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First-passage-time statistics in disordered media
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A method is presented for the study of first-passage-time statistics in one-dimensional disordered
media. W'e introduce a projection-operator formalism that allows the calculation of an averaged
backwards master equation. A generalized Dynkin s equation is also presented. W'e apply this ap-
proach to the random-trap model. The exact mean first-passage time to leave a finite domain is cal-
culated for weak disorder. To study strong disorder we introduce a mean-field-like approximation
that gives exact results at long times. Long-time tails in the survival probability and in the first-

passage-time distribution are found, predicting a divergent mean first-passage time for the case of
strong disorder. Our findings confirm numerical results found previously.

I. INTRODUCTION

In the context of studies of transport of classical parti-
cles and excitations in disordered media, the model of
the nearest-neighbor random walk (RW) in a one-
dimensional disordered chain describes a number of phys-
ically relevant situations. ' The model assumes that the
position of the walker in a particular chain undergoes a
Markovian RW defined by a master equation of the form

d, P(n, t~np, tp Iw j)=w„+ ~P(n —l, tnp tp Iw;
+—j)

+w„+iP(n+1, t~np, tp, Iw;
+—j)

—(w„++w„)P(n, t~np, tp, Iw;
+—j),

where w„(w„) is the transition probability per unit time
from site n to n+1 (n —1). A particular configuration
of the disordered chain is described by the set I w;

+—j.
P(n, t~np, tp, I w;

—
j ) is the probability of finding the walk-

er at site n at time t, for a particular configuration (w;
—

j
of the medium and with the condition of having been at
site no at time to.

Disorder is described as assigning a probability P I w;
—

j
to each possible configuration of the chain. This assign-
ment of probabilities, together with (1.1), defines a RW
that, in contrast to that defined for a particular set I w,

+—j,
is no longer Markovian. The statistical properties of the
new process can, in principle, be obtained by averaging
over configurations of the disorder the expressions for the
quantities of interest obtained for fixed ( w;

+—j.
Non-Markovian behavior manifests itself in the ap-

pearance of a frequency dependence in the diffusion
coefficient associated with the RW. If this dependence is
such that the diffusion coefficient vanishes at zero fre-
quency, the motion is subdiffusive, that is, the second mo-
ment of the position, (n (t) ), grows slower than linearly
with time for t ~~. Models leading to this behavior are
usually called models of strong disorder, whereas models
for which ( n (t) ) —t are of weak disorder.

Although the behavior of the moments of the position
of the walker has been widely studied for different models
of disorder, there is another manifestation of non-
Markovian behavior that remains to be explored in de-
tail: A non-Markovian process it not completely de-
scribed by a two-time probability distribution like that
appearing in (1.1), but the whole hierarchy of m-time
probability distributions is needed. Then, the effect of
disorder in quantities depending not only on two-time
probability distributions is expected to be important.
One such quantity is the mean first-passage time (MFPT),
for which the memory effect must be taken into account
in order to write the correct backwards equation. Due to
this fact, extreme care must be taken if one attempts to
obtain exact results for the MFPT in disordered systems.

The first-passage time (FPT) is a random variable
defined as the time the walker takes to leave a certain in-
terval on the chain. If the interval is semi-infinite, it
coincides with the time needed to reach a particular site.
The first-passage-time distribution (FPTD) can be ob-
tained from the survival probability, which is defined
here as the probability of remaining in the interval of in-
terest (which will be called D) for a time interval t tp, —
having started from some site in D at t = to.

