we assume that the systems consist of a
single component. The generalization of the equations to
multicomponent systems is given in the Appendix.

A. Fluctuation metric Q(¢)

The energy metric d () can be used to probe the time
scale for mixing of two independent trajectories in the
phase space of the system. This measure provides a natu-
ral means of determining if the underlying topography of
the free-energy surface has a multivalley structure. The
existence of multiple valleys is a characteristic of under-
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cooled liquids and glasses. However, for a high-
temperature fluid, the free energy is dominated by a sin-
gle valley and the system quickly reaches the minimum in
that valley (or basin) independent of the initial condi-
tions. Under these circumstances the property of a single
dynamical trajectory can be used to determine effective
ergodic behavior. This approach has the advantage of re-
moving the need for the computation of two separate tra-
jectories. The basic concept behind this approach to
probing ergodicity is the statistical equivalence of the
atoms or molecules which make up a fluid in thermal
equilibrium. This measure, to be referred to as the fluc-
tuation metric and to be denoted by Q(z), is also useful
when the free-energy profile has multiple minima provid-
ed the observation time scale is less than the time re-
quired for activated transitions from one metastable well
(or basin) to another. This is discussed further in Sec. IV.

The fluctuation metric is defined in terms of time aver-
ages of the energies of individual particles. Let e, (7) be
the time-averaged energy of particle j over the trajectory
a,

o

(2.3)

ja(t)=%folds E(s;a),
where E;(s;a) is the energy of particle j at time s on tra-
jectory a. If the total potential energy is pairwise addi-
tive then E;(s;a) is the sum of the kinetic energy and
one-half of the potential-energy terms involving particle
Jj.- The parameter a indicates that the time evolution of
the system is obtained starting from a trajectory labeled
a. Such a label is not needed for ergodic systems because
in that case, e;, () tends to a well-defined value for long
times regardless of the initial conditions. This limiting
value, ¢,(), is an average over all particles of the system,

1N
W=7y 2%

(2.4a)

In analyzing experimental results on macroscopic sys-
tems using statistical mechanics it is normally assumed
that the properties of a single large system do not differ
from that computed using a configurational average over
an ensemble of systems. Thus the results of an experi-
ment done on a single sample are expected to coincide
with theoretical calculations in which an average over an
ensemble is performed. Properties which obey this cri-
terion are said to be self-averaging. Therefore Eq. (2.4) is
equivalent to an ensemble average provided energy of the
individual particles is self-averaging, i.e.,

lim e, (7) =(e) (2.4b)

t—

uMz

= lim L
N> N

where { ) denotes an ensemble average.
The fluctuation metric is defined as

Q, (t)—— 2 lejo()—e, (D] . (2.5)
JZ]

If the system is effectively ergodic then it is easy to show,
using the law of large numbers, that Q,(0) is (&) —(e)?
is the energy per particle. Thus Q,(0) gives the equilibri-
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um fluctuations in the energy of a particle. For ergodic
systems, where the subscript a is unnecessary, the asymp-
totic scaling behavior of Q(#) can be computed by noting
that Eq. (2.5) can be rewritten as

——f dslf a’s2

where

8E;(s)

2 8E;(s1)8E,(s,) (2.6a)

=E,(s)—E(s)

; (2.6b)

and E (s) is the average energy per particle at time s. If
we make use of the weak law of large numbers and re-
place the sum over the individual particles by an ensem-
ble average we can write Eq. (2.6a) as

Q(1)/92(0) ——f dslfdsz (51,5,)/C,(0,0)  (2.7a)
where
N
C,(s,8,)= 2 (s1)0E;(s;) (2.7b)

If the property 6FE j(t) is self-averaging, which is expected
to be the case for ergodic systems, then C,(s;,s,) can be
identified as an equilibrium time correlation function.
For equilibrium correlation functions there is no pre-
ferred origin of time and thus C,(s,,s,) can only depend
on |s;—s,|. Under these circumstances, Q(¢) for long
times becomes'’

Q1)/9(0)=1/Dqgt (2.82)
where
Do=lim 1/ [2fo’ds C,(5)/C,(0) (2.8b)

Notice that the notion of self-averaging has been repeat-
edly used to obtain Eq. (2.8b).

We wish to emphasize that () can be viewed as a
measure of whether or not the energy is self-averaging on
the time scale of the simulation. To make the point in
general let us consider at time s, an arbitrary physical ob-
servable O;(s) associated with particle j. The time-
averaged value of O;(s) is

o= ['ds 0,(s) . 2.9)
t Yo

The fluctuation metric associated with O can be con-

structed as

N
2 [0;()—0(D)] (2.10a)

=1
N
with
()“—___ 2 0,0 . (2.10b)
j =1
Thus the value of O (z) for large enough N is expected to
differ negligibly from an average over an ensemble of sys-

tems provided self-averaging occurs. The assumption
that O (?) for large ¢ is identical to an ensemble average of
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course holds only for ergodic systems. Thus if Q(¢) is
nonzero for times comparable to the observation time,
that is an indication of the lack of self-averaging for the
observable O.

