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Charged oscillator in a heat bath in the presence of a magnetic field
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We obtain the generalized susceptibility for the motion of a charged oscillator in a harmonic po-
tential well in the presence of a uniform external magnetic field, and linearly coupled to a heat bath,

by using the generalized quantum Langevin equation we obtained in an earlier paper. The result is

then used to calculate the autocorrelation function of the position operator of the oscillator by the

fluctuation-dissipation theorem. The free energy of the oscillator is then obtained in terms of the

determinant of the susceptibility matrix. Applications are made to two types of heat baths: the

Ohmic case and the case of blackbody radiation. As a special case (no heat bath) of our general for-

malism, a well-known eigenspectrum result is obtained but in a simple and rather novel fashion.

I. INTRODUCTION

The problem of a charged quantum particle moving in
an external magnetic field B in an arbitrary potential
V(r), and linearly coupled to a passive heat bath (consist-
ing of an infinite number of oscillators) has been formu-
lated in terms of the quantum Langevin equation in an
earlier paper. ' The equation takes the form

m'i+ f dt'p(t —t')r(t')+ V V(r) ——(r X B)=F(t),
QO C

where the dot denotes di6'erentiation with respect to t.
The influence of the external magnetic field is solely
represented by the quantum version of the Lorentz force
term and both the operator-valued random force F(t) and
the memory function p(t) of the heat bath are unchanged
by the magnetic field. In Ref. 1 we did not discuss sus-
ceptibilities, position autocorrelation functions, and free
energies because their evaluation requires the
specification of the potential. Here we discuss such quan-
tities for the important case of a harmonic potential for
which an exact analysis is possible.

In Sec. II we consider the problem of the response of
the system to an external force f(t). In the case of a spa-
tial harmonic potential, the problem is shown to be exact-
ly solvable. The coefticient matrix of the response of the
system to the perturbation, which is called the general-
ized susceptibility, plays an important role in determining
the dynamics of the system. It is related to the correla-
tion function of the position operator of the charged os-
cillator by the fluctuation-dissipation theorem. Further-
more, in the absence of the external force, it can be used

to calculate the free energy of the oscillator in thermal
equilibrium at temperature T, which is defined as the free
energy of the system minus the free energy of the heat
bath in the absence of the oscillator. The corresponding
problem in the absence of a magnetic field has been con-
sidered by Ford, Lewis, and O' Connell. They obtained
this formula:

Fo(T)= —f dto f (to, T)Im lna' '(to), (1.2)
7T 0 dN

where f (to, T) is the free energy of a single oscillator of
frequency co at temperature T and a' '(co) is the scalar
susceptibility in the absence of a magnetic field. [It
should be noted that, in Refs. 2 and 3, what we now ca11
a' '(to) was referred to as a(to). The latter quantity now
refers to the matrix of the elements a „(co) as discussed
below. ] In the presence of the external magnetic field, we
shall show that the same formula holds only with a' '(to)

replaced by the determinant of the generalized suscepti-
bility matrix obtained in Sec. II. We will prove this in
Sec. III by using the fluctuation-dissipation theorem. In
the Appendix we present an alternative proof which is
more succinct but perhaps less transparent. As we shall
see, similar considerations apply to the case of the energy
of the oscillator in thermal equilibrium at temperature T.
In Sec. IV, we apply the general formulas obtained in Sec.
III to two specific problems: the Ohmic and blackbody
radiation heat baths. We shall see explicitly the diamag-
netic behavior of the Ohmic heat bath at zero tempera-
ture. The blackbody radiation heat-bath problem is
shown to be reducible to that of Ohmic heat bath plus a
temperature-dependent shift in free energy. In Sec. V, we
consider a special case (no heat bath) of our general for-
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malism and obtain a well-known eigenspectrum result,
but in a simple and rather novel fashion. Finally, in Sec.
VI, we present our conclusions.

II. GENERALIZED SUSCEPTIBILITY
FOR A HARMONIC POTENTIAL

and

2

detD(co)=A, A,
— co— Be

c
(2.7)

(2.8)

In the presence of an external force, the Hamiltonian
has an added term W = —r. f(t), where f(t), the general-
ized force, is a given c-number function of time. This re-
sults in an added term f(t) on the right-hand side of (1.1).
Thus, in a uniform external magnetic field and in a spatial
harmonic potential well [V(r) =

—,'Kr ], and in the pres-
ence of an external force f (t), the generalized quantum
Langevin equation takes the form

mr +f 'dt'p(t —t')r(t') ——i XB+Kr=F(t)+ f(t),
QC c

Using the fact that p(co)*=p( —co), we deduce that a
given by (2.6) has the following properties:

a (
—co) =a' (co),

a (co,B)=a (co, —B) .