A few attempts of describing diffusion in disordered
media by FPT statistics have been recently reported:
Continuous models are studied in Refs. 2 and 3. Discrete
models of weak disorder are considered in Ref. 4. Refer-
ences 5 and 6 show that for the Sinai model the MFPT
scales with the size of the interval considered in a
different way than the typical FPT. An in-depth discus-
sion of some models in discrete time is found in Ref. 7. A
different but related problem that has received a lot of at-
tention is that of calculating a survival probability in an
infinite chain for normal diffusion in the presence of ran-
domly distributed traps. " '"'

A common feature of the models studied in Refs. 2—7 is
that, in absence of trapping, the MFPT is finite if the in-
terval considered is finite. In contrast, a class of models
was recently found in which the MFPT to leave any finite
interval is infinite. This was used in Ref. 8 to propose
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w„+ =w =w„, Vn . (1 2)

the association of the concept of strong disorder with a
divergent MFPT. In the case of strong disorder, it was
also proposed to characterize the degree of disorder by
the long-time tail present in the FPTD or, equivalently,
by the divergence at small frequencies of the Laplace
transform of the survival probability. It is the aim of the
present paper to develop a technique to calculate such
quantities, as an alternative to the usual way of charac-
terizing disorder and diffusion by moments of the dis-
placement and diffusion coefficients.

The calculation of the MFPT or the FPTD for non-
Markovian processes is not an easy task. Formally exact
equations for these quantities can be obtained, but they
contain operators that must be adjusted in order to
prevent contributions from trajectories returning to the
interval of interest after having left it. This adjustment
can be done for Markov processes by imposing adequate
boundary conditions. Special non-Markovian processes,
such as the continuous-time random walk (CTRW), can
be studied, ' but no recipe for adjusting the operators is
known in the general non-Markovian case.

To overcome this difficulty, the method used in Refs.
2-7 begins by calculating the MFPT or an approxima-
tion to it for a fixed configuration I w,

+—

) of the disorder.
This can be done by Markovian techniques because the
RW is Markovian for fixed I w; ]. The result obtained in
this way is then averaged with the probability distribu-
tion of the configurations t w;

—I.
In this paper we introduce another method for calcu-

lating FPT properties in the presence of disorder. We
start with the Markovian equations satisfied by the sur-
vival probability for a fixed configuration (w;

—j. Then,
the equations themselves (not their solutions) are aver-
aged over disorder by a projection-operator method. In
this way we obtain exact equations for the MFPT and re-
lated quantities. Systematic approximation procedures
are here developed to obtain relevant information from
these equations. In particular, the MFPT and the long-
time behavior of the FPTD can be calculated within our
framework even in the case of strong disorder.

We use this general framework to study several models
of disorder. For definiteness we restrict ourselves to
nearest-neighbor RW's that are symmetric in the sense
that w„and w„ in (1.1) are equal:

1 if w&(0, 1)
0 otherwise . (1.3)

(c) Model C of Ref. 1(a):

(1—a)w if w E(0, 1)
0 otherwise . (1.4)

(d) Chain with randomly distributed absorbing sites:

p(w)=p5(w —wo)+(1 —p)5(w) . (1.5)

Models (b), (c), and (d) are cases of strong disorder. The
mean-square displacement ( n (t) ) behaves for long

times as t/lnt, t2" '~' ', and t, respectively.
Exact results for the long- and short-time behavior of

the survival probability are directly obtained from our
general equations in the weak-disorder case. The study
of the long-time limit for strong disorder needs the intro-
duction of a mean-field-like approximation. Within this
approximation a survival probability is obtained which
exhibits long-time tails. The MFPT to leave any finite in-
terval is infinite for our random-trap models with strong
disorder. We show that the mean-field-like approxima-
tion introduced here reproduces the exact result for the
leading term in the long time limit for models (a) and (b)
defined before. For models (c) and (d), our mean-field ap-
proximation gives the exact exponent for the divergence
law.

The outline of the paper is as follows. In Sec. II we re-
view some useful results for the backwards master equa-
tion" of Markovian RW's and its solution for the sur-
vival probability in a nondisordered chain. They will be
used in the subsequent sections. In Sec. III we introduce
a projection-operator technique to average the backwards
master equation over the configurations of disorder. We
obtain an exact evolution equation for the averaged sur-
vival probability. A generalization of Dynkin's equation
for disordered media is also presented. Its exact solution
is found in the case of weak disorder. In Sec. IV we study
the different cases of strong disorder by means of a
mean-field-like approximation. A short discussion of the
results found is presented in Sec. V. Appendix A consid-
ers the FPTD in a nondisordered chain, and Appendix B
is devoted to the calculation of the Green's function for a
RW with absorbing boundaries. These quantities are
needed in Secs. II and III of this paper. Finally, the va-
lidity of the approximation used in Sec. IV is analyzed in
Appendix C.