B. Energy metric d (t)

The energy metric d(¢) is also defined in terms of time
averages of energies of individual particles and is con-
structed as follows. Two independent initial states of the
system are chosen, and these are labeled a and b. The
time average energy of particle j is computed using Eq.
(2.3) for both trajectories a and b. Let these energies be
ej,(1) and e, (1) corresponding to the two independent
trajectories a and b, respectively. The trajectories labeled
a and b differ because they originate from two distinct in-
itial conditions. The time needed for them to become
“equivalent” is roughly the mixing time. The energy
metric d (t), which is related to a Euclidian norm in the
space of the variables e;,(¢) and e; (1), is given by the
square of the energy difference between the energy aver-
ages of the particles over the two trajectories, namely,

=L 3 [eu)
t)=— et
v 2, L

e, (2.11)

where the sum runs over all the N particles of the sys-
tem For ergodic systems, it is easy to show that
d(0)=2({e?)—(e)?), i.e., d (0) is twice the value of the
fluctuation metric. If the system is ergodic, both trajec-
tories, a and b effectively cover (in the coarse-grained
sense) the entire energy surface in phase space over a
sufficiently long-time interval and therefore the time-
averaged energies of the particles approach the same
values for long times. Therefore for an ergodic system we
expect
;li_.nflr[ej"(” »(1)]=0 (2.12)
for each particle j. This is because the time averages for
the system reach their equilibrium values in a time 7 in-
dependent of any initial condition and e;,(7T)=e;,(7T) is
then the time-averaged value of the energy of particle j.
Our experience indicates that an acceptable estimate for
T is obtained by determining when d (7T)/d (0)=0.01 is
satisfied. For a fluid, a stronger statement can be made,
namely, that the average energies of all particles of a
given species become identical in the limit of 1 — 7. This
is not the case for a glass where structural relaxation
takes place extremely slowly. In this case the long-time
limiting values for a particular species are distributed
broadly about an average value and the distribution de-
pends on which trajectory in phase space is followed.
This is discussed further in Sec. IV.

In I we showed that the functional form describing the
time dependence of d (¢) is identical for various thermo-
dynamic states. The short-time value of d(z) decreases
rapidly and we have not attempted to determine the pre-
cise functional form. The behavior of d(¢) for times
greater than a transient time ¢; is characterized by a sin-
gle parameter, namely, a “diffusion constant” Dy associ-
ated with the exploration of phase space. The decay of
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d(t) for t>t; was shown to obey the dynamical scaling
form

d(t)=d(0)f (tDg) , (2.13a)

[1, x—0

flo= ll/x, x>>1. (2.13b)

The characteristic time ¢; depends on the nature of the
interaction potential and on the thermodynamic state.
The reciprocal of Dy is roughly the time required for
effective ergodicity to be obtained. We emphasize that
this ““diffusion coefficient” refers to motion in the space of
the set of e;(¢)’s and not to the configurational diffusion
of the particles in the fluid. The diffusion process is more
analogous to the familiar Arnold diffusion involving the
excursion of the action along resonance layers.* One of
the objectives of the present investigations is to examine
the temperature and composition dependence of Dy for a
mixture of soft spheres, the system used to illustrate the
properties of supercooled liquid and glassy states in our
earlier studies. '®

We now derive the scaling relation given in Eq. (2.13)
which had been previously established by us numerical-
ly.! This derivation is valid only for ergodic systems. In
order to derive Eq. (2.13) it is useful to establish a rela-
tionship between d (¢) and (¢), and this can be done pro-
vided the system is effectively ergodic. For such a sys-
tem, we add and subtract

_1 _IV
‘Né W=y 2

(2.14)

to d (t). Now the energy metric can be written as

d(0)=0Q,(1)+Q,(1) &N lejp (1)=&, (D]

2 X
—Nz [eja(t)—

j=1
(2.15)

where Q,(2)=Q,(z) is given by Eq. (2.5). Notice that
Egs. (2.14) and (2.15) are strictly valid only for ergodic
systems. In systems in which the free-energy surface has
multiple minima, ej(t), Q,(t), and Q,(¢) will depend on
the trajectory labels for times less than that required for
activated processes to take place. This is expected to be
the case in glassy states. The last term of Eq. (2.15),
which is the cross term between the two trajectories, be-
comes

(1) =——f ds, [ dszN 2 8E;,(5,)8E ;(s;)
ji=1

(2.16)

For ergodic systems one can view Eq. (2.16) as an integral
involving an unusual equilibrium time correlation func-
tion whose argument is expected to depend on s, —s,.
For ergodic systems the distribution of individual par-
ticle time-averaged energies, e (1), is expected to be
symmetrically distributed around the thermodynamic
mean value per particle, ¢,(¢).! The mean energy per
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particle for a given species is rapidly approached by the
ej,(1) assuming that the individual particle energies are
self-averaging. The cross term then can be rewritten by
replacing the sum over j by an ensemble average, i.e.,

2 t t
Xab(t)=—t—2f0ds1fodsz(BEja(sl)SEjb(s;_)) NCATY)
The ensemble average <6Eja(sl JOE (s, )} becomes
(BE ,(51)8E j4(s7)) =(BE,(5,))(8E;(s,))=0 . (2.18)

The validity of Eq. (2.18) follows from the fact that this
average represents an ensemble average of quantities
which are independent and have zero mean. Thus for er-
godic systems under the assumption of self-averaging, it
follows that X, (#)=0. This leads us to conclude

d(1)=2Q(1) . (2.19)

The scaling property displayed in Eq. (2.13) follows from
Egs. (2.19) and (2.8a), i.e.,

d(1)/d (0)=Q(t)/Q(0) . (2.20)

The right-hand side of Eq. (2.20) obeys the characteristic
1/t behavior for long times. Therefore it follows that
d(t) should be described by our previously postulated
scaling behavior for ergodic systems. Interestingly it fol-
lows from Eq. (2.20) that Dy =D for systems which are
expected to be effectively ergodic on the time scale 7. It
is not surprising because for this case one has only a sin-
gle valley structure (a liquid for example) and conse-
quently the rate of exploration of phase space can be de-
scribed by a single parameter.