(2.9)

(2.10)

Qp (t) = —,
' (r (t)r (0)+r (0)r (t) )

Now let us introduce the position autocorrelation func-
tions

(2.1} f dco e '"'g (co) . (2.11)

which is now a linear differential equation in r. Fourier
transforming (2.1), we obtain

(
—mco —icoP+K)6 +ico e&B—

&
r (co)

c

Then, in the case of weak external forces (linear response
theory), the Fourier transform f (co) is related to a (co)

by the fluctuation-dissipation theorem [see (A. 14) of Ref.
3]

=F (co)+f (co), (2.2)
Ace

(co) =—coth
21

where X [a „(co+iO+) a' (co+i—O )] . (2.12)

p(co)= f dt e' 'p(t),
0

r (co)= f dt e' 'r (t),

(2.3)

(2.4)

From (2.6), one can decompose a (co) into symmetric
and antisymmetric parts:

and so on, and where e „is the Levi-Civita symbol, a to-
tally antisymmetric tensor. Throughout this paper the
Greek indices stand for three spatial directions (i.e., p, o,
etc. = 1,2,3) and we adopt the Einstein summation con-
vention for repeated Greek indices.

If we denote the matrix in front of r on the left-hand
side of (2.2) by D (co) and then solve for its inverse ma-
trix, we get

ap (co)=ap (co)+ap (co),

with
2

a' (co)= I, 6 — co — B B
C

and

e
ap (co) = eP—„Rico,

detD (co)

detD(co) .

(2.13)

(2.14)

(2.15)

rp(co)=ap (co)[f (co)+F (co)],

where

a = [D (co) ']
2

A. 5 — co— B B —e „B„kicu—

(2.5)

detD (co),

Thus

a (co}—a* (co)=[a' (co) —a' (co)*]

+[a' (co)+a' (co)*]

=2i Ima' (co)+2Rea' (co) . (2.16)

with

(2.6)
Combining (2.11), (2.12), and (2.16), and noting that
Ima' (co) is an odd function of co while Rea' (co) is an
even function of co, we have, finally,

—,'(r (t)r (t')+r (t')r (t)) = — dcoIm[a' (co+iO+)]coth cos[co(t —t')]
7T 0 2kT

——f dco Re[a" (co+iO )]coth sin[co(t —t')] .a ~ + %co

0 PcT 2kT
(2. 17)
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III. FREE ENERGY OF THE OSCILLATOR

2

2mJ
(3.1)

The Hamiltonian leading to (2.1) in the case where f(t)
is zero is

'2

Ho= p ——A + 'Er1 e

2m c

We now turn to an evaluation of the ensemble average
of Ho, which is the mean energy of the system of the os-
cillator interacting with the heat bath in thermal equilib-
rium at temperature T. First, taking Fourier transforms,
(3.8) and (3.9) become

—m co +K + g m co +i u e—P„r
C

—pm a)jqj =f, (3.11)
J

This is the interacting oscillator (IO) model in the pres-
ence of an external magnetic field B, considered in an ear-
lier paper, ' where e, m, p, and r are the charge, mass,
momentum, and position of the oscillator, respectively,
and the corresponding quantities with the lower indices j
refer to the jth heat-bath oscillator. The vector potential
A is related to the magnetic field B through the equation

The solutions of these equations are

Ijp=&j,pvf cr + g Xji,paficr

(3.12)

(3.13)

(3.14)
B(r)=VX A(r) . (3.2)

To calculate the mean energy (Ho ) by the
fluctuation-dissipation theorem, we are led, following
Ford, Lewis, and O' Connell, to consider the Hamiltoni-
an

COJ

Pjp (~)= 2' 2ap (m)
CO +COJ-

(3.1 5)

where a (co), the oscillator susceptibility, is given by
(2.6),

H =Ho —r f(t) $q, —f, (t), . (3.3)
J

where f(t) and fj(t) are c-number functions of time.
The Heisenberg equations of motion for the charged

oscillator from (3.3) are

is the cross susceptibility, and

CO CO.i J
~J'P~ 2 2 2 2 P~(~ —

e2, )(co —~; )