The class of models satisfying (1.2) is generically called
the random-trap model. ' Results for another important
model of disordered chain, the random-barrier model, '

will be discussed elsewhere. The type of disorder con-
sidered is characterized by the statistical properties of
I w;

—I. They are taken to be independent but identically
distributed random variables. We have considered the
following models.

(a) Weak disorder [model A of Ref. 1(a)]: All the in-
verse moments ( 1/w "), k = 1,2, . . . are finite.

(b) Model B of Ref. 1(a): The probability distribution
for each variable w,- is

II. FIRST-PASSAGE- TIME STATISTICS
FOR MARKOVIAN PROCESSES

A. Backwards master equation

B,P(n, t~n t )o= 0g (H)„„.P(n', t)}no, to), (2.1)

where P(n, t}no, to) is the probability of being at site n at

Let us consider a general time-homogeneous Markovi-
an RW in an infinite chain. The forward master equation
has the general form"
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time t with the condition to start at n p at time t p & t. H is
an infinite square matrix whose indices run over the sites
in the chain.

P(n, t~np, tp) also fulfills the backwards master equa-
tion, which, invoking the time homogeneity of the pro-
cess, can be written as"

B,P(n, t ~np, tp) = g (H+)„„.P(n, t~n', tp),
n'

(2.2)

(H)„„ if n'ED
(2.3)

0 if n'ED .

This structure and the fact that we only need
PD(n, t~np, tp) for n, npED allow us to consider only a
finite number of elements of HD. For example, the back-
wards equation for PD(n, t~ n p, tp) can be written

B,PD(n, t~np, tp)= g (HD )„„PD(n,t~n', tp), (2.4)
n'ED

where now HD (and also HD ) is a finite matrix having as
many rows and columns as sites as are contained in the
interval D. All the indices in (2.4) take values only in D.

If F„(tltp) denotes the survival probability, that is,
0

the probability for the walker starting at t p at n p to be
still at time t in the domain D without ever having left
this interval,

(HD )„„=

where H+ is the transpose matrix of H. We are interest-
ed in the time at which the ~alker leaves for the first time
the interval D:—[ L,L—j, that is, the FPT through the
limits of such an interval. The problem of finding the
FPTD can be reduced to the study of PD ( n, t

~
n p, t p ), the

probability of being at n at time t with the condition of
never having left the interval D since the initial time tp in
which the walker was at n p.

In order to obtain PD ( n, t
~
n p, t p ), we note that this is

the two-time conditional probability for a new Markovi-
an walk, defined as follows "'jumps of the walker inside
D and from D to the outside are governed by the same
probability rates appearing in the matrix H as the origi-
nal process, but jumps from outside D into D are forbid-
den. In other words, PD(n, t~np rp) satisfies equations of
the form (2.1) or (2.2) with the matrix H replaced by HD,
such that

(rlrp): g Pii(n rIiip ~p)
nED

(2.5)

Here and in the following we take tp =0.
The evolution equation for the survival probability

F„(t)follows from Eqs. (2.4) and (2.5):
0

B,F(r)=HDF(r) . (2.7)

Here F(r) is a vector with components (F(t})„:F„(—t).
0 0

The initial condition for Eq. (2.7) is F„(t=0)=1 for all

np ED.
Even when it is difficult to carry out the calculation for

F (t) in detail, it may still be possible to calculate the mo-
ments T„ofthe FPT:

T (2.8)

It is easy to obtain a simple equation for all these mo-
ments when they are finite: multiplying Eq. (2.7) by
T„',integrating by parts, and using that

0

T„" =k r" 'F„( )dii,
0 p 0

the following equation is obtained:

H+ Tk= —kTI -
~

(2.9)

(2.10)

which is a recurrence relation for a11 the moments of the
FPT starting from that of zeroth order T„=1for all n p.

