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We have developed a renormalization transformation, based on the existence of higher-order non-

linear resonances in the double-resonance model, that gives good predictions for the extension of
the wave function in that system due to nonlinear resonance overlap. The double-resonance model

describes the qualitative behavior, in local regions of the Hilbert space, of many quantum systems

with two degrees of freedom whose dynamics is described by a nonlinear Hamiltonian but a linear

Schrodinger equation.

I. INTRODUCTION

The phase space of nonlinear nonintegrable classical
conservative systems exhibits extremely complex struc-
ture consisting of regular Kolmogorov-Arnold-Moser
(KAM) tori intermixed with chaos. In some regions of
the phase space the structure is self-similar to all length
scales and exhibits scaling behavior in space and time.
KAM tori are the remnants of global conserved quanti-
ties. For many systems, when some parameter which
characterizes the size of the nonlinearity is small, KAM
tori dominate the phase space. However, as the non-
linearity parameter is increased in size, nonlinear reso-
nances in the system grow and overlap and destroy KAM
tori lying between them. The existence of KAM tori can
have a profound effect on the dynamics of a conservative
system with two degrees of freedom because some KAM
tori can divide the phase space into disjoint parts. When
such a KAM torus is destroyed by nonlinear resonance
overlap, the dynamics of the classical system may change
dramatically.

The mechanism by which KAM surfaces are destroyed
by nonlinear resonances has been studied extensively by
Greene, ' Shenker and Kadanoff, MacKay, and others.
KAM tori have irrational winding numbers. Each irra-
tional winding number can be represented uniquely by a
continued fraction. Greene showed that associated with
this continued fraction is a unique infinite sequence of
nonlinear resonances which approximate the KAM torus.
If the winding number of the KAM torus is represented
by the continued fraction

w=—[ao, a, , az, . . . ]=ao+
1

Q]+
a +2

then the resonances which approximate the KAM torus
have periodic orbits with winding numbers

w„=[ao, a
&
raz~, a„,~ ]

with lim„w„=w.The resonances having periodic or-
bits with winding numbers wo, w&, w2, etc. alternatively
lie on opposite sides of the KAM torus. The width of
each resonance depends on the nonlinearity parameter of

the system. As this parameter is increased, resonances on
an ever smaller scale grow until at a critical value of the
nonlinearity parameter, all resonances in the sequence
have grown large enough to punch holes in the KAM
torus making it a Cantorus, a barrier with a Cantor set of
holes through which phase-space trajectories can leak.
The KAM torus breaks abruptly as a function of the non-
linearity parameter. As the nonlinearity parameter in-
creases further, the Cantorus gradually disappears.

The behavior of nonlinear resonances is easiest to study
in nonlinear systems which are driven by a periodic exter-
nal field. Because of the nonlinearity of the driven sys-
tem, the external field induces infinite sets of nonlinear
resonances in the phase space of the system. When the
Hamiltonian is written in terms of the action-angle vari-
ables of the driven system, the induced resonances appear
as traveling potential-energy waves in the phase space (cf.
Appendixes A and B for examples). These are called the
primary resonances of the system. The primary reso-
nances interact to produce infinite families of higher-
order resonances. There is considerable numerical evi-
dence that the behavior of the phase space between any
two primary resonances is largely determined by those
two primary resonances and that the effects of primary
resonances outside this region tend to average out.
Therefore, in order to analyze the mechanism for de-
struction of KAM tori between two given primary reso-
nances, it is often sufficient to consider a Hamiltonian
composed of only those two resonances. It is this fact
that underlies the renormalization procedure of Escande
and Doveil. ' They begin with a Hamiltonian which de-
scribes a system with two primary resonances. It consists
of a particle moving in the presence of two cosine
potential-energy waves, one of which is at rest and anoth-
er which is traveling through phase space. This Hamil-
tonian, which they call the paradigm Hamiltonian, de-
pends on only three parameters, the amplitudes of the
two cosine waves and the relative wave number of the
two waves. The renormalization proceeds as follows.
They focus on a given KAM torus between the two pri-
mary resonances, By a sequence of canonical transforma-
tions they can select the two daughter resonances which
bracket this KAM surface. They then write a paradigm
Hamiltonian for these daughter resonances and neglect
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contributions coming from all other daughter resonances.
In so doing they obtain a new paradigm Hamiltonian
with two primary resonances and new amplitudes and
wave number. By repeating the process they obtain a
mapping of the amplitudes and wave number to ever
smaller scales in the phase space. The properties of this
map can be used to determine whether or not various
KAM tori exist for a given initial paradigm Hamiltonian.

There is now considerable evidence that nonlinear res-
onances and KAM-like behavior exist in quantum-
mechanical systems. Geisel, Radons, and Rubner have
studied the effect of KAM tori and Cantori, which are
known to be present in the classical standard map, on the
spread of probability in the quantum standard map.
They find that KAM tori and Cantori act as barriers to
the spread of probability and that probability decays ex-
ponentially across these barriers. Brown and Wyatt
have shown that a similar type of behavior exists for a
driven oscillator model. The phenomenon of nonlinear
resonance and resonance overlap in quantum dynamics
has been studied extensively by Herman, Zaslavsky, and
Kolovsky, Lin and Reichl, ' and Toda and Ikeda. "
We now know that just as for classical systems, nonlinear
resonance regions exist in the Hilbert space and for a
small nonlinearity parameter remain isolated from one
another. However, as the nonlinearity parameter is in-
creased resonances can overlap leading to an extension of
the wave function in the region of the inhuence of the
overlapping resonances. In addition, resonance overlap
leads to a change in the spectral statistics of states in-
volved in the resonance overlap, ' from a Poisson-like to
a Wigner-like distribution. This is considered one of the
manifestations of chaos in quantum systems. Recently,
Reichl' has given numerical evidence that primary non-
linear resonances in Hilbert space generate higher-order
resonances and that these play a role in facilitating reso-
nance overlap in quantum systems just as they do in clas-
sical systems.

In this paper we shall show that renormalization tech-
niques analogous to those of Escande and Doveil can be
developed to describe the phenomenon of resonance over-
lap and extension of the wave function in quantum sys-
tems just as it can be for a classical system. However,
rather than perform the renormalization on the Hamil-
tonian as is done classically, we shall perform the renor-
malization directly on the Schrodinger equation. We
shall begin with a general double-resonance model which
consists of two traveling cosine potential waves (two pri-
mary resonances). The renormalization procedure re-
quires that the amplitude of one of the waves be larger
than the other so that wave will dominate the system.
We then rewrite the Schrodinger equation in terms of
eigenstates of the system consisting of only a single large
wave (this is an integrable system). By so doing, we come
close to solving the problem. However, we find that in
this new basis, the Schrodinger equation contains an
infinite number of higher-order (daughter) resonances.
We then focus on a given pair of daughters and write a
double-resonance Schrodinger equation for them. This
procedure can be repeated and gives a renormalization
mapping which enables us to determine parameters of the

initial double-resonance model for which overlap occurs.
Our results give much better estimates for resonance
overlap than does the simple Chirikov estimate used until
now for quantum systems.

We shall begin in Sec. II by writing a general double-
resonance Schrodinger equation and then we will trans-
form it into the form of a paradigm Schrodinger equation
which is the basis of our renormalization transformation.
In Sec III we obtain WKB solutions for energies and
eigenstates of the single-resonance Schrodinger equation
in the region outside the resonance and we show that the
WKB energies agree fairly well with exact energies ob-
tained numerically. These analytic expressions enable us
to build the renormalization transformation. In Sec. IV
we use the WKB solutions to write the double-resonance
Schrodinger equation in terms of eigenstates of the
single-resonance equation. This generates an infinite fam-

ily of higher resonances. We show that the WKB ampli-
tudes for the higher-order resonances agree fairly well
with exact numerical expressions.