5, 6

m (
—co+co )

(3.16)er = [r,H]/i fi= p ——A
c m, (3.4)

is the heat-bath oscillator susceptibility. Since a' (co)=0
if p=cr, from (2.17) we immediately get

p=[p, H]/iA'= Kr+ g—m, co, (q, —r)+ —(r XB)
J

4

+—(r V) A+ V(V A)+ f .
C 2mc

For the heat-bath oscillators

q =[q,H]/iR=pj lmj,

(3.5)

(3.6)

—,'(r(t) r(t')+r(t') r(t))

d~ gm ~ ~+)0+
0 PP

X coth cos[cu(t —t')],%co

2kT
(3.17)

(3.8)

Similarly, (3.6) and (3.7) yield

mJqJ = —mJMJqJ+mJ~Jr+ fJ (3.9)

For a detailed derivation of the Lorentz term
(e/c)(rXB} in (3.8) we refer to Eqs. (7)—(15) of Ref. 1.
Note that without f and f, (3.8) and (3.9) are just Eqs.
(15) and (5) of Ref. 1, respectively. Using (3.4) and (3.6),
and rearranging some terms, (3.1) can be written in the
form

pj=[pj. ,H]lik= mja)j(qj —r)+—fj .

Eliminating the momentum variables, (3.4) and (3.5) com-
bine to give

m'r'= —Kr+ gm co.(q —r)+ —rXB+f .
J

which, of course, is a special case of (2.17).
Differentiating with respect to t and t' and then setting t'
equal to t, we have

(r ) = —J dcocoth Im[a (~+iO+)]co
7T 0

(3.18)

Similar expressions hold for (q, ) and (qj), with a be-
ing replaced by hajj in (3.17) and (3.18). For (q .r),
noting the symmetry of the cross susceptibility P in
(3.13) and (3.14), we have a similar result with /3i re-
placing e

(q .r) =—I dcocoth Im[P (co+iO+ }] .
7T 0 2kT

Ho= —,'mr + —,
' K+ g m, co, r2

J

J J
(3.10)

(3.19)
The second group of terms in (3.10}is the Hamiltonian

of the heat bath in the absence of the oscillator. We
denote it as H~. Its mean value is given by
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(Htt t=x —J dctccth —
m, (tc +tc, )Im[y, , (re+to )t

7T 0 2kT 2

dN coth2' 0

dN coth2' 0

+ g f dcocoth Im.AN

2' 0

4

mj(cd +coj. )coj

3(co +co& )
P

+iaaf(

'co —co)
N+NJ NJ N

mj(co +coj )co fico ficof dco coth Im g ' a +3 g coth
2K 0 2 ~ (cd co ) ~ 2

(3.20)

In the second line, we have used (3.16) to calculate the trace y~~, while the fourth line follows from the identity

1 =P
N —N +iO+

f 175(co co& ), (3.21)

where P denotes principal value. (Remember that co in the integral is approached from above the real axis, i.e.,

co~co+i 0 .) The last term of (3.20) is readily recognized as the mean energy of the free heat bath in the absence of the
oscillator, which we will denote as Us( T), as in Ref. 3.

Combining the results (3.17)—(3.20) and using (3.10), we find the oscillator energy, which is defined to be the mean en-

ergy of the system of the oscillator interacting with the heat bath minus the mean energy of the heat bath in the absence
of the oscillator:

Uo( T B ) = ( Ho ) —Us ( T) =—f d co coth
7T 0 2kT

Im(a )
—mco +K+ g m, co,

J

+ —g Im
1

2
J

m&(co +coj~ )coj~

(
2 2)2 PP

J

—g m cd)~1m(PJ )

J
2 2N +NJ

dcocoth Im aPP mco +E+ g 2 2 2
co m, co,

2'IT 0 2kT PP
(

2 2)2
(3.22)

The last equation follows from (3.15).
Since the memory function of the heat bath associated with the Hamiltonian (3.1) is

r

i 2 1 1
P(cd)= —pm co +

2 N N. N+NJ J J

thus

(3.23)

J J

Substituting (3.24) into (3.22), we have

(3.24)

Uo(T, B)= dco coth Im a mco +E +ico
e) AN 2 dP

2K 0 2kT dN
(3.25)

This equation can be simplified further. From (2.6), the trace of a(co) is
'2

a (co) = 3A,
2 — co — B detD (co)

e
s' c

(3.26)

and, from (2.6) and (2.7), the determinant of a(co) is

2

e
Ceta(cd) =[detD (co)] '= A, A,

— co — 8
c

(3.27)
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where [rewriting (2.8) for convenience]

A, (co)=[a' '(co)] '= —mco +E —icoP(co) .