For k= 1, (2.10) is the Dynkin equation. "
As an example of the ideas just explained, we consider

the symmetric Markovian walk defined by

B,P(n, t~np rp) w iP(n —1, t~np rp)

+w„+iP(n+1, t~np rp)

—2w„P(n, t~tnp, tp) . (2.11)

From the prescription given in Eq. (2.3), for the finite ma-
trix HD, we can write the following expression:

the probability density f„(t)for the FPT is given by"
0

(2.6}

2w

w —L+&
—2W —L+i W —L+&

H+=
D

W L+2 2WL +2 W

WL 2 2WL

—2WL —1 wL —1

2WL

(2.12)

The survival probability in the domain D =[ L,L]is-
the solution of the backwards master equation (2.7) with
(2.12). If the domain D has a small number of sites N
(=2L+1) the problem of solving this equation reduces

to the inversion of an N XN matrix.
We stress that there is no need to impose any boundary

condition to solve the above problem. Nevertheless, if we
are interested in a domain with an arbitrary number N of
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d, F(t)=H+F(t), (2.13)

with the initial condition F„(t=0)=1 for all no GD, and

prevent backflow by using the

artificial

boundary condi-
tions F„(t}=0for all t if noKD. The solution of this

problem (into the domain D) is also the solution of Eq.
(2.7).

B. First-passage-time distribution in an homogeneous chain

Basic results about the FPTD in nondisordered chains
can be easily obtained from Eq. (2.7) and prescriptions (a)
and (b). The ordinary RW in an homogeneous chain is
obtained by putting w„=(M for all n in Eq. (2.11). In this
case F„(t) satisfies the following equation (here and in the
following the initial condition no is denoted simply by n):

(},F„(t) =p(E+ +E —2)F„(t), (2.14)

where E—+ are shifting operators E +—F„=—F„+,. Equation
(2.14) must be solved with the initial condition

F„(t=0)=1 if n ED,
and the arti jicial boundary conditions

F t i (t) =FL + i(t) =0 Vt

(2.15)

(2.16)

The additional boundary conditions F+(t +2(( t)
=F+(~+3)(t)= . . =0 are not needed because Eq. (2.14)
only involves transitions to nearest neighbors. From Eq.
(2.14) we obtain for the Laplace transform F„(z) of the
survival probability (see Appendix A for a detailed calcu-
lation)

where

X) +X2
L, +( t, +(2 Xi +X

1/2

(2.17a)

x, ~(z) —= 1+ + —1+
2p p 4p

(2.17b)

From (2.17) and the Laplace representation of Eq. (2.9) it
is easy to calculate the MFPT, T„=T„':

T„= lim F„(z)= (L +1) n-
z~0 2p

(2.18)

Coinparing this with (A13) we see that only the presence
of L + 1, instead of L in (2.18), reminds us of the discrete
nature of the lattice.

To gain insight in the description of the problem, we
comment that the continuous limit of the survival proba-
bility is easily obtained from Eq. (2.17). Introducing a
lattice spacing 1, an interval 2)—:[ —X,X], X=1L, anda-
variable x0 =nl, we obtain in the continuous limit

sites, we can solve Eq. (2.7) by another method: Instead
of solving the finite-dimensional problem characterized
by the matrix equation (2.7), we can formulate the follow-
ing problem: (a) Use the infinite matrix H of the origi-
nal walk appearing in Eq. (2.2) so that the backflow of
probability into the interval D is, in principle, allowed.
(b) Solve the equation

(1~0, L ~ ao, (M ~ ~ with the diffusion coefficient
5=(Ml and X finite) the following survival probability in
9:

F(x,z)= —1—0

cosh[xo(z/b, )'~ ]

cosh[X(z/6)' ]
(2.19)

L + 1

a —b
(2.20)

This is a finite quantity. For large L, it gives a linear re-
lation between T„and L, typical of biased diffusion.