In Sec. V we write the renormalization mapping for
this system. The renormalization map relates the relative
wave number and amplitudes of a resonance pair at one
level (scale) to those at a higher level (smaller scale). The
renormalization mapping thus allows us to examine a se-
quence of resonance pairs on an ever smaller scale in the
Hilbert space. Bounded quantum systems have a discrete
spectrum so that in actuality we cannot go to infinitely
small scale in such systems. However, the mappings have
a stable manifold which separates regions in which reso-
nance overlap at smaller scale does not occur (the stable
side) from regions in which it does occur (the unstable
side). In the unstable region, the amplitudes grow so rap-
idly as we go to small scale that the mapping still gives
good predictions.

In Sec. VI we give numerical results showing that steps
by which overlap of the two primary resonances occurs
and we compare the renormalization predictions with ob-
served results. Finally, in Sec. VII we make some con-
cluding remarks.

II. THE PARADIGM SCHRODINGER EQUATION

The manifestations of chaos occur in quantum systems
when nonlinear quantum resonances zones overlap in the
unperturbed Hilbert space. ' As we have shown in Ref.
12, resonance overlap is facilitated by the existence of
higher-order nonlinear resonances that are generated by
the interaction of primary resonances. In this paper we
explore the structure of the network of nonlinear reso-
nances generated by any given pair of primary resonances
and develop a renormalization scheme to describe the
overlap of any given sequence of successively higher-
order resonance pairs.

Let us consider a typical pair of resonances found in
the standard map or square-well system discussed in Ap-
pendixes A and B. The Schrodinger equation can be
written



42 SELF-SIMILARITY IN QUANTUM DYNAMICS 4545

. a(8~e'"(t) ) a'(8~e "(t))
1

88

+ [ V, (0)cos[p, (0)8—
coot]

+ Vb (0)cos[pb (0)8+coot] )

x (8ie("(t)) (2.1)

quantities indicates that we are at the zeroth level of the
renormalization transformation. We shall assume that
our system has periodic boundary conditions with period
2~% and therefore we require
that (8~e' (t)) =(8+2m%)e' '(t)) and that p;(0)
=M;(0)/X (i =a, b), where M;(0) are integers. We can
also write Eq. (2.1) in terms of a traveling-wave basis. If
we note that

where V, (0) and Vb(0) are the amplitudes of the cosine
waves, p, (0) and pb(0) are wave numbers of the cosine
waves, coo is a radial frequency associated with this time
periodic system, and ~e' ') is the state of the system.
The parameters V;(0) and coo depend on Planck's constant
))1 as V, (0)-A and coo-A' '. The index 0 on the above

&8le")(t)&= g e'"'&k~e' '(t)), (2.2)

where k is a rational fraction, k =n/X, n is an integer,
and the summation gk „

is over all values in k. In
terms of the states ( k ~e' '(t) ) Eq. (2. 1) takes the form

a ke"'t ~ V, (0)' = k (k~e(0)(t))+ '
[e

' "&k —p. (0)le(0)(t))+e'"'(k+p. (0)le(o)(t))]
c}t 2

Vb(0) +;+ [e
' '(k —p„(0)~e( '(t))+e (k+pb(0)~e '(t)&] . (2.3)

As we have shown in Refs. 9 and 12, the resonance due to cosine wave cos[p;(0)8+t))ot] occurs at k =k; = +c))o/2p;(0)
wherei =a, b, and has a half-width bk; =[2V;(0)]'

We can transform to the rest frame of the cosine wave cos[p, (0)8—co„t]via a unitary transformation

U (())(t)=exp( iP (()) t)—, (2.4)

where

(k'iP„(())ik ) =(2kk, —k, )5k k, .

We introduce a state ~4( '(t) ) such that

e(0)(t)) =U „,(t)lO("(t)) .p (0)

(2.5)

(2.6)

The state ~4' )(t)) describes the behavior of the system in the rest fratne of the cosine wave, cos[p, (0)8—a)ot]. In
terms of this state, the Schrodinger equation takes the form

a k e(" t V, (0)
i — = (k —k, ) (k~4' (t))+ [(k —p, (0) e( '(t))+(k+p, (0)~4' '(t))]

+ ' [e"'"' ""'(k—p, (0)la"'(t) &+e
' "' ""'(k+pb(0)l@(0)(t)&]

Vb(0) +((v +) )~ ( —i(v +l)co t

(2.7)

where vo=pb(0)/p, (0) is the ratio of the wave numbers of the two cosine waves in Eq. (2.1). If we use the transforma-
tion in Eq. (2.2) to transform back to the angle picture, Eq. (2.7) takes the form

B 84 t)
i — = i —k, (—8~C)( '(t))+I V, (0)cos[p,,(0)8]+ V(b)0cos[ p(b)08+(v +0I) at)o] (j~84&' '(t)) .

(3t BO

(2.8)

Let us now rescale the angle so that O=p, (0)8. Then the stationary cosine oscillates once in period 2~ and Eq. (2.8)
takes the form

a ee")(t)
i —= ip, (0) ——k, & e~+")(t) ) + [ V. (0)cos(e)+ V, (0)cos[v,e+(v, + I )~,t]] & e~e")(t) ) .

Bt ' 86

(2.9)

If we introduce a change of phase
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& el@")(r)&
=

& el'("(t) &e'" ""'",
then Eq. (2.9) takes the form

. a&el~(0)( ) &

l
Bt

, &'& el' "(r) &= —
[1 .(0)]2 ~, +

~ v. (o)cos(e)+ v, (o)cos[v,(e+n, r)]] & el'")(r) & (2.10)

where coo=[(vo+1)/vo]coo. Equation (2.11) is the para-
digm Schrodinger equation and is the starting point of
our process of renormalization. In the subsequent sec-
tions, we shall always assume that V, (0)) Vb(0).

III. WKB EXPRESSIONS FOR PENDULUM STATES

I

and have the property that P':('(8) =P'(+'(8). From Eqs.
(3.2) and (3.3) we obtain

E(+ )y( + )( g ) +E( —)y(
—

)( g )

g2y(+ )( g)
+ V, cos(p, g)(t', +'(8) (3.4)

a'y, (8)
E,p((8) = — + V, cos(12,,8)p((8) (3.1)

where 1 =m /N )0 (m an integer), p((8) =
& 8l p( &

$((8) satisfies the boundary condition P((8)
=p((8+2rrN). Equation (3.1) has solutions of definite

parity, P, (8) (a= &,S),

g2ya(8)
E( P((8)= — + V, cos(p, g)$((8), (3.2)

where the symmetric solutions P() '(8) satisfy the condi-
tions P(( '(8) =(t)P)( —8) and P' ((8)=PP'(8) and the an-

tisymmetric solutions satisfy the conditions P((")(8)
= —P(("'( —8) and P' "()(8)= —()))'("'(8). Furthermore,
E&' ' is an even function of I. In the limit V, ~O,
p')

'(8)~(llew'mN

)cos(lg) and p((")(8)~(il
v'~N )sin(18). Let us now introduce the following
functions:

y(+ )( g) — [y($)( g) +y( A )( g) ]
1

(3.3a)

y(
—

)( g) — [y($)( g) y( A)( g) ] (3.3b)

for 1)0 with ()))o=Po('(8) and go=go(")(8)=0. These
functions reduce to traveling waves in the limit V, ~O

I

In order to obtain an equation for higher-order reso-
nances, we expand Eq. (2.10) in terms of eigenstates of
Eq. (2.10) for the case when Vb(0)=0. When Vb(0)=0,
Eq. (2.10) is integrable and is a form of Mathieu equation.
If V, (0) ))Vb(0) then we come close to solving Eq. (2.10)
by doing this, or at least we are in a basis which more
adequately describes the actual behavior of the system.
However, as we shall see in Sec. IV, we also reveal the
fact that this system contains an infinite number of
higher-order nonlinear resonances.