Hence
2 2

(3.28}

detD (co)

d jib3+ A, co
dco

detD (co)

co [in[deta(co)][ = —co 3A, — co— 8 —2coA. — BdA 2 e 2 e

dc' dco c c
2

3A, N — 8e
C

= —3+ A,
—co a (co) .

dco
(3.29)

By (3.28)

A,
—co =mco +K+ico2 dP

dco dco
(3.30) f (co, T) =kT in[2 sinh(irido/2kT)] . (3.35)

where f (co, T) is the free energy (including the zero-point
energy) of a free oscillator of frequency co:

Thus Equations (3.32) and (3.34) represent extensions, to
BAO, of the "remarkable formulas" given in Ref. 2 for
the case B =0. It will be noticed that the corresponding
results in Ref. 2 [see also (1.2} above] have a' '(co), the
scalar susceptibility in the absence of a magnetic field, in-

stead of deta(co). To make the role of the magnetic field
more explicit, we now use (3.27) and (3.28) to write

'2

[a' '(co)] (3.36)
C

mcoi+K+ico a (co)=3+co [ln[deta(co)]) .

(3.31)

Substituting (3.31) in (3.25), we finally obtain

Uo(T, B)=—J dco u (co, T)Im ln[deta(co+iO+)], deta(co)=[a' '(co)] 1—
0 dco

(3.32) so that

where u (co, T) is the Planck energy (including zero-point
energy) of a free oscillator of frequency co: Fo( T,B)=Fo( T,O)+ bF0( T,B), (3.37)

u (co, T) = coth—flCO 'AN
(3.33)

where

and deta(co) is given by (3.27) and (3.28). The corre-
sponding formula for the free energy of the oscillator
takes the form

Fo(TB)= —J dco f (co, T)Im ln[deta(co+iO+)]
0 dN

(3.34)

Fo(T,O)= —J dco f (co, T)Im lna' '(co)
7T 0 dc'

(3.38)

is the free energy of the oscillator in the absence of the
magnetic field [in agreement with Eq. (5) of Ref. 2, except
for the extra factor of 3 which results from our considera-
tion here of three dimensions] and the correction due to
the magnetic field is given by

2

bFo(T, B)= ——f dco f (co, T)Im ln 1 — [a' '(co)]
0 dc' c

(3.39)

where a' '(co) is defined in (2.8). Our basic result (3.34) may also be derived (see the Appendix) using a succinct (but
perhaps a less transparent) method, which is a natural generalization of the method given in Ref. 2 for the B =0 situa-
tion.

IV. OHMIC AND BI.ACKBODY RADIATION HEAT BATHS

In this section, we will apply the formula derived in Sec. III to two types of heat baths.
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A. Ohmic heat bath

In the case of the Ohmic heat bath, P(co) =my, a constant, which is the simplest memory function one can choose.
Thus making use of (3.27) and (3.28), (3.34) becomes

y(~'+~o) y(co +coo) y(co +coo)F (T,B)=— d f(,T) + +
7T 0 (

2 2)2+ 2y2 (
2 2+ )2+ 2y2 (

2 2 )Z+ 2y2
(4.1)

where coo=(K/m)' . For the internal energy Uo(T, B), we see from a comparison of (3.32) and (3.34) that one need
only replace f (co, T) in (4.1) by u (co, T), which is given by (3.33). In the high-temperature limit

Ado i6co
u (co, T) = coth ~kT,

2 2kT (4.2)

and, using the method of contour integration, one can show that

kT - y(~'+~o) y(co +coo) y(co +coo)

p (~2 ~ )22+2y 2 (~2 2+ ~)2+~2y2 (~2 2 ~ ~)2+~2y2

3kT if coo&0

—', kT if CO0=0 . (4.3)

This is classical result, which we note is independent of B.
At T =0 K, f (co, T)=u (co, T)~fico/2 and thus both Fo(0,8) and Uo(0, 8) are logarithmically divergent. That is due

to the contribution of the zero-point energy, which is of no physical significance. However, the difference
AFO(0, 8)=Fo(0,8)—Fo(0,8 =0}is finite. From (3.39), we have

b,FO(0, 8)= J dco co2' 0

y(co +coo) y(co +coo)