If the drift points to the left, a divergence is found
again:

)n L —i—
T„= lim (a &b) .

g —+ —oc a —b
(2.21)

This is so because the drift moves the walker arbitrarily
away from site L.

The reason for these divergences is always the infinite
size of the segment ( —~,L] where the walker evolves
before reaching the point L +1. The aim in this paper is
the study of the exit from a finite interval D = [ L,L]in-
a disordered chain. By considering a finite interval D we
make sure that any divergence that we find is due ex-
clusively to the disorder in the chain.

III. FIRST-PASSAGE- TIME STATISTICS
IN DISORDERED MEDIA

A. Projection operator average

Our starting point is the master equation (2.11)
describing symmetric one-step RW's. When comple-

The FPTD for leaving the domain 2) is obtained from
(2.19) as f(xo,z)=1 zF—(xo,z). The result confirms the
expected scaling behavior T0-X for X~ 00. We will

prove in Sec. III that this type of scaling is also obtained
in weak disordered media.

Due to the importance of the tails of the survival prob-
ability, strong disorder breaks down the scaling that one
could expect from the second moment of the displace-
ment of the walker in anomalous diffusion [that is, if
(n (t})—t, 5&1, for t~~, one would expect
To -L ~ for L ~ ~ ]. We will show in Sec. IV that the
MFPT in the presence of strong disorder is a divergent
quantity, independent of the size L of the interval con-
sidered. We would like to stress that this divergence has
no relation with other divergences which appear when
considering semi-infinite intervals. For example, for a
symmetric Markovian RW, the MFPT to reach a given
site L +1, say, on the right of the initial one, is infinite
because of the contributions from trajectories going arbi-
trarily far away on the left of the initial site. If a drift in
the adequate direction is introduced, for instance, using a
master equation (2.1) with H =(E+—1)b+(E —1)a
and a &b (drift to the right), the divergence disappears.
This can be seen by solving Dynkin's equation (2.10) for
the MFPT to reach the site L +1 (which is the same as
the mean time needed to leave the interval ( —ao, L])
starting from n ~ L. We find
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mented with a statistical model for the m„'s, such as

(1.3}—(1.5), it becomes the random-trap model. Equation
(2.11) can be written, splitting the transition probabilities
w„ in an average p and a random part g„(w„=p+(„,
(g„)=0},as

a,p„(t)=~p„(t)+ep„(t) . (3.1)

We write P(n, tlno, to) as P„(t) J.V is the operator
describing the random walk in the absence of disorder
A'=(E++E —2), and 8 is the contribution to the tran-
sition probabilities due to random parts g„. For
the random-trap model considered here we have
BP„=(E+—+E 2)(„—P„. Other models can be studied

simply by changing the expression for 8. The evolution
equation for the survival probability is given by Eq. (2.7).
The operator HD can be constructed from (3.1):

B, (F) =pR+(F)+ g [8+M(1—P)]"e,+ (F& .
k=0

(3.8)

M is a convolution operator, defined by

(MA(t))„=—g f dt'G„(tlt')A (t') .
0

(3.9)

Equation (3.8) requires that the statistics of the random
variables g„ for each particular model are specified.

Equation (3.8) contains the Green's function G(tlt').
It is the solution of the finite-dimensional matrix equation
(3.7). As before [see prescriptions (a) and (b) after Eq.
(2.12)] we can substitute the problem addressed in Eq.
(3.7) by the problem in an infinite chain with adequate
boundary conditions:

B,F (t) =(pR +8 )+F(t ) . (3.2) t},G (tl t') =pR+G (tl t'), (3.10)

(F}=PF, F=(F) +(
—I P)F . (3.3)

Applying the operator P to Eq. (3.2), we obtain

i3, (F ) =pJY+ ( F ) +Pe+ (F }+Pe+ (1 P)F . (3—.4)

Also, applying the operator 1 —P to Eq. (3.2) we arrive at

B,(1—P)F:—pJY+( I —P)F +(1—P)8+ (F )

+(1—P)e+(1—P)F .