Let us consider the quantum pendulum equation (a
form of Mathieu equation)

where E +'=
,'(E +'—+E'+')and E' '= ,'(E'+' —E'+'—).I 2 I 1 1 2 l 1

Since P:('(8)=P'(+ '(8), we can introduce a new function
P~(8)=f1~~ '(8) and P ~(8)=P~~) '(8) where p has the
range —ao p & a(). Then Eq. (3.4) takes the form

E'+)Pp(8)+E' 'P p(8)

a2y, (8)
g2

+ V, cos(p, ,g)P (8) . (3.5)

If we make the change of variables, e=(M, 8, Eq. (3.5)
takes the form

E, (+y,)(e)+E,'-)y, (e)

, a'y, (e) + v. cos(e)y, (e) .ae' (3.6)

Let us now obtain the WKB solutions to these equa-
tions. Assume a solution to Eq. (3.1) of the form

P (8)=e ' . Then
if (0)

if" f' +[E —V—,cos((M, 8)]=0, (3.7)

[s —V, cos((M, 8)]'~

X exp f [s —V, cos()M, 8)]'~ dg
Pa 0

(3.g)

with E' ' = c. and E' ' =c so that in the WKB approxi-
mation E' '=0. It is easy to show that the condition of
validity, (f~" l &&1, of the WKB solution implies that the
WKB solution will only be valid when c. && U, .

The integral appearing in Eq. (3.8) can be done explic-
itly. We find

where fz =df Id 8. In regions where
l

f"
l
« 1, the solu-

tion to Eq. (3.1) can be written

P~(8;p,, ) =g~(8;tu, )

8 i"a"f d 8[v —V, cos(p, 8)]' = f de[a —V, cos(e ) ]'~p a

= 2 (s + V, )' [E(p,g/2+m/2, )(;)+E(m/2, ~)], .
Pa

(3.9)
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where E (6,a ) is the incomplete elliptic integral of the second kind, and a is the modulus and is defined
i~ =2V, /(e + V, ). The modulus Ir in the region of validity of the WKB approximation will be small. Therefore we
can expand the right-hand side of Eq. (3.9) in powers of a. If we keep terms to second order in a, we obtain

8 IM 0f d8[e —V, cos(p,,8)]'~ = f d6[s —V, cos(6)]'~
pg

(sk+ V, )' (1—
—,'~ )

—
—,'a sin(p, 8)

Pa
(3.10)

The WKB values for the energy eigenvalues cp are ob-
tained from the condition

f d8[e —V, cos(p, ,8)]'i2=2mpN

where p is a rational fraction, p =m/N, and m is an in-
teger. Using Eq. (3.6), the quantization condition be-
comes

tions of order V, /p in the subsequent calculations.
Equation (3.15) is valid for p ))V, . The WKB wave
function, Eq. (3.15), is normalized to one. A rather
lengthy calculation shows that

f d8[1/l (8)]*i/r (8)=5 (3.16)

The WKB solution to Eq. (3.6) can be written

(ep+ V, )' (1—
—,'a )=p

Thus the energy is given approximately by

(3.12) 1 +i I'(P/P )e —X SIn(e)]
e

(2~M )'" (3.17)

V, 1 V,
~p 1 + + I ~ ~

P 4 4 4 6

and ez=p when V, /p is small.
Let us now introduce the quantity

(3 13) and satisfies the normalization condition

2aM

f d6[1( (6)]*/ (6)=5 ~ (3.18)

x = a(e +V, )'1

4p,

where we have used the fact that p, N =M, . It is useful
to note that the WKB wave functions can be expanded in
a Fourier series

V. V.

2p, (s~+V, )' ' 2pPa

V2
+ 0 ~ ~

8p p,
(3.14)

Pz(6)=, g J„(x)e
(2aM, )' (3.19)

Then the WKB wave function, which is a solution to Eq.
(3.1), can be written

+i [p 8—x sin( p (9)]
g (8)= e

2nN
(3.15)

Equation (3.15) is a solution to Eq. (3.1) if we neglect
terms of order V, /p. These will always give contribu-

where J„(x)is the Bessel of integer order n.
It is of interest to compare the exact eigenvalues of Eq.

(3.2) to the WKB approximation e =p . In Fig. 1 we
plot E'+ ' versus p and compare it to c, =p for N= 1 and
M, =1 and in a range of values V, =240, 480, 720, 960.
In Fig. 2, we plot E' ' versus p for the same values of N,
M„and V, . We see that E'+'=p when E' '=0.

1500- 25.
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CL
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-500- 5-

—1000 I

10
I ' ' I

20
p

30 '10
0

0 10 20 30

FIG. 1. Plot of E'+'(p) for %=1, M, =1. Curves labeled a,
b, c, and d correspond to V, =240, 480, 720, and 960, respective-
ly. The four curves were obtained numerically. Also shown is a
plot ofp' vs p. For p large enough, E'+ '=p'.

FIG. 2. Plot of E' '(p) for %=1, M, =l. Curves labeled a,
b, c, and d correspond to V, =240, 480, 720, and 960, respective-
ly. These curves were obtained numerically.
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IV. EXPANSION IN MATHIEU EIGENSTATKS

Let us now return to the paradigm Schrodinger equa-
tion, Eq. (2.10), and expand it in terms of eigenstates of
the Mathieu equation (3.2). We first expand the wave
function ( B~y' '(t) ) in a complete set of eigenstates,

( e y")(t) ) = y [c,'"(t)y',"(0)+c,' "'(t)y', "'(e)]
1=0

where the functions (}()(! '(8) and P(! '(6) depend on pa-
rameters p, (0), i))); and V, (0), and are defined similarly to
(t)I '(8) and PI"'(8). The functions C! '(t) and C!"'(t)
depend on parameters (M, (0), N, vo, coo, V, (0), and Vb(0).
If we substitute Eq. (4.1) into Eq. (2.10) and use the
orthonormality of Mathieu eigenstates, we obtain

g( ( )(t)
1

2nM
=E,"C,'"(t)+V„(0)y f 'de[y(, )(6)]'cos[v,(e+n, t)] y C,")(t)y(,"(6),

1=0 0 a'=S, A

(4.2)

where a =S, A. Let us de6ne

C(+ )
( C(s)+ C( A)

) and C(+ )
( C(s) C( A)

)
1 1! v'2 ! ! ! v'2 ! !

If we now note that C! '=C'+!' and combine Eqs. (4.2) and (4.3) we can write (after considerable algebra)

BC,'+ '(t)—l
at I 1

=E'+'C'+'(t)+E' 'C' '(t)I 1

V~(0) 2~M, oc

+ ' f 'decos[, (e+a,t)] g [(y(,+')*y', ,"C,(,"+(y(,+))'y', C,',-']
1'=0

and

(}C' ( t) —E(+ )C( —)(t)+E(—)C(+ )(t)

(4.3)

(4.4)

Vb(0) 2aM (X)

+ — f 'decos[v (6+co t)] g [((}I)(, ')*&I+'C,'+)+(pI ')*&I 'C,' '] .
1'=0

(4.5)

(4.6)

Let is now note that C!' =C'+!' and P'! =(t'+('. Then we can write Eqs. (4.4} and (4.5) as a single equation. Let us in-

troduce the function P (8)=P~+('(6) for p & 0 and P (8)=P'+()((8) for p & 0. Similarly we define C (t ) = C~+) (t ) for

p & 0 and Cp(t ) =C'+~
)

(t ) for p &0. Then Eqs. (4 4) and (4 5}can be written

aC, (t) 271.M Qc

=E'+)C (t)+E' 'C (t)+V„(0)f 'decos[v, (e+g, t)] y [(y, )*y,, C, , ]

where the index p has the range —00 p
If we expand cos[vz(8+Got)] in exponentials, we can write Eq. (4.6) in the form

BCp(t) Vb ((}) 2~M,
i —= E'+'C (t)+E C (t)+ f decos[v (6+co,t)](!t! )"P C (t)

+ g t [A(p,p+q)e ' 'C + (t)+ A(p, p —q)e ' 'C~ ~(t)]
q &0

+[8(p,p+q)e ' 'C + (t)+B(p,p q)e ' 'Cp q(t)—]I (4.7)

where q =n/N with n an integer,
27rM +;, g

A(p, p q)= f dBe ' [!tp~(B)]*!t!+ (6),
and

2mM

8(p,p+q)= f dee ' [P~(6)]'(t)~ q(6) .