For glassy systems for which one has a multivalley
structure in phase space the fluctuation metric manifestly
depends on the initial conditions, i.e., the ’s depend on
the trajectory labels. In this case d(z) will differ from
Q(¢) for times less than that needed for the two trajec-
tories to become equivalent. So when the phase space ex-
hibits a multivalley structure, d (¢) and (¢) probe entire-
ly different aspects of the dynamical approach to equilib-
rium. The energy metric can be used to investigate the
rare activated processes connecting the set of
configurations belonging to two distinct free-energy mini-
ma. On the other hand, Q(¢) is a measure of relaxation
processes that occur on a single trajectory. The combina-
tion of the two metrics offers the prospect of exploring
the distinction between processes involving movement be-
tween free-energy minima and those occurring within a
specified free-energy minimum.

III. COMPUTATIONS

The details of the model and the computational
methods used are discussed elsewhere!® so only a sum-
mary is provided here. The binary model alloy used here
for illustration of the ideas given in the preceding section
has been recently studied extensively.'”2° The model
consists of a set of N; + N, =N particles interacting via a
softly repulsive potential of the form

)2, (3.1)

S 4p(ry)=¢elo 45/r
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where A,B =1,2 and r, ) is the distance between particle i
of type A4 and particle j of type B. The size of the type-1
particle is given by o,;=1. Two different values for the
size of the type-2 particles are considered, namely,
05, =1.1 and 1.3. The value of the cross diameter is tak-
en to be 0,(0;,+0,,)/2. The mass of the type-1 parti-
cles, m, is taken as the unit of mass and the mass of
type-2 particles is 2m . The unit of time is
)1/2 .

T:(mla%l/s (3.2)

All times are reported in these units. The composition of
a mixture is specified by X =N, /N and for the results re-
ported here, N =500. Finally, for the soft-sphere mix-
tures, it has been found empirically that it is possible to
specify the thermodynamic state of the system in terms of

an effective reduced density or coupling constant which
£ 16,17
s

Cg=n*(o.q/0 )P /(T*)*. (3.3)

Here n*=No3,/V is the reduced number density (¥ is
the volume of the system), T*=kzT /¢ is the reduced
temperature, and o.; is the one-fluid van der Waals
equivalent diameter.?! The compressibility factor
PV /NkgT, for example, depends only on this natural
coupling parameter I' 4 for the soft-sphere mixture. For
this model, the equilibrium liquid states have values of
Fys=1.15 and glassy states have satisfying
o> 1.5.171° A state is termed glassy if the single-
particle self-diffusion coefficient is vanishingly small and
if the pair correlation function displays no crystallization
signature.

The calculation of d () and Q(z) for a fluid state with a
given total energy was performed in the following way.
First, a configuration with the desired E, was construct-
ed, usually by scaling the velocities of the N particles.
Next, this configuration was allowed to evolve at the con-
stant total energy E, for a time interval of 407 to 807 to
ensure that it was in ‘“equilibrium.” The resulting
configuration is called a. Next, starting with a, a 2007
run was made and ((r) was determined. The final
configuration is called 5. A second 2007 run was made
starting from S and a second realization of Q(¢) was ob-
tained. The final configuration of that run is y. The next
step was to perform a two-trajectory simulation using 3
and y as starting points. The energy metric d (¢) is con-
structed during the two-trajectory run which is of 1007
duration. While in principle B and y are on the same tra-
jectory, the configurations for both 8 and y are recorded
with five significant figures and this truncation of the
configuration ensures that the two trajectories are in fact
distinct. It should be added that we reached similar con-
clusions for the fluid states by constructing d () using
two clearly distinct trajectories, i.e., trajectories whose in-
itial points are manifestly different.

While the above procedure for obtaining the metrics is
valid for examining the dynamical relaxations in the
liquid, care should be taken to ensure that the trajectories
are truly distinct when one is concerned with the glassy
states. This is in general true if the free-energy hypersur-
face has several minima into which the system may be
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locked for long times. Under this condition, if a and b
are two initial configurations belonging to two separate
valleys, then for times less than that required for the mix-
ing of a and b [which is roughly equal to exp(AF /kgT)
with AF being the free-energy barrier separating the
minima] d (¢) should be different from Q(z).

In order to observe the difference between (¢) and
d(t) care must be taken to ensure that the starting
configurations belong to separate minima so that the two
trajectories are indeed distinct. In our simulations we
used the following procedure when examining d(¢) and
Q(t) for glassy states for the 0,,=1.10,, case. A total of
three distinct glassy states with I';z=1.7 and X =0.5
were generated by quenching initially liquid states,
I'.4<0.95, at three different rates until the desired glassy
state was reached. The quenches were performed by re-
scaling the particle momenta at each time step by a factor
of 0.9, 0.999, and 0.9999, respectively. These quench
rates are fast enough to avoid crystallization of the sam-
ple while the 1.4 <I' < 1.5 range was traversed. The re-
sulting configurations were then used to construct d(t)
and Q(z).