A formal solution of (3.5) can be written as

(3.5)

(1 P)F= f dt'G(t—lt')[(1 —P)BD+(F(t') }

+(1—P)8+(1—P)F(t')],
(3.6)

where we have used the fact that the initial condition
does not depend on g„: (1 P)F(t =0)=0. T—he func-
tion G(tlt') is the Green's function for the nondisordered
system, that is, the solution of the initial-value problem

The matrix HD:—(pRD+BD)+ is given by the expres-
sion (2.12) identifying wn =p+ g„.

The average of Eq. (3.2) over the realizations of („
leads to an averaged backwards equation with effective
transition probabilities which incorporate in an exact way
the effects of disorder. This average can be formally car-
ried out introducing a projection operator P that aver-
ages over disorder' '

where R+=A=E++E —2, the initial condition is
G(tlt)=1, and the boundary conditions are

GL+) „(tlt') =6—t. —(, n
(tlt') =o (3.1 1)

Using the method of the images' we can write the solu-
tion of (3.10) as

G„(tlt') =exp[ —2p(t t')]I~„~(—2p(t —t')) . (3.13)

Here I„(r) is a modified Bessel function. In the Laplace
(t ~z) representation, the sum (3.12) can be easily evalu-
ated. We obtain for the Laplace transformed Green's
function G(z) in the interval [ L,Ll the ex—pression (see
Appendix B)

G„(z)=8(z)(1—e A )

X [ A In
—m

I e2 A 2( A
—( n + m) + A n + m

)

+e'A'A -'"-'] (3.14)

where e—:[A (z)] . A and B are functions of the Laplace
variable z and they are given in Appendix B.

FPT statistics ean be studied from our general equation
(3.8). For instance, the MFPT in disordered media

( T„}= (F„(z~0) } is the solution of

~0 ~0
Gn, m ~ ~n+4k(L+1), m ~ —n —(4k+2)(L+1),m

k = —co

(3.12)

where G„„.(tlt') is the free Green's function, " i.e., the
solution of (3.10) with boundary conditions at infinity,

B,G(tlt') =pJV+G(tlt'),

G(tlt)=1 .
(3.7)

@AD(T„}+lim g [BDM(1—P)]"BD (T„}=—1 .
k=0

(3.15)

1 is the (2L+ 1)X(2L+1) identity matrix. Equation
(3.6) can be iteratively solved for (1—P)F. Putting this
solution into Eq. (3.4) we find a closed equation for the
averaged survival probability (F(t)), which gives the
complete description of the problem of FPT statistics in
disordered media:

This equation is the generalization of Dynkin s equation,
which takes into account the non-Markovian effects in-
troduced by the averaging over configurations of the
disordered medium.

It is well known that generalized master equations
(GME's) for the probability distribution of the position of
the walker P„(t) can be used to study transport in disor-
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dered media. The kernel associated with the GME can
be constructed in the context of the effective-medium
approximation""""' (EMA), CTRW theories, ' or by
exact methods. ' ' We want to note that in order to
solve the problem of FPT statistics we cannot use the ad-
joint or backwards equation of this GME because of the
non-Markovian nature of the problem. It is necessary to
adjust the adjoint equation in order to eliminate contribu-
tions from trajectories returning to the interval of interest
after having left it. The non-Markovian kernel in (3.8)
takes into account contributions from the adequate tra-
jectories in the correct way so as to prevent backflow of
probability into the domain D. This fact is reflected by
the appearance of the Green's function G(t~t') [Eq.
(3.14)] in the convolution operator M [Eq. (3.9)]. This is