(4.8)

(4.9)

The equation for C (t) contains an infinite number of res-
onances. [Equation (4.7) and the coefficients A (p,p+q)
and 8(p,p+q) were also derived in Ref. 12 although an

analytic form of the coefficients was not given. ] Reso-
nances with coefficients A (p,p+q) lie on the side of the
large primary away from the small primary, while reso-
nances with coefficients 8 (p,p+q) lie on the same side of
the large primary as the small primary. In Figs. 3—5 we
plot some values of the coefficients B(p,p —q) for the
special cases X=1, M, =l, and v()= —

', , —', , and —', . [Note
that 8 (p,p —q) =8 (p +q,p).] In Fig. 6 we plot
8 (p,p —1) and 8 (p,p —2) for vo= —', , i)!'=1, and

V, (0) =240. Note that the amplitudes oscillate in the re-
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A (p,p+q) = 'V 5qX, —M KM JK( p Xp q) (4.10)

gion inside the large primary. This a urelp yq tu

th offii t 3( +
we in ef. 12 and we sh
p,p+q) are extremely small.

an p,p+q) for values of p ) [V (0 ]'
(3.7) we find

p, )] . From Eq.

and

B (p,p+q) =
qNMb+KM K( p p+q (4.11)

where K is an integer. Usin thesing ese results and the fact
p p, (p, can be determined froma p) =0 for

tg. , we can rewrite Eq. (4.7) for )~ orp +p

aC,(t), V, (0)
i — =p C (t)+

Bt P 2

K
l V CO

p —p (0)(vo+K) U —K(p)e C (t)]+[U (p)e ' 'C (t)+
K= —K

p+p (0)( o+K) (4.12)

where the ellipsis represents
UK(p) =JK(x —x )p p —po(vo+K) &

—~ ~ K ~ —(int
~ Mb /M, ) and

integer part of
~ Mb /M, ~

+ l.
Let us now note that

remaining terms, K* is the largest inte er K
K p =

K x —x +„(,+K)). Note that U~K(p)=A( +
U+K(p)=B(p, p+k) for (int ~M /M ') ~in b, () «K ~ ~, where (int ~Mb/M, ~

) indicates the

(K +v0) V, (0)
„0)(K+ o 2 2

Thus for p ))(K + v0) V, (0) and KWO we have

(4.13)
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1)K
+K(xp xp+p, (0)(K+v ))

For K=O we find

(vo+I(. ) V, (0)

2p
=—DK+. (p) .

0
(4.14)

(vo)'[ V, (0)]'
J()(x xp~ (()))1:D(p)—

4p4 0

Usmg the above coefficients, we can write Eq. (4. 12) in the form (for p ) )r~ p

de '(t),
,

Vb(0)
p 2

K 'P' p —p (0)(K+ ) t)e Cp +@ (0)(K+
K= —K

(4.15)

(4.16)

» Ftgs 7 —9, we compare the average amplitude (,B(p,p+q)) =—'[B(
=1, M, (0)=1, with the approximate am litudes D . ~e se

av ) p, p —
q p,p +q)] for v0=-', —', and

p
'

K. e see that the WKB approximations are fairly good althou h
ey ten to overestimate the amplitude as we get too close to the ed e of the lar e

a oug

where we expect th WKBe approximat&on to begin to break down.
~ ~

e e ge o t e arge primary resonance. However, this is

In Eq. (4.16), the Kth resonance is located at

voto
PK=

2p, (0)(K +v0)
(4.17)
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FIG. 9. A comparison of (B(p,p+q) ),„vsp and D, , +~ ) (p)+q l

vs p for vo= —', , X= 1, and V, =240, for the cases q=4, 5,6.
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We will now evaluate the amplitude of the /th resonance at the position of the Eth resonance. Then we can write

Dz+„(p)=Dx+„(pz). (The validity of this approximation was discussed in Ref. 12.) Let us now make this substitu-

tion in Eq. (4.16) and write it in terms of angle variables. We will let

&8~%"'(t) ) = y C,"'(t)e" . (4.18)

Since p =m/N, where m is an integer, the wave function &8~4"'(t)) satisfies the periodic boundary conditions
&8~'Il"'(t)) = &8+2mN~ip"'(t) ). Using Eq. (4.18), we obtain

. a&8~@"'(t)& a'&8~+" ~(t) &
i — = — + Vb(0) g Dtr+„(px)cos[p,, (0)(E +vp)8+ vpcopt] & 8~'P' "(t) ) + . (4.19)

ag' K= —K

Equation (4.19) is a Schrodinger equation which describes the state of the system in a basis consisting of eigenstates of
the large primary resonance. It is very similar to Eq. (2.1) in structure except that it contains an infinite number of res-
onances. We shall select two of these as the next step in our renormalization transformation.

V. RENORMALIZATION TRANSFORMATION

Having obtained the Schrodinger equation for secondary resonances, we will now select a pair of neighboring reso-
nances and write the paradigm Schrodinger equation for this resonance pair. This will give us the renormalization
mapping on the relative wave numbers and amplitudes of an arbitrary sequence of resonance pairs.

A. Renormalization mapping

Let us now select two neighboring resonance terms, K =N~ and K =N, +1 in Eq. (4.19). Then we obtain the follow-

ing double-resonance Schrodinger equation:

l
. a&8~~"'(t) & a'&81+'"(t) ) + Vb(0)DN +i +, (px, +i )cos[p, (0)(M, +A, , +vp)8+vptppt)

at a82

+ V (0)D, „(p,„)cos[p,(0)(M, + 1 —
A, + v )8+v tp t] . (5.1)

We have included a factor A, „where k, =0 or 1, in Eq. (5.1) so that at subsequent steps of the renormalization transfor-
mation we can choose either of the two resonances as a basis for building the WKB solutions. We can rewrite Eq. (5.1)
in the form

. a& 8~% "'(t) & a'& 8~4' "(t))
i — = — + [ V, (1) cso[p, (1) 8 tp, t]+ V—(b1)c o[ps(b1) 8 cuit j & 8~ %i(t—) ) (5.2)

p, (1)=p, (0)(N, +A, i+vp),

where

where V, (1)=Vb(0)D~ +i, +„(px+„), VI, (1)=Vb(0)D~ +, „+,(px +, i ),

pb(1) =p, (0)(N, +1—
A, , +vp), cp, = —

vpcop.

Equation (5.2) now has the same form as Eq. (2.1) and we can use the same procedure as in Sec. II to write it in the
form of a paradigm Schrodinger equation. We find

. a& e~xI "(t)),a'& e~x" I(t) )= —i.(1)', + I V. (1)cos(e)+ V, (1)cos[v,(e+co, t)]I &e~X'"(t)) (5.3)
at e'

pb(1) N, +1—
A, , +vp

p, (1) N, +A. , +vp

(v, —1)
and co&

= (5.4)

The cosine waves in Eq. (5.3) have speed e=0 and e= —tp, . The resonance condition places the resonances that re-
sult from these cosine waves at p=0 and p= —tp, /2M, (1), respectively. Thus they are separated by a distance
p~, /2M, (1)'. The half width of the ith resonance is bp; =[2V;(1)]'~ (i =a, b). -'4 The Chirikov condition for overlap
of the two resonances in Eq. (5.3) is given by [2V, (1)]' +[2',(1)]'~'=tp, /2M (1)~. Let us introduce two new vari-
ables, X(1) and Y(1) defined X(1)=2M,(1)[2V,(1)]' /co, and Y(1)=2M, (1)[2Vb(1)]'~~/~p, . Then the Chirikov cri-
terion is X(1)+Y(1)= 1. Note that the amplitudes, X and Y, are independent of i'.