To ensure that truly independent initial configurations
were being prepared, we followed yet another procedure
for the glassy states for the system with the diameter ra-
tio 04, /0;;=1.3. Four separate dynamical trajectories
for the state with I'.,4=1.6 were analyzed. The initial
configuration for one of the trajectories was obtained by
directly quenching a well-equilibrated fluid state at
I'.g=1.0 to I' 4= 1.6 by rescaling the momentum of each
particle by 0.999 at each step until the desired state was
reached. The other glassy state trajectories were ob-
tained from the liquid state with "= 1.0 by first moving
away from the energy shell to a different fluid state with
either higher or lower energy and allowing the system to
evolve for some time. Next the system was returned to
the state with I' _z=1.0 and allowed to equilibrate. Then
the system was quenched to the I',z=1.6 glassy state.
This procedure ensures that the four glassy trajectories
were independent.

IV. RESULTS AND INTERPRETATION

We illustrate the dynamical properties of d (¢) and Q(¢)
using the soft-sphere mixture as a model. The properties
of these metrics discussed in Sec. II are established nu-
merically. It should be emphasized that these ideas can
be used for other systems as well.*?? In fact the general
scaling properties derived in Sec. II are universal and
only depend on the notions of ergodicity and self-
averaging. This has been established already in applica-
tions to liquids consisting of Lennard-Jones mixtures and
liquid water. &2

A. Time dependence of d (t) and Q(¢)

The energy metric for a slightly supercooled state,
I.s=1.22 with 0,,=1.10,, is displayed in Fig. 1. The
fact that the long-time limit of d (¢) is O indicates that this
system is effectively ergodic. The fluctuation metrics
Q,(t) and Q,(¢), and the cross-trajectory term X, ()
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FIG. 1. The energy metric d(t) (solid line), the fluctuation
metrics Q(¢) (dashed lines), and the cross-trajectory term X (1)
(solid line fluctuating about zero), are shown for the slightly su-
percooled state with I'.=1.22.

[Eq. (2.16)] are also displayed. The two curves for Q,(¢)
and ,(¢) are superimposable and this suggests that the
system is effectively ergodic for I',z=1.22. It is
noteworthy that for this state the cross terms rapidly
vanish. This is in accord with the argument that for this
value of [y the variables e;(7) are self-averaging and

e;(t) should tend to e, () which equals e, (7). Thus one
expects the set of average values, {e;,(7)}], to be sharply
distributed about e, (¢) and this leads to a rapid cancella-
tion of the cross term. Notice that because we are deal-
ing with a binary mixture, the distribution of the time-
averaged values of the individual particle energies has
two peaks, one for the smaller particles and one for the
larger particles.! For this state the system has effectively
one valley in the free-energy surface, and the dynamical
trajectory uniformly samples the allowed configurations
on the time scale of the simulation. This is independent
of the initial conditions. The scaling behavior of Eq.
(2.8a) is illustrated in Fig. 2. There d(0)/d (t), the re-
ciprocal of the energy metric, and the corresponding
quantities for the (’s are shown as functions of the time
for I'.s=1.22. It is evident that both d(z) and Q(7) ex-
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FIG. 2. The reciprocals, normalized to unity at ¢ =0, of the
energy metric (solid line) and of the fluctuation metrics (dashed
lines) for the I' .=1.22 state are shown as functions of the time.
The approximately linear behavior of these quantities illustrates
the universal form of these functions. The energy-space
diffusion coefficients were obtained from the slope of such plots.
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FIG. 3. The energy metric d(t)/d (0) (solid line), the fluctuation metrics (¢)/Q(0) (dashed lines), and the reciprocals of these
metrics are shown for the glassy state with ['.=1.6 of the system with ¢,,/0,,=1.3. The trajectories labeled a and b were used

here.

hibit the characteristic 1/t decay predicted for ergodic
systems.

We now consider the case of 0,,=1.30,;. The value of
1.3 for the ratio of the particle sizes was chosen so that
we could examine d (¢) in the range of coupling constant
values, 1.4 <I'.4<1.5. In this range for the 1.1 size ratio
case, crystallization occurs during the time required to
determine the long-time value of the metric but it does
not for the larger size ratio. The metrics in the liquid
state for the larger size ratio case behave qualitatively in
the same manner as for the case with I'.,s=1.22 shown in
Figs. 1 and 2. In order to illustrate the behavior of the
metrics in the glassy state, four independent trajectories,
labeled a, b, ¢, and d were computed for the value of the
coupled constant I' ,¢=1.6. The details of the generation
of the trajectories are discussed in Sec. III.