a remarkable difference with the case of studying the
probability distribution for the position of the walker
P„(t) in a disordered medium. In that case' the average
probability distribution satisfies an equation similar to
(3.8), but the convolution operator contains the free
Green's function G (t~t') [Eq. (3.13)] instead of G(t~t')
[Eq. (3.14)]. Another important difference between Eq.
(3.8) and the similar one for P„(t) is that Eq. (3.8) is a
finite-dimensional matrix equation, as was pointed out by
the explicit notation %'D and GD. As before, instead of
solving this finite system, we will solve the associated
infinite system with the artificial boundary conditions
(F„(t ) ) =0 if n 6D. Using the explicit form of 8 we can
write for each component of the vector (F(t) ) in the La-
place representation the following equation:

z(F„(z))—1=pR(P„(z))+ g g (g„g„g„)J„„(z)J„„(z) .J„„(z)R(P„(z)),
p=0 n&, . . . , n E[—L, L)

(3.16)

where (g„g„g„)T =Pg„(1—P)g—„(1—P)g„
are Terwiel's' cumulants of the random variables [g„]
(see Appendix C) and J„„,(z) is the Laplace transform of

(RD)„G „.(t~t') Noting t. hat the indices n; in the
sum of Eq. (3.16) run from L to L, an—d that the bound-

ary conditions for G ensure that GL+& „=G I &
„=0,

we see that we can use J„„.(t~t') =KG„„(t~t'), where R is

the nondisordered part of the master operator in the
infinite chain [%'=(E++E —2)] and acts on the first
index of G„„.. Explicit expressions for J„„are given in

Appendix B.
The solution of (3.16) has to satisfy the boundary con-

dition

(f„(r))-r~ " if r 0. (3.19)

This result can also be understood by using heuristic ar-
guments.

More interesting is the study of the survival probability
in the limit of long times. Taking in (3.16) the limit z~0
and using that J„„(z) behaves [see Appendix B, Eq.
(B10)]as

out to be independent of disorder. So we can use for the
FPTD the result obtained for a nondisordered chain
(A10) for z~~: (f(z))-z ' +"+". Using the Tau-
berian theorem, ' we see that, for all kinds of disorder,
the short-time behavior is

(F„(z))=0, Vn ED . (3.17)
1 1 zJ„(z~0)-——5„+——'T„+
p p p

(3.20)

We will call Eq. (3.16) the effective backwards master
equation. We will study the behavior of the survival
probability and the FPTD in the short- and long-time
limits from Eq. (3.16) for several statistical models for the
g„'s. We show in Sec. III B that (3.16) predicts results
which cannot be obtained if we try to obtain the FPTD
simply by taking the adjoint of the kernel in the GME for
P„(r). XR(F„(z~0) ) = —1 . (3.21)

where 'T is a z- and p-independent matrix, we see that the
leading contribution arises from

B. Solution of the eft'ective backwards master equation

The short-time behavior of (F ) can be obtained from
(3.16) considering the z~ ~ limit of expression (B9}for
the propagator

We can sum up the contributions from the second term
on the right-hand side of (3.21) maintaining the arbitrari-
ness in the statistics of g„. To this end we define

J,(z) ———$,+—(p/z)" " ~(1 —Q, )
2 1

z p
(3.18)

oo

[g„(1—P}]~/„
p

(3.22}

We then see that Eq. {3.16) is a good perturbative series
for short times in the sense that the p contribution in the
sum is of order z p. The dominant contributions to the
survival probability and to the FPTD at short times turn

and use that (2) ) +(1—P)2)„=2)„. Note that the
equivalence between all the random variables [g„ I en-
sures that (2) ) is independent of n Using that.
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(3.23)

and that P(„=0, we can formally write Eq. (3.22) in the
form

2)„=—[@+(„(1—P)] '(g„)',
which can be put as

(3.24)

(3.26)

from which we can obtain (S). Due to the structure of
Eq. (3.21) we are interested in the quantity p, ff=p+ (2) ),
which, using (3.26), can be written as

Peff
1

s+(.
—

1
l —

1

Wn
(3.27)