(co coo+co co) +co y (co coo co co) +co y

2y(co +coo)

(
2 2)2+ 2 2

(4.4)

UFO(0, 8)=—2
2

which is a function of co, . This integral can be expressed in closed form:
' 1/2 1/2 ' 1/2

2 &+a 6 —a
tan '

y 2 2
ln y l2+ v'(b —a) l2

y l2 &(b —a—)/2
' 1/2

2 N 0 4

1/2
2

tan —mo—1 2 2
0 4

(4.5)

where
2

+ co++0

. 2. . 2
~c + Ct)0

2

2 ' 1/2

and
2

2

+~0 4
(4.6)

Taking the derivative of bFo(0, 8) with respect to (co, /2) (denoted by z), we get

b,FO(0,8)=d
dz

fi [(b+a)/2]+y l4, 2 b+a
mb v'(b +a}/2 y 2

1/2

ln
y2/4 —[(b —a)/2] y/2+&(b —a)/2

2v (b —a) l2 y/2 v(b —a)/2—
(4.7)

By virtue of the inequalities tan 'x &x/(1+x~) (x )0}and —,'ln[(1+x)/(1 —x}]&x/(1—x~} (0&x &1},one can
show that

1/2
(b+a)/2+y /4, 2 b+a

tanv'(b +a)/2 y 2 2
(4.8)
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T

y2/4 —[(b —a)/2] y/2+v (b —a)/2
2v (b —a)/2 y/2 &—(b —a)/2

Hence

EF0(0,8) &0,d
dz

(4.9)

(4.10)

which means that bFo(0, 8) is a monotonically increasing function of $, . This diamagnetic behavior is what we would
expect froln the orbital origin of the magnetism (since spin has been neglected).

In the weak-field limit (8~0},(4.5}can be expanded as a series of co, :

UFO(0, 8)=

2670

, !2 tan ' —($0—y /4)'!' —y 2 2
if co2« $20—

CO 1f COO=
3~y ' ' 2

'

(4.11)

The omitted terms are of order of co, . In both (4.5) and
(4.11), 2(coo —y /4)'! tan '[(2/y)(coo —y /4)'! ] should
be replaced by

' 1/2

ln
/2+(y2/4 $2)l!2

(y2/4 $2)1!

when coo & y/2. This is due to the identity

B. Blackbody radiation heat bath

tan '(ix) =—in~(1+x)/( I —x)
~

.
2

We note that the coefficients in front of co, in (4.11) are
positive because of the inequalities in (4.8) with co, =0.
As a final comment, we note that no mass renormaliza-
tion is necessary, in contrast to what we will find in the
next example.

CO+l [ CO +COO+ECO~1eCOO
e8co m . QM ~ ~ . z

c m+iA m

—l 1 ~ (CO~ +$0)CO+CO~ CO]

(4.15)

Ver && 1 7 Np(& 1 (4.16)

Also, if we assume that co, «coo, then (4.15) can be
simplified to

where $0=K/M, co, =eB/Mc, and r, =2e /3Mc
=6X10 sec. Because co, =1.76X10" (8/10 G) Hz
and the atomic unit of frequency is 4X10', we see that
typically

In this case, the associated memory function is

p($}=2e 0 co/3c ($+iQ),
where 0 is a cutoff frequency.

Thus

(4.12)

Thus

M z z

1 /v co
( CO +CO lCOV CO +CO $) .

e

(4.17}

m

n)+i 0
. QM e8

CO 1 +
mc

K~. e8 ~ . MC
m m

where

M =m +2e 0/3c

mco +E i$P+-e8co ~ . eBco
c c

(4.13}

(4.14)

deta(co) = 1

A, [A, —(coe/c) 8 ]
1 l 'T~CO

M( CO +COO i$r, $—0)—
1 l7 S

M( $ +COO lCO1e$0+$~$)

1 l Telo

M( CO +COO lCO1eCOO CO~CO)

(4.18)

is the renormalized mass. In the limit of large cutoff
(Q~ 00 and m ~0), the numerator in (4.13) can be fac-
tored to give

Substituting (4.18) into (3.34) and using (4.16), as well as
the fact that A~, ' &&kT, we obtain the expression for the
oscillator free energy
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y(co +co0) 7'(co +coa} }'(co +coo) me'(kT)'
0 (co co0) +co 7' (co co0+co co) +co 7' (co co0 co co) +co 7' 3i}tMC

(4.19)

where y=cuDr, . The first term corresponds to the result
given in (4.1) for the case of p(co) =m y. The second term
is the familiar temperature dependent shift, which is in-
dependent of the magnetic field.