In Figs. 3-6, plots of both d(t)/d(0) (solid line) and
Q(t)/0(0) (dashed lines) and their reciprocals are shown
as functions of ¢ for various trajectories given in the
figure captions. Although all the curves roughly yield the
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characteristic scaling behavior there are some significant
differences. The long-time values for d(¢) and Q(¢) are
critically dependent on the trajectory labels. This is a
clear indication that in glassy systems the initial condi-
tions are important for the dynamics. Thus the proper-
ties of the glassy states can be computed only by averag-
ing over an ensemble of initial conditions.?* In all these
figures, the long-time limit of the metrics is not zero, im-
plying that the system is not effectively ergodic on this
time scale. The nonzero value of ((#) implies that the as-
sociated property, namely the energy per particle, may
not be self-averaging in the glassy systems. This implies
that one could see variation from sample to sample. We
wish to caution the reader that this conclusion is really
based on a long- but certainly finite-time simulation and
this may not even hold on experimental time scales. It
appears that these metrics rapidly drop to about 1 of
their initial value within about 107 and slowly decrease to
about a value of 0.15-0.25 for t =1007. The rate of de-
cay at long times (and hence the associated diffusion con-
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FIG. 4. Same as Fig. 3 except that trajectories a and ¢ were used.
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FIG. 5. Same as Fig. 3 except that trajectories a and d were used.

stants) also depends on the trajectory labels.?* Hence
there is a distribution of the diffusion constants and the
exploration of the configuration space in glasses is depen-
dent on the preparation history.

To further illustrate the dependence of the long-time
values of the energy metrics and the associated diffusion
constants Dy and D on the history of the state prepara-
tion we performed the following computations. The
dynamical trajectories a, b, ¢, and d were calculated for
long times and the metrics were computed using different
segments of the trajectory. If the systems were ergodic
then averages over two different long and independent
segments would yield results that differ negligibly from
each other. In Figs. 7 and 8 we show the results for d (¢)
and Q(¢) (for the trajectories labeled a and b) computed
using different segments. It is obvious that the values of
the scaling parameters Dy and D, as well as the long-
time limiting values are dependent on the trajectory la-
bels. The results shown in Fig. 8 were obtained by con-
tinuing the trajectories @ and b for an interval of 1007
beyond that needed to compute the metrics displayed in

Py

N W0 N O © O

Metric
©O 0O O o o O O OO0 o
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Fig. 7. Thus one would expect some annealing in the sys-
tem. The rearrangement of particles would then be ex-
pected to lead to the monotonic decrease of d(¢) and
Q(t). However, a comparison of Figs. 7 and 8 indicates
that the metrics over different segments do not decrease
monotonically. The changes in the long-time values are
indicative of structural rearrangements and possible tran-
sitions from one minimum to another. The difference in
diffusion constants inferred from Figs. 7 and 8 implies
that when structural rearrangements occur, the systems
may have made a transition to a region in which the
bottlenecks for mixing of two configurations are different.
Thus in the glassy systems one could have a wide range in
the distribution of free-energy barriers—a notion that
has certainly been advanced in the past.> The analysis
done here may be a way of probing these properties.

B. Diffusion coefficients Dy and D,

The analogy between the dynamical scaling obeyed by
the probes of ergodicity, d(¢) and Q(t¢), and the finite-
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FIG. 6. Same as Fig. 3 except that trajectories b and d were used.
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FIG. 7. An extension of the trajectories of Fig. 3 for an additional 1007.

time scaling behavior found for the maximal Lyapunov
exponent for mixing systems'>!# leads us to suggest that
the characteristic parameters Dy and D, essentially
determine the rate of exploration of the accessible
configuration space. Specifically it is found that for bil-
liard systems'>!* the time-dependent maximal Lyapunov
exponent

y(t)=(In||Df(x,)€|) , @.1

where Df‘(x,) is the Jacobian matrix associated with the
flow f', € is a unit vector, and { ) is an average over x,,
obeys the scaling form!>1#

YO/ Y o=1—A/y ot . (4.2)

Here v , is the maximal Lyapunov exponent. The analo-
gy with Eq. (2.8a) suggests that the diffusion coefficient
Dy (or Dg) plays the role of the maximal Lyapunov ex-
ponent ¥ . This suggest that 7o =1/Dg is the charac-
teristic time required for the mixing of two distinct
configurations. The parameter D is physically analo-
gous to the rate of Arnold diffusion in action space.! In
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the glassy state 7; gives an indication of the barrier
separating the two different metastable minima. The ap-
proximate magnitude of the bottleneck, AF, separating
the two minma may be obtained by writing Dy as

D '=~7exp(AF /kgT) . (4.3)

For times less than that required for activated processes
to become important (which grows rapidly below the
glass transition temperature), 7o=~1/D would describe
the time needed for effectively sampling the
configurational space within a specified minimum. In ad-
dition the possible differences between D, and Dy can
provide information about the underlying free-energy
surface. In light of the importance of these parameters
we have attempted to obtain the dependence of Dy and
D, on the composition and on the temperature of the
mixture. We wish to emphasize that Dy and D, have
nothing to do with the single-particle self-diffusion
coefficient.?> The correlation function appearing in Q(z)
is truly a multiparticle dynamical function. The results
for Dy and D, for the two choices of particle diameter
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FIG. 8. An extension of the trajectories of Fig. 7 for an additional 1007.
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TABLE 1. The states examined and the resulting energy-
space diffusion coefficients.
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10!
[e)
N o
A Dch -
1 OO o o
0oa
- [
()]
107"
1072
0.5 1.5 2.5 3.5 4.5
4

X T* T Dg Dy
0= 1. IU“

0.2 1.01 0.90 45 4.5
0.253 1.27 1.6 1.4

0.5 0.593 1.12 3.1 33
0.429 1.22 2.2 2.1
0.396 1.24 1.9 2.2
0.372 1.26 1.8 1.9
0.331 1.30 1.2 1.2
0.303 1.33 1.2 0.9
0.286 1.35 0.9 0.7
0.273 1.37 0.7 0.6
0.258 1.38 0.7 0.6

0.8 0.707 0.95 2.8 3.0
0.313 1.16 1.8 1.7

=130,

0.5 1.41 1.22 4.1 4.1
1.09 1.30 2.0 1.9
0.79 1.40 0.5 0.6
0.75 1.43 0.08 0.08

are presented below.