The renormalization transformations can be expressed in the following form in going from the ath to the (&+ 1)st
paradigm Schrodinger equation. The wave number transforms as

+] + 1 —k~+ )+v
va+ 1 N +, +A. +)+v

(5.5)
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The frequency transforms as

~a+& = v+, —1

vaja . (5.6)

X (a+1)=

The mapping of X (a) and Y(a ) from the ath level to the a+ 1 level is given by

( 1) +~+ ~+~ (N +, +1—
A, +, +v ) (N +, +A. +, +v )

'+'(N
( +A. , )! va

2

(N +, +A, +)+v ) X(a) +' +'
X Y(a) for N +, +A, +)%0,

4v
(5.7a)

(N~~, +1—
A, +, +v ) (N +)+A, +)+v )X (a+1)= Y(a) 1—

va

and

v+ (a)
64

for N, +(+A, +|=0, (5.7b)

Y (a+1)= (N +, +1—
A, +)+v ) (N +, +A, +, +v )

2
va

for N +&+1—
A, +&WO,

( 1) a+1 a+1

2 "' +'(N, +1—X.+, )!

(N +1—
A, +v )3X(a)~ +' +'

X Y(a)
4v

(5.8a)

Y (a+1)= (N.„+1—X.„+v. )'(N.„+X.„+v. )'
Y(a) 1—

va

v+ (a)
64

for N +, +1—)(, +, =0. (5.8b)

The mappings in Eqs. (5.5)—(5.8) allow us to determine
whether or not any given sequence of resonance pairs
overlap as we go to small scale in the Hilbert space. A
particular sequence is determined once we fix A, and N
at each scale. If overlap has occurred between all se-
quences of higher-order resonance pairs between the two
primary resonances, then we know that there is a con-
tinual path for probability to flow between the two pri-
mary resonances. The possibility of mappings such as
those in Eqs. (5.5)—(5.8) has been proposed by Berman
and Kolovsky, ' however no explicit expressions were
given.

B. Fixed points of wave-number mapping

The wave-number mapping, Eq. (5.5), can be studied
independently of the amplitude mapping Eqs. (5.7) and
(5.8) and determines the particular sequence of resonance
pairs that is followed in the amplitude mappings. The
relative wave number v at the o,'th level of the renormal-
ization transformation is determined by the sequence of
values, N ~ and A. ~ (a' ~ a), that precede it. Thus we can
write v schematically in the form

v = IN, A, ;N, , A, ». . . , N»A, , ;voI

For the special cases in which k is fixed to be either 0 or
1 for all a, v can be written as a continued fraction. Let
us consider these two cases separately.

Case (i) (A, =0 for all a). For this case the relative
wave number can be written as the continued fraction

1
v, = tN, O;N, , O;. . . ;N„O;voj=1

N +v

=[1,N, +1,N, +1, . . . , N~+1, Ni+vo]

N +1+
N i+1+ 1

N]+vo

(5.9)

For the special case N =n for all o; the mapping has
fixed poirits ' 7„=—,'[1 n+(n +2—n+5)'~ ], where
n 0. v'„canbe expressed as a continued fraction

v„(A,=O)=[1,n+I, n+1, . . . ] . (5.10)

theFor n =0 this
v' '=@=[(1+&5/2)].

Case (ii) (A, =1 for all a). For this case the relative
wave number can be written as the continued fraction

v =[N, 1;N, , 1;. . . ;N, , l;voI

is gust golden mean,

+v
N +v ]+1

v +n
v +n+1 1+ n+v

(5.11)

=[ 10, N, 1, N, , I, . . . , Nz, 1,N, +vo] .

For the ease N =n for all a, the mapping for the rela-
tive wave number takes the form
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This equation has fixed points at
V'„"=—,'[ —n +(n +4n)'~ ] with n ~ l. If we iterate Eq.
(5.11), we find that v„"can be expressed as a continued
fraction G)o

2
7'„"=[0,1,n, l, n, . . .]= (5.12)

1

1+
For n = 1 this is just the inverse golden mean,
vI"=[(&5—1)/2]. Continued fractions with the struc-
ture [ap, a, , . . . , a„,l, 1, . . . ] define "noble" resonance
sequences. It appears that the noble resonance sequences
in the quantum case are often the last to overlap as is true
classically. This can be seen by studying the stable mani-
folds that result from the mappings Eqs. (5.7) and (5.8).

G)o

2

V, =
)

=2

C. Stable manifolds

We have studied the mapping Eqs. (5.5)—(5.8) for three
different choices of the primary resonances. We have

taken N= 1 and have considered vp= —', [p, (0)= l,p&(0)
= 1],vp =—', [p, (0)= l,p& (0) =3], and vp =—', [p, (0)= 1,
p&(0)=5]. In terms of our original traveling-wave basis,
the large primary resonance is centered at k, =cop/2', (0)

while the small primary lies at k& =capp/2p&(0). After the

first step of the renormalization transformation, in which

we expand the Schrodinger equation in terms of the
eigenstates of the large primary resonance, we obtain an
infinite number of secondary resonances whose relative
wave numbers are given by

N)+1+vo
v)—

N]+vo

where —~ ~N, ~ ~. These secondary resonances are
located in the Hilbert space of eigenstates of the large pri-
mary at

VpCOO

2p, (0)(N, +vp)

For p~ &&[2V,(0)]', we can locate these resonances in
l

the original Hilbert space at

k~ =pN +k,

since far from the large primary resonance the eigenstates
become approximately traveling waves. Let us now con-
sider the three cases vo= —', , vo= —', , vo= —', separately.

Case (i) (vp= —
', ). For the case vp= —', we must choose

the plus sign in the cosine wave, cos[p&(0)0+capt], Eq.
(2.1). Thus cop = [(vp+ 1)/vp]cop = 2cop. The mapping
equations contain stable manifolds which separate values
of X(0) and Y(0) for which a sequence resonance pairs
overlap and for which they do not.

The two primary resonances (shaded) and two pairs of
secondary resonances are shown schematically in Fig. 10
(the small primary becomes a secondary). If N, =0 and
X=0, then v, =—', . The two resonances forming this reso-
nance pair are located at pp= —

cop and p, = —cop/2 (or

FIG. 10. A sketch of resonance pairs for vo= —,
' and v, =

—,

and v, = —', . The relative spacings and wave numbers are shown

accurately but the sizes are not to scale.

kp= —cop/2 and k, =0). The two resonances corre-
sponding to N, = 1 and A, =0 have relative wave number

v, =—', . They are located at p, =0 and pe=cop/6 (or

kp= —cop/2 and k, = —cop/3). The mapping must be
performed so that at each step, the larger of the two reso-
nances is used to determine X(a) and the smaller deter-
mines Y(a).