(5.10)

In the case where p(co) =0, we have from (3.28) that

interacting system (co. say). Hence from (3.27), we have

A,(co~)[k (coj)
—(mco co, ) ]=0 .

V. ABSENCE OF A HEAT BATH A, (co )=m(cori —
co, } . (5.11)

The limit of no dissipation (no heat bath) is simply ob-
tained by taking p(co) =0. Thus writing K —=mco0, we see
from (3.28) that

Thus (5.10) and (5.11) imply coj values equal to coo, co, ,

and co2 as before, so that Eqs. (5.7)—(5.9) again follow.

A,(co)=[a' '(co)] '~ —m (co —coa) (5.1)
VI. CONCLUSIONS

and

where

2
eBco

[ ~0i(

C

[(co —co0) —(coco, ) ], (5.2)
(co coa)

We have shown that the problem of a charged oscilla-
tor moving in a harmonic potential well and an uniform
external magnetic field, and coupled to an arbitrary phys-
ical heat bath can be solved exactly using the generalized
quantum Langevin equation. The free energy (3.34) to-
gether with the explicit expression for deta(co), given in
(3.27) and (3.28), can in principle determine all the
relevant quantities of the problem.

co, =eB/mc (5.3)
ACKNOWLEDGMENTS

and

FD(T, O) =3f (coa, T) (5.4)

b FQ( T,B)=f (co„T)+f (coz, T) —2f (co0, T), (5.5)

is the cyclotron frequency. These results, when substitut-
ed into (3.38) and (3.39), lead to
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APPENDIX: ALTERNATIVE DERIVATION
OF EQ. (3.34)

where

coi 2=+(co, /2)+[(co, /2) +coii]'

and f (co, T) is given by (3.35). Hence, from (3.37),

(5.6)

Our method is a generalization of the method given in
Ref. 2 for the case of zero magnetic field. We start with
Eq. (2.5) in the absence of an external field:

Fa(T,B)= g f (co;, T) .
i =0, 1,2

(5.7) rz(co)=a (co)F (co) . (Al)

Similarly

UD(T, B)= g u (co;, T),
i =0, 1,2

(5.8)

Thus the necessary and sufficient condition that there be
a fluctuating force in the absence of a displacement
[r(co)=0] is that

where u (co, T) is given by (3.33}. It immediately follows
that the eigenspectrum of a charged oscillator in a mag-
netic field is given by

E = g %co(n + —,
' } where n, =0 1 2. . . .

i =0, 1,2

(5.9)

This is a well-known result, but it is interesting that we
have obtained it in a rather novel fashion as a special case
of our general formalism.

In fact, an even simpler derivation of (5.9) follows from
the fact (see the Appendix) that the poles of a(co) occur
for co values equal to the normal mode frequencies of the

deta(co) =0 . (A2)

[a(co) '] r (co)=F (co), (A3)

then it follows that there can be a nonzero displacement
with no force [F (co) =0] if

It follows that the zeros of deta(co) occur for co values
equal to the normal-mode frequencies of the radiation
field in the absence of the oscillator (co; say). In a similar
manner, we note that if we invert (Al) to write
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deta(co) ' = 1/deta(co) =0 . (A4)

deta(co) o- P(co —co,. ) Q(co —co ), Imco) 0 . (A5)

Now, recalling the identity

1 1=P — i—m 5(x),
x +iO+

(A6)

we see that

Hence the poles of deta(co) occur for co values equal to
the normal-mode frequencies of the interacting system
(co, say). Therefore one can write

tr 'Im[d ln deta(co)/dco]
= g [5(co—

co, )+5(co+co, )]
J

—g [5(co—
co, )+5(co+co, )] . (A7)

j
When this is put into (3.34), the result can be written as

Fo( T) = g f (co, , T)—g f (co;, T), (AS)
J l

which is precisely the definition of the free energy of the
oscillator, where the first sum on the right-hand side of
(AS) is clearly the free energy of the interacting system
and the second is that of the free field. This demonstrates
the correctness of (3.34).
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