The scaling behavior of d (¢) and Q(¢) [cf. Egs. (2.8a),
(2.13)] was used to numerically obtain Dy and D for
several different temperatures and compositions for the
soft-sphere mixture. The states examined and the values
of Dy and of D, are shown in Table I. Most of the effort
was devoted to the equimolar mixture (X =0.5). A check
was made on composition dependence by examining a
few states with X =0.2 and with X =0.8 for the
0y=1.10,, case. For the case with 0,,=1.10,; we
found that the system invariably crystallized®*?® when
the system was annealed in the interval 1.4 =T 4=1.5.
This prevented us from obtaining meaningful values of
Dy and D, close to the glassy state for this size ratio. In
order to probe the behavior of these characteristic
coefficients for I' 4 near the glassy region we considered
the larger size ratio. In this case crystallization is easily
avoided (on the time scale of our simulation) and the be-
havior of Dg and D, close to and below 7, can be exam-
ined.

The energy-space diffusion coefficients Dy and D, are
displayed in Fig. 9 as functions of ;. From Eq. (3.3) it
follows that T%; is proportional to 1/7. Several features
of this plot are worth noting. We see that these quanti-
ties have composition dependence not contained in I
Unlike the thermodynamic properties which only depend
on I' 4 the characteristic coefficients Dy and D, exhibit
departures from the corresponding scaling. Figure 9 also
shows that D and D, depend on the size ratio. The ap-
proximate equality of Dy and D, for a given condition
confirms the analysis of Sec. II where it was shown that
for the systems considered here, ergodic convergence in-
formation can be obtained from single-trajectory studies
as well as from the two-trajectory calculations.

The most dramatic observation is the striking tempera-

FIG. 9. An Arrhenius plot of the characteristic coefficients
D. The abcissa, Y, is proportional to 1/7. The open symbols
are for the 0,,/0,,=1.1 case with X =0.2 (0), X =0.5 (O), and
X =0.8 (A) and the solid squares are for the o,,/0,,=1.3 case
with X =0.5.

ture dependence of the diffusion coefficients. While it is
not possible to make strong arguments based on this plot,
the pattern of the points suggests that the nature of the
exploration of phase space changes character at two
places. The first change occurs at about the fluid-solid
transition (I3~ 2) where the slope of the plots appears to
change. The second change occurs in the strongly super-
cooled region where the slope again increases. The ap-
parent activation energy for mixing increases at these two
points. It is clear from Fig. 9 that for ¢,,/0,,=1.3 the
characteristic coefficients Dy and D, exhibit non-
Arrhenius behavior when the temperature is close to the
glass transition temperature. For this case the logical
choice describing the temperature of Dy (or Dg) is the
Vogel-Fulcher law, i.e.,
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FIG. 10 A Vogel-Fulcher plot of the characteristic
coefficients D. The abcissa, F(I.y) defined in Eq. (4.5), has

I'=1.49.

24 28
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D,=Aexp[—B/(T—T)] (a=E or Q) 4.4)

where T is related to the apparent glass transition tem-
perature and A4 and B are constants. A Vogel-Fulcher
plot of the D’s is shown in Fig. 10. There D versus
F(T.4), where

F(T)=T4/[1—(T4/T)], 4.5)

is the appropriate combination of I'’s for a 1/(T —T)
plot, is displayed. A value T'=1.49 produces a linear
plot. From this analysis it is not possible to unambigu-
ously identify the temperature at which one obtains an
essential singularity in Eq. (4.4) as the ideal glass transi-
tion temperature. A more natural interpretation based
on the entropy crisis is given below.

It appears that for the case with 0,,=1.10, the be-
havior of the D’s seems to be consistent with a simple Ar-
rhenius behavior in the highly supercooled region (see
Fig. 9). However, we believe that the general form of the
temperature dependence of Dy and D is the Vogel-
Fulcher behavior given in Eq. (4.4). The reason this be-
havior is not seen in the case of the smaller particle diam-
eter ratio is as follows. In the region with 1.4 <T < 1.5,
the system crystallizes upon annealing. The geometrical
rearrangements needed for crystallization are possible be-
cause of the similarity in the size ratio of the particles.
Thus the system locates the narrow pathway leading to
crystallization on the annealing time scale and conse-
quently the metastable glassy states are not probed. Thus
the entropy crisis is avoided and consequently Vogel-
Fulcher law behavior cannot be observed for this case.