We have searched for overlap of a large variety of reso-
nance sequences. We find stable manifolds separating the
stable region of values (X(0),Y(0)) for which no overlap
occurs as we go to smaller scale [that is, X(a)~0 and
Y(a)~0 as a~ ~], from the unstable region in which
overlap does occur as we go to smaller scale [X(a)—mao

and Y(a)~ ap as a~ ap ]. Once we cross the stable man-
ifold from the stable to the unstable side, the growth in
X(a) and Y(a) is rapid. We were interested in predict-
ing the values (X(0),Y(0)) at which overlap of the reso-
nance pair v&= —', occurs. This happens when all reso-
nance sequences starting from the pair v, =—', have over-

lapped. We found that there was a significant range of
values for which we could maintain X(a)) Y(a) with
A, =0 for all a. In Fig. 11, we show the stable manifolds
corresponding to sequences (with A, =0 for all a ) v = [
1,0,0, . . . , 0, 0, —

,'], v=[1, 1, 1, . . . , 1,0, —
,'], and

v= [1,2, 2, . . . , 2, 0, —,
' ] [these correspond to v, =—', and (a),

(b), and (c), respectively, in Fig. 11). We also studied
overlap of the resonance pair v, =—', . In Fig. 11 we show

stable manifolds for sequences v= [1,0, 0, . . . , 0, 1, —', ],
v=[1, 1, 1, . . . , 1, 1,—', ], and v=[1,2, 2, . . . , 2, 1, —,'] [these
correspond to v, =

—,
' and (d), (e), and (f), respectively, in

Fig. 11]. It is interesting that these sequences each corre-
spond to the last [for increasing X(0) and Y(0)] overlap-
ping sequence for some range of X(0) and Y(0). Note that
as X(0) and Y(0) become roughly equal, the sequences
v=[1,0,0, . . . , 0,0, —,'] and v=[1,0, 0, . . . , 0, 1, —', ] which

are noble sequences are the last to overlap. In this case
we approach the standard map. Also, note that overlap
between resonance pair v&

=—', occurs for smaller values of
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FIG. 11. Some stable manifolds for vi= —,
'. Solid symbols in-

dicate curves for vl = —', and (a) n =0 for a) 1, (b) n =1 for
a) 1, and (c) n =2 for a) 1. Open symbols indicate curevs for
v, =

—, and (d) n =0 for a ) 1, (e) n =1 for a ) 1, and (f) n =2
for a ) 1. The dashed line is the Chirikov prediction,
X(0)+ Y(0)=1.

X(0) and Y(0) than does overlap of resonance pair v, =—', .
Case (ii) (vo= —', ). For this case, coo=[(vo —I)/vo]coo

3
cc)o In Fig. 12, we have given a sketch of the two pri-

mary resonances (shaded) and two pairs of secondary res-
onances v, = 4(N, =0) and v, = ,'(N, =1). Ag—ain, we

show the relative wave numbers and positions of the reso-
nances accurately but the width of the secondaries is ex-
aggerated. For this case, the secondary pairs are much
closer together than for the case vo= —

,
'and lie further

from the large primary. In Fig. 13, we show the stable
manifolds for the last [as X(0) and Y(0) increase] reso-
nance sequences to overlap for the resonance pairs v&

= 3,
—,', —', , and —', . For these four cases the resonance sequences
were given by A. =0 for all a
and v=[1,0,0, . . . , 0,0, -', ], v=[1,0,0, . . . , 0, 1, -', ],

FIG. 13. Some stable manifolds for v, = —', . For all curves

shown, n =0 for a) 1. The dashed line is the Chirikov predic-
tion, X(0)+ Y(0)=1.

v=[1,0,0, . . . , 0, 2, —', ], and v=[1,0,0, . . . , 0, 3, —', ], re-
spectively. Thus, the noble resonance sequences in these
cases were the last to overlap.

In Figs. 14 and 15, we show additional stable manifolds
for the cases v] =—', and v, =

—,'. In Fig. 14, we show stable
manifolds for the sequences (a) v= [1,0, 0, . . . , 0, 0, —', ], (b)
v=[1, 1, 1, . . . , 1,0, —', ], and (c) v=[1,2, 2, . . . , 2, 0, —', ] for
the resonance pair v, =—', . Clearly the noble resonance se-
quences are the last to overlap. In Eq. (5.6), we show the
stable manifolds for the sequences (a)
v=[1,0,0, . . . , 0, 1,—', ], (b) v=[1, 1, 1, . . . , 1, 1,—', ], and (c)
v=[1,2, 2, . . . , 2, 1, —', ] for the resonance pair v, =

—,'.
Again, the noble resonance sequences are the last to over-
lap over the range of X(0) and Y(0) for which our theory
is valid.

Case (iii) (vo==', ). For this case, coo=[(vo —I)/vo]coo
= 4coo. in Fig. 16, we show a sketch of the two primary
resonances (shaded) and two pairs of secondary reso-
nances v, = ', (N, =0) and —v, = ', (N, = 1). The—relative
wave numbers and positions of the resonances are given
accurately but the width of the secondaries is exaggerat-
ed. For this case, the secondary pairs are still farther

0.20
v, =3/i, v, =4/3

0.15-

BNo 6)
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4
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4

=qr

v(o)
0.10-
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r I
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'
~
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FIG. 12. A sketch of resonance pairs for v0= —', and vl= —,

and vl = —'. The relative spacings and wave numbers are shown
accurately but the sizes are not to scale.

FIG. 14. Some stable manifolds for vo= —', . and v, =
—, and (a)

n =0 for a) 1, (b) n„=1for a) 1, and (c) n =2 for a) 1.
The dashed line is the Chirikov prediction, X(0)+ Y{0)= 1.
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FIG. 15. Some stable manifolds for vo= —', . and vl = —„'and (a)

n =0 for a) 1, (b) n =1 for a&1, and (c) n =2 for a&1.
The dashed line is the Chirikov prediction, X(0)+ Y(0)= 1.

X(0)

FIG. 17. Some stable manifolds for vo= —', . For all curves

shown, n =0 for a ) 1. The dashed line is the Chirikov predic-
tion, X(0)+ Y(0)=1.

away from the large primary than was the case for vQ

or vQ l
The stable manifolds for the last resonance se-

quences to overlap for the resonance pairs v&
=—'„—'„and

—', are shown in Fig. 17. These stable manifolds corre-
spond to A, =0 for all a and (a) v=[1,0,0, . . . , 0,0, —', ],
(b) v=[1,0,0, . . . , 0, 1,—', ], and (c) v=[1,0, 0, . . . , 0,2, —', ].
Other sequences we studied had stable manifolds lying at
lower values of X(0) and Y(0) than did these resonance
pairs.

VI. NUMERICAL DISCUSSION

There have been a number of studies which indicate
that resonance overlap in quantum systems can lead to a
fairly abrupt spreading of probability over the region of
Hilbert space which is influenced by the resonances. '
There is also evidence of KAM behavior. That is,
blockages to the spread of probability which in classical
systems would be attributed to KAM surfaces. Probabili-

o

2

ty appears to decay exponentially across these barriers.
We have considered two cases, coQ=120 and coQ=240,

of the double-resonance model with N= 1, p, (0)=1, and
p, b(0) =3 for both cases (this was also studied in Ref. 12),
and we have compared the predictions of the renormal-
ization transformation with the actual spread of probabil-
ity. The effect of increasing the frequency coQ is to move
the primary resonances farther apart and this also in-
creases the number of states between the two primaries.
Once we fix the frequency coQ the positions of the pri-
maries are fixed. However, we can still adjust their size.
In the following we will fix the size of the small primary
and adjust the size of the large primary. We start with all
the probability initially on the state at the center of the
small primary and we then integrate the equations of
motion, Eq. (2.2), for a long time (many periods
T=2m /co )oto determine how far the probability can
spread. We typically find that after a few periods the
probability reaches its maximum extent and does not
spread further although it may slosh around within the
region in which it is confined. The manner in which the
probability spreads gives us some idea about the nature of
the barriers and/or resonances that lie in its path. In or-
der to attempt to eliminate local fluctuations due to
sloshing we have computed the spread after ten different
times and have averaged over those ten different sets of
values according to the equation

5

I'I, =
~'& 2 [I'pp'(2j) I'+ I+'k"(2.3j)I'],

5M
14

o

6
M, -
10

2Mo

6
VI

5

FIG. 16. A sketch of resonance pairs for vo= —', and vl= —,

and vl = —.The relative spacings and wave numbers are shown

accurately but the sizes are not to scale.

where 4k '(t) is the solution of Eq. (2.2) at time t assum-
ing initial conditions l%& '(0)

l

=1 and l+I, '(0)l =0 for

kWkb
For the case when coo=120 we fix Vb(0)=20 and find

Y(0)=0.158, while for the case coo=240 we fix V&(0)= 80
and again find Y(0)=0.158. From Fig. 13, we expect
overlap of the resonance pair v&

=—', to occur for
X(0)=0.23, while for resonance pair v, =

—,
' we expect

overlap to occur for X(0)=0.4. We will now show how
the probability spreads through these two regions and
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compare this spread with the predictions of the renormal-
ization transformation. We will first consider the case
when coo= 120.

Case I (coo=120, %=I, vu= —3, Vb(0)=20). For the
case when coo= 120 the large primary resonance is located
at k, =60 and the small primary is located at kb=20.
Thus there are 40 quantum states separating the centers
of these two resonances. In Ref. 12, we showed (and our
current calculations support the fact) that the largest
secondary resonances lie between the two primaries and
this is the region we focus on here. We have probed the
Hilbert space in the following way. We fix Vb(0) =20 and
choose values for V, (0) ranging between 30 and 190. We
start all the probability at the center of the small pri-
mary. That is, we set ~'pro'(0)

~

=1 and ~4p'(0)
~

=0 for
k%20 and we integrated Eq. (5.2) for many periods
T=2nlcoo (a time much longer than necessary for the
probalility to reach its maximum spread). We then find
how probability is spread over states, 4'i, '(t) In F. ig. 18,
we show the average spread of probability, Pk, for two
cases, V, (0) =20 and V, (0)= 190. Note the asymmetry in
the spread of probability in the direction of the large pri-
mary.

In Fig. 19, we focus on the region k=30 to k=44 and
show the extent of the spread for nine di8'erent values of
V, (0) [with Vb(0) =20]. The secondary resonance pairs
v, =

~4 lie at ko =20 and k, =30. From Fig. 13 we predict
overlap to occur when X(0)=0.23 and I'(0) =0.158.
However, for this case, we do not expect the theory to
work well. The half-width of the resonance at ko =20 is
5kb =[2V&(0)]' =6.3. Thus the resonance at ki =30
lies within three quantum states of it. We expect WKB
to give too large a value for X(0). In addition the stable
manifold curve is almost flat and is very sensitive to any
error in X(0). For example X(0)=0.23 we get V, (0)=42
while for X(0)=0.2 we get V, (0)=30. At V, (0)=30 we
see that overlap has occurred. Probability has spread be-
tween the resonance pair v&

= 3.
We expect better results for the resonance pair v, =—

which lies at k, =30 and kz =36. The stable manifold in
Fig. 13 indicates that there is blockage between k=30
and k=36 until X(0)=0.4 or V, (0)=128. In Fig. 19, we

] 0-'

10

10

10

0

0
0
]0
30
50
70
90

]0'
30 32 34 36 38 40 42

FIG. 19. The average probability, P„=—,', g'=, [l+a"12j)l'
+ ~qip'(2. 3j)~ ] obtained by solving Eq. (2.3) numerically for
M, (0)= 1, M3(0) =3, cop = 120, Vb(0) =20, and a variety of values
of V, (0) as indicated in the figure. The initial conditions for all

curves are ~VIO'(0) ~'=1 and ~+Ik"(0)~'=0 for k%20. Note that
the vertical axis is a log scale.

10

k IO 1

see exponential decay into this region until V, (0)=90.
When V, (0)=110,the probability has spread into the re-
gion between resonance pairs v, =

—,
' and v, =—', which, ac-

cording to Fig. 13, overlap at about the same values of
X(0).

There is another interesting phenomenon at work here.
We see that the probability for V, (0)=130 is pushed
backward relative to where we expect it to be. This ap-
pears to be due to the fact that it is hitting the edges of
the large resonance that is pushing into that region from
the right. In Fig. 20 we show the edge of the large reso-
nance (shaded area), whose position we have established
using the estimate for the half-width, bk, =[2V, (0)]'~ .
From Ref. 12, this gives fairly good predictions to within
a few quantum states. For V, (0)=110 it has not yet
reached k=44 (rightmost extent of our figure). However,
at V, (0)=130 it just begins to enter the figure and at

10 '

10

10 ]

10

10
30 34 36 42 30 34 38 42

10 20 30 40

FIG. 18. A plot of P& for M, (0)=1, M3(0}:3 ~p:120,
Vb(0)=20, and V, (0)=30 and 190 as indicated in the figure.
The same initial conditions were used as in Eq. (6.1). Note that
the vertical axis is a log scale.

FIG. 20. Plot of curves from Fig. 19 indicating their position
relative to the edge of the primary resonance. The large pri-

mary has a half-width of [2V, (0)]'~ and for coo=120 is cen-

tered at k=60. The spread of probability appears to be blocked

by the edge of the large primary [ef. (c) and (d)] before it finally

penetrates into the interior of the large primary resonance re-

gion.
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FIG. 21. A plot of P& for M, (0)=1, M3(0)=3, coo=240,
Vb(0) =80, and V, (0)=320 and 1040 as indicated in the figure.
The same initial conditions were used as in Eq. (6.1). Note that
the vertical axis is a log scale.
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V, (0)=150 it has blocked and pushed the probability
back from its expected position. When V, (0)=170, the
probability has overcome KAM barriers at the edge of
the large primary and has penetrated into it. At this
point, we can say that overlap between the two primary
resonances has occurred. Note that our stable manifolds
predict that probability spreads between the two primary
resonances for V, (0)=130. We observe it occurring for
150~ V, (0) ~ 170. The Chirikov prediction gives
X(0)+Y(0)=1 or X(0)=0.843 and V, (0)=570 when
Vs(0)=20. Thus the renormalization predictions are ex-
tremely good.

Case II (ru&=240, N=l, v&= —3, V&(0)=80). For this
case the large primary resonance is located at k, =120
and the small primary is located at kb=40 so that 80
quantum states separate the two primaries. We set
Vb(0)=80 and allow V, (0) to range between V, (0)=320
and V, (0)=1040. As before, we start all probability at
the center of the small primary and let the probability
How to the maximum extent allowed by the KAM bar-
riers. In Fig. 21 we show P„for two limiting cases,

1 0 l::;:.:::::,::::::.:.::;:;::::.::::;:;:;::.::.:
1

10 '1

1

10-71

ep
' e8' 7'e 84

()
60 68 76 84 92

FIG. 23. Plot of curves from Fig. 22 indicating their position
relative to the edge of the large primary resonance. The large
primary has a half-width of [2V, (0)]'~~ and for coo=240 is cen-
tered at k=120. The spread of probability appears to be
blocked by the edge of the large primary [cf. (d) and (e)] before
it finally penetrates into the interior of the large primary reso-
nance region.

V, (0)= 320 and V, (0) =1040. Again note the asymmetry.
In Fig. 22, we show a sequence of values of P„for values
of V, (0) ranging from 320 to 1040. The resonance pair
v

1 3
lies at k 0

=40 and k, =60. The half-width of the
resonance at k0=40 is 6k=12.6 so the secondary lies
further away than in the previous case. We predict over-
lap of this resonance pair at X(0)=0.23 or V, (0)=170
[X(0)=0.2, V, (0)=128]. So overlap has occurred by

V, (0)=320. The secondary resonance pair v, =
—,
' lies at

k, =60 and kz =72, while secondary resonance pair
v, =—', lies at k&=72 and k3=80. We predict overlap
when X(0)=0.4 or V, (0) =512. From Fig. 22, we see that
the probability has spread into the regions between reso-
nance pairs v, =

—,
' and v~

=—', when V, (0) =720. For
V, (0)=800 the spread of the probability has stopped. In
Fig. 23 we show the position of the large primary (shaded
region). For V, (0) ~ 880 the probability has entered the
region of the large primary and overlap between two pri-
mary resonances had occurred. Chirikov predicts this to
happen for V, (0)=2700 while the renormalization pre-
dictions give V, (0)=720.