The behavior of D given in Eq. (4.4) allows for a trans-
parent interpretation of the Kauzmann paradox.?”?® It
is generally believed that upon vitrification there is a loss
in the so-called configurational entropy and the tempera-
ture at which the entropy of the glass equals that of the
crystal is denoted as the Kauzman temperature Ty .20
Since Dy ! is roughly the mixing time for configurations
belonging to two different metastable valleys it follows
that the loss in configurational entropy is a consequence
of the breakdown of effective ergodicity. It is tempting to
suggest that the characteristic temperature T, at which
the shear viscosity of fragile glass forming substances
diverges is precisely the temperature where the mixing
time becomes infinite, i.e., To=7. Notice that at this
temperature there is no reason to expect the
configurational entropy to be strictly zero, which means
T, is not necessarily equal to T3

C. Distribution of energies of individual particles

In I it was shown that the distribution of time-averaged
energies P(e;t) provides some clear-cut differences be-
tween the equilibrium states of a liquid and nonequilibri-
um glassy states. Notice that the sum over the energies
of all the particles is indeed a constant. However, the dis-
tribution of the individual energies can exhibit consider-
able dispersion. The fluctuation metric is in fact related
to the moments of the distribution function P(e;t). It
has been previously shown that in the liquid state P(e;t)
becomes very sharply peaked about the two mean ener-
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gies of the particles in a binary mixture. There is no
overlap between the two peaks for long times. For glassy
states with 0,,/0;;=1.1 there is considerable overlap be-
tween the two peaks, just as there is for an equilibrium
liquid mixture for short times. By analyzing the disper-
sion of P(e;t) we suggested that statistical equivalence of
particles is lost when the liquid-to-glass transition takes
place. This implies that permuting particles in the glassy
state can lead to large dispersion in the distribution
P(e;t). This is to be contrasted with the situation in the
liquid state in which the effect of particle permutation is
completely lost on a short transient time scale. Thus the
discrete permutation symmetry is broken when the tran-
sition from the liquid to glass takes place. This point is
discussed further elsewhere. !'*2

We focus here on the distribution P(e;1007) for the
glassy state with I'.¢=1.6 for the 0,,=1.30;; equimolar
soft-sphere mixture. Several distribution functions were
generated using the dynamical trajectories a, b, ¢, and d.
A typical plot of P(e;1007) as a function of e is shown in
Fig. 11. An analysis of several such plots suggests the
following. (i) The mean energies for each component ap-
proach the thermodynamic value quite rapidly. This ob-
servation is based on examining the behavior of both the
fluid and glassy states for the 0,,=1.10,; case. We ex-
pect this to hold true for the 0,,=1.30; case as well. (ii)
The distribution functions for glassy states appear to be a
superposition of two broad, nonoverlapping Gaussians.
The energy ranges from 4¢ to 7¢ for the small spheres
and from 7¢ to 10¢ for the larger spheres. This behavior
is to be contrasted with that obtained for the glassy states
for the 0,,=1.10, case in which the distribution func-
tions for the different sized spheres showed considerable
overlap. (iii) When P(e;1007) was constructed from in-
dependent segments of a long trajectory, “fine structure”
is observed in the distribution functions. This ““fine struc-
ture” appears to have a width of about 0.5¢. The location
of such fine structure moves from sequence to sequence.
An example of such a distribution function is shown in
Fig. 12. The difference between Fig. 11 and Fig. 12 lies
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FIG. 11. The distribution of average energies at 1007 for a
glassy state with 0,,=1.30,, and ' .z=1.6.
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FIG. 12. The distribution of average energies at 1007 for a
second glassy state with 0,,=1.30, and I'.s=1.6.

principally in the enhancement of peaks for energies be-
tween 5S¢ and 6¢ and between 8¢ and 9¢. An amplitude
value of 0.05 in P(e;?) involves about 12 particles. These
changes in peak heights imply a redistribution of energies
among several (typically 10-20) particles, a process that
surely leads to local structural changes.?* Thus the pres-
ence and movement of these spikes in P(e;1007) is indi-
cative that several particles are involved in the structural
relaxation. These ideas are also in accord with recent
studies of soft-sphere mixtures in which correlated jump
motions involving 3-4 particles were explicitly moni-
tored.!® (iv) The metrics are related to the moments of
the distribution function P(e;t). Thus the metrics be-
come sensitive to the details of the distributions for large
differences from the means for each species. For exam-
ple, a decrease in value of Q(¢)/Q(0) at 1007 from 0.25 to
0.15 correlates closely with the contraction of the wings
of the peaks. Thus the decay of d(¢) and the ease with
which structural relaxation proceeds is closely related to
the tails of the distribution function. In the glassy state
transport appears to be associated with the rearrange-
ment of particles in the tail of P(e;t), i.e., if there is
sufficient amplitude in the tail of P(e;¢) one would expect
structural relaxation in the system. In fact using this sort
of idea one can argue that the average structural relaxa-
tion time scales as r~exp[(T,/T)*],**% a form that has
been used to fit viscosity data in certain glasses. *°

V. CONCLUSIONS

In this paper we have suggested means of probing
effective ergodic convergence in supercooled liquids and
in glasses. Two measures, namely the energy metric d (¢)
and the fluctuation metric (z), were used to assess the
approach to equilibrium in systems with very large num-
bers of degrees of freedom. Both metrics obey a universal
dynamical scaling law for long but finite times for ergodic
systems. The explicit form of the scaling function ob-
tained analytically has also been verified numerically.
The argument of the scaling function contains a parame-
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ter, namely, a characteristic constant Dy or D whose re-
ciprocals are indicative of the time required for effective
ergodic convergence to be obtained. Let us conclude by
stressing several implications raised by the present study
as well as other related investigations. %3

A direct consequence of the scaling behavior estab-
lished for effective ergodic systems is also of practical in-
terest. The scaling behavior leads to a quantitative cri-
terion for deciding on the time interval 7 that is needed
to establish ergodic convergence. A useful estimate for 7
can be obtained as the value of ¢ for which d (¢) or Q(¢) is
one one-hundredth of its initial value. From this it fol-
lows that 7=100/D, (a=E or Q). Using the informa-
tion we have gained from examining many such plots for
the soft-sphere alloys, we find that times of 257 or so are
adequate for normal liquids, but that times on the order
of 1007 or longer are required for strongly subcooled
liquids. Notice that in order to use this sort of criterion
to obtain 7 one need not numerically integrate the equa-
tions of motion for very long times. The characteristic
1/t behavior is obtained after a small transient time and
this allows one to determine D rather quickly.?’

The universal scaling behavior has been shown to hold
only for systems that are effectively ergodic. Conversely
if these metrics do not display the scaling behavior it fol-
lows that the system is not expected to be ergodic, at least
on the time scale of observation.*® Thus these measures
are useful diagnostics of the approach to equilibrium in
systems with a large number of degrees of freedom.

Although the present study has only dealt with mea-
sures associated with the time-averaged energies of indi-
vidual particles, it is clear that one can perform calcula-
tions using other phase-space functions as well. In fact,
these ideas can be applied to molecular liquids and other
complex systems in which energy is not the natural vari-
able to monitor.%?? Since the arguments used to estab-
lish the dynamical scaling behavior only depend on the
concepts of ergodicity and self-averaging, it is not
difficult to establish the expected 1/t characteristic for
other systems. >

It is remarkable that the dependence of the characteris-
tic coefficients Dy and D on temperature seems to be
well described by a Vogel-Fulcher law. Since the D’s de-
scribe the rate of exploration of the accessible
configuration space, it seems natural to suggest that T, in
the usual expression for the shear viscosity for glasses is
the temperature where the ergodic diffusion coefficients
Dy and D, vanish. The vanishing of D, implies that the
system effectively explores one minimum (or a number of
order N degenerate minima). The reduction in the
“configurational entropy” is therefore associated with the
inability of the system to explore all the available mini-
ma.*® The temperature at which D, vanishes then can be
interpreted as being associated with the formation of the
amorphous phase from which the system is unable to es-
cape and could correspond to the “‘ideal glass state.” It
therefore seems logical to assert that T should be equal to
the Kauzman temperature Ty. The assertion that T (or
T) should be associated with the failure of ergodicity is
consistent with the recent experimental observation that
the Vogel-Fulcher form from relaxation times with
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T,=Tg is valid provided the physical quantity that is
monitored describes closely the ergodicity of the sys-
tem. 313

It is interesting that for almost all the states investigat-
ed in this paper we have found that Dy =D and that the
cross terms X, (t) [see Eq. (2.8b)] decay to zero at long
times. This suggests that rapid thermal excitation is
sufficient to overcome any bottleneck between the various
states considered. In realistic systems it is believed that
such rapid excitation between the various amphorous
minima occur for fragile liquids which have a high densi-
ty of such minima.* The soft-sphere alloys considered in
this work are fragile liquids and hence the equality of Dy
and D, we have found is consistent with the picture of
the topology of the potential-energy hypersurface en-
visioned by Angell’*° for these systems. Based on this
interpretation we conjecture that pronounced differences
between d(f) and () can only be seen in “strong”
liquids. We also wish to add that because of large cooling
rates obtained in computer simulations the states probed
are probably high-energy states, which are, of course,
highly degenerate. It is probably for this reason the nu-
merical values of D and D, are quite large.
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APPENDIX

Here we describe the natural generalization of the fluc-
tuation metric {)(¢) to mixtures. Recall the objective is to
ensure that for effective ergodic systems €(¢) tends to
zero on the time scale 7. Let N, be the number of parti-
cles of type a so that

M
3 N,=N (A1)
a=1
where M refers to the total number of species and N is
the number of particles in the system. The time-averaged
value of the phase-space observable f for the particle j of
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type a originating from the trajectory labeled a, f,(¢;a),
is given by
1 t
a=—J ds fia(s;0) . (A2)

The average of f;(2) over all the particles of type a is

N

_ 1 o

fin=— fo) . (A3)
NH JEa /

The long-time limit of f(¢) is the average per particle for
the observable f. If the system is ergodic, then f2(¢) is
expected to be a well-defined quantity for any reasonable
choice of f and clearly depends only on a and is indepen-
dent of the label a. Furthermore, if f is self-averaging,
then the right-hand side of Eq. (A3) can be viewed as an
ensemble average provided N, >>1. The generalization
of ((¢) to a mixture is

M Ng _
3=~ 3 3 URO=Ta0r
a=1j€Ea

=1

(A4)

The above equation has all the properties of the metric
found for one-component systems. In particular
Q%(#)—0 if the system is ergodic. This follows from the
discussion following Eq. (A3). The scaling property of
Q%(z) given by Eq. (A4) for ergodic systems follows
directly from Egs. (2.6)-(2.8) and is explicitly given by

Qi(t)=1/Dgt (A5)

where
. M ore

Do=lim1/ 123 J ds cjts)/CH0) (A6)
with

Colls, =531 = 3 8f,0(51)87 jul5) (A7)

Na JjEa

and

df ()= f,a(8) = Fo(s) . (A8)
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