FIG. 22. The average probability, Pk =,~ QJ=] [IOP'(2j)l
+l'PI. '(2. 3j)l'] obtained by solving Eq. (2.3) numerically for

M, (0)=1,M3{0) 3 coo 240 Vb(0)=80, and a variety of values

of V, (0) as indicated in the figure. The initial conditions for all
curves are l%~~'10)

l
=1 and l4'k '(0)l =0 for k%40. Note that

the vertical axis is a log scale.

VII. CONCLUSION

In the preceding sections we have developed a renor-
malization transformation which is based on the ex-
istence of higher-order nonlinear resonances in
quantum-dynamical systems. It is interesting that the re-
normalization mapping itself depends on dimensionless
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variables and does not depend explicitly on Planck's con-
stant A. The mapping relates the wave numbers and am-
plitudes of the resonance zones on successively smaller
scales in the Hilbert space, and gives fairly good predic-
tions for the parameter values at which resonance overlap
occurs in the Hilbert space. One might object that the re-
normalization mapping has no meaning as we go to scales
where the resonance pairs have a size smaller than the
spacing between quantum numbers. However, in prac-
tice, the growth of resonance amplitudes is so rapid as we
cross the stable manifold into the unstable region that the
stable manifold still appears to give good predictions in
the quantum systems we have looked at.

We have not attempted in this paper to study the devi-
ations of the predictions of our renormalization theory
for quantum systems from those of classical renormaliza-
tion theory. It is known from numerical experiments
that it requires stronger external fields to remove KAM
barriers in quantum systems than in the corresponding
classical systems. There have been attempts to explain
this based on semiclassical extensions of classical scaling
theory. ' ' Perhaps the simplest is that due to MacKay
and Meiss' ' who simply require that a Cantorus ceases
to be barrier to quantum wave functions when the flux
(classical phase-space area) 6 W across the Cantorus
satisfies the condition A8') A rather than b 8'&0 as is
true classically. This gives quite good qualitative predic-
tions for the shifts from classical behavior observed in
quantum systems.

Understanding when resonance overlap occurs in a
given quantum system is important because it leads to ex-
tension of the wave function in that region and may have
profound effects on the dynamics (such as ionization, if
we are considering electron states in a molecule). We see
that KAM behavior causes localization of the wave func-
tion in Hilbert space. However, this type of localization
must be distinguished from Anderson localization
which occurs in regions of extreme resonance overlap
(where KAM behavior has been destroyed).

It is important to note that the systems me have con-
sidered exhibit highly nonlinear behavior and in fact show
many of the phenomena observed in nonlinear classical
systems (except chaos if the spectrum is discrete) euen
though the Schrodinger equation for this system is linear
The type of behavior we have observed here is probably
typical of most quantum systems which have two degrees
of freedom and nonlinear Hamiltonians even though the
Schrodinger equation is linear.
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APPENDIX A: QUANTUM STANDARD MAP

In this appendix we write the quantum standard map
in terms of the resonance picture. The standard map

may be viewed as describing a rotor subject to repeated
5-function kicks occurring with period T and with an am-
plitude which depends on the angular position of the ro-
tor. The Hamiltonian for the classical standard map can
be written

J2 oo

H = +K cos(0) g 5(t —nT)2I (Al)

where J is the angular momentum of the rotor, 8 is its an-
gular position, and I is its momentum of inertia. The pa-
rameter K is the strength of the kicks and T is their
period. If we note the identity

oo 00

5(t nT)—=—g cos
n= —~ k=1

2mkt 1

T +T (A2)

and note that the angular momentum operator can be
written 1= i fiB/—BH, then the quantum Hamiltonian can
be written

8 K+—cos(8)2I gg' T
~ r

K ~ g
2m.kt

8
2n.kt

(A3)

The Schrodinger equation for the 5-kicked rotor, in the
angle picture, can be written

.„ae W' a'e K
Bt 2I gg2 Tk

2m.kt
cos 8—

T

(A5)

Equation (A5) can be written in dimensionless form. It
becomes

B%„ cc—
n 2qp + y (

—rcokrqi +e +icokry
)n 2 n —1 n+1

k = —oo

(A6)
where v =At/2I, coo=2Ico/A, and e=2KI/A T. Thus, in
terms of dimensionless quantities the primary resonance
zones are located, in the Hilbert space of angular momen-
turn states, at nk =cook /2 and have a half-width of
hnk=&2e In terms o.f the original units we have
nk=tokI/R and Ank =2(KI/A T)' . If comparison is
made with the paper of Grempel, Prange, and Fishman
we find for the parameters used in Fig. 10 of that paper,
nk=1. 3k and ink =1.5. Thus they are well within the
regime of resonance overlap. This is reflected in the fact
that their quasienergy eigenstate is spread over many
states of the Hilbert space.

(A4)

where 4=%(8,t) In terms . of the angular momentum
quantum number n the Schrodinger equation takes the
form

A' n' K —i cokty + i rukty
)

Bt 2I " 2T k = —oo
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APPENDIX B: DRIVEN SQUARE WELL
H = g Titan'~n )(n

~

H =H —e(ix i
a}—cos(cot), (Bl)

Let us consider a particle in an infinite square-well po-
tential [ V(x) =0 for 0 & x & 2a and V(x) = ~ otherwise]
driven by a monochromatic external field. The Hamil-
tonian may be written

4aecos(an't) " " in' )(n
~ (B4)

(n —n' odd) where A=A'ir /8ma . It is useful to intro-
duce a change of summation variables, N =n'+ n and
M =n' —n. Then the Hamiltonian can be written

where 80 is the Hamiltonian for the unperturbed particle
in the infinite square-well potential, e and e are the exter-
nal field amplitude and frequency, respectively, x is the
particle position operator, and t is the time. The absolute
value x

~
appears in Eq. (2.1) because we will expand in

traveling-wave states
~
n ) (n is an integer) normalized on

the interval —2a to 2a. In the position representation
(x~n ) =(I/&4a )exp(inirx/2a). In the traveling-wave
basis, matrix elements of Ao are given by

H= y %II
~ )( ~+

n = —co

X g g, I-,'(X+M) ) (-,'(X —M) I

X= — M= —oo

(B5)

(M and N odd) and the Schrodinger equation for this sys-
tem can be written

$2 2 2

&n'~H, in ) =
Sma

(B2) 4aecos(cot) ~ 1
( i ( ))

M= „M

&n'/ /x/ /n)=

4a
for (n' —n) odd

ir (n' n)—
0 for (n' n) eve—n . (B3)

The total Hamiltonian can be written

where A is Planck's constant and m is the mass of the
particle. Matrix elements of x are given by

(B6)

(M odd) where i%(t) ) is the probability amplitude for the
system at time t Becau.se the potential at the walls of the
square well is infinite, the wave function must be zero at
the walls. Thus (0~ %(t) ) = (2ai+(t) ) =0 and
(nl+(t)) = —( —n +(t)).

Let us now write the Schrodinger equation in terms of
dimensionless quantities. Let r =Qt, coo =co/II, and

q =2ae/fiQir We th.en find

i =n (n~+(r))+q g [[e ' (n —M~V(r))+e ' (n +M~'I(lr))]j .87 M = —ocM odd ~ (B7)

It is also useful to introduce angle variables P=m.x/2a. We can transform to the angle picture by means of the trans-
formation (/~4(r)) = g„" „(P~n)(n~%'(r)), where (Pin ) =e'"~/&2ir. The range of P is —ir to nThe physi. c. al
range (in the well) is 0 to ir Then the . Schrodinger equation takes the form

[ (Mq )](y~q/( ))ay'
M odd

(B8)

Equation (B8) describes the behavior of a particle in the presence of an infinite number of traveling cosine potential
wells, each traveling with different speed. Each traveling potential well gives rise to a nonlinear primary resonance zone
in Hilbert space. In Refs. 8 and 11 it was shown that the primary resonance zone due to cosine potential cos(MQ coos)—
(where M can be positive or negative) is centered in Hilbert space at quantum number ng=coo/2M and has a half-width
given approximately by b, n g =2v'q /~ M ~.
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