This result for the sum in (3.21) is a general one valid for
any statistics of the independent random variables („.Of
course, they must satisfy the positivity condition
@+g„)0 to ensure that the probability transitions are
well defined. Weak disorder is characterized by the
finiteness of inverse moments like (3.27). In this case the
leading contribution in (3.21) becomes

—1= 'R(F„(z =0)) .
Wn

(3.28)

This equation must be solved with the boundary condi-
tion (F„(z))=0 if n fKD. The solution can be read off

[p+g„(1 P)]2)„—=p,S„+g„(2)„—(S) )= —(g„)' .

(3.25)

Solving for 2)„and applying the projector P we obtain

immediately from the analysis of the survival probability
in a nondisordered chain (see Appendix A) by changing p
to p, f[; Remembering that the MFPT can be obtained
from the survival probability as ( T„)=(F„(z=0) ), we
use (3.28) to obtain the exact expression for the MFPT in
weakly disordered media:

( )
(L+1) —n

2pea
(3.29)

The effect of weak disorder is to introduce an effective
time scale through the occurrence of an effective diffusion
coefficient p,ff=(1/w„) '(p.

Strong disorder is defined by probability distributions
for the g„such that (1/w„) is infinity. In this case, our
first-order contribution (3.27) vanishes. The next z-
dependent contribution from J„„.(z) is needed to obtain
information about the small-z behavior of (F ). Concern-
ing the MFPT we can see physically that it cannot be a
finite quantity, in order to respect the equality in Eq.
(3.28). We will show in Sec. IV how to relate the diver-
gence of the MFPT with the statistics of the random vari-
ables („,characterizing the disorder.

IV. STRONG DISORDER

A. Finite-erat'ective-medium approximation

In the strong disorder case the quantity

p ff
= ( 1 /w„) vanishes. Then, our first approximation,

Eq. (3.28) is not enough. We need to take into account
the z-dependent element of J„„(z)in the exact equation
(3.16). By direct substitution of the expression (3.20) for
J„„(z)into (3.16) a problem appears: there is an infinity
of terms contributing to a given order in z. Some method
must be devised to sum up these contributions. Follow-
ing past experience, ' we find it convenient to write Eq.
(3.16) as

z(F„(z))—I =pJY(F„(z))+ g
P =0 nl ~n, io, i],

n7&nl,

n ~n
P P

X(J„„)' J„„(J„„)' J„„(J„„)&A(F„(z)) . (4. 1)

The Terwiel's cumulant ( ) T contains the random variables g„,(„,. . . , and g„ io,i i, . . . , and i times, respectively.
1 P p

The indices [n, ) take values in D. Now we define the random operator P& (z) by

gi, (z) = g [J«(z)gk(1 P)]'— (4.2)

It must be understood as acting on any disorder-dependent quantity at its right. The geometric sum in (4.2) can be eval-
uated, resulting in

Mk (z)J«(z)
P, (z) =M„(z)—. . . , ,

P~,. (z), (4.3a)

where
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k

1 —4Jkk(z}

By using the definition of Terwiel s cumulants and (4.2), Eq. (4.1) can be written in the form

(4.3b)

.(P„(.) &-1=~(P„(.}&+ y
P =0 nl&n,

n2&nl,

n Wn

(y„q„q„)J„„J„„J„„P'(F„()&. (4.4)

Equation (4.4} offers us an alternative starting point to
study the long-time limit of (F„(t}).Formally, it is the
same as (4.1), but, through the introduction of the ran-
dom operator gk(z), we have summed up all the terms
containing the diagonal parts of J„„(z).Our previous re-
sult for weak disorder is reobtained by taking into ac-
count the first term in the sum of Eq. (4.4) [that is, the
p=0 contribution giving p,s=p+ ( g„(z =0) ) ]. In this
case (4.4) is strictly a perturbative expansion in the sense
that (P„(z)) can be constructed order by order in
z by successively calculating terms with increasing val-
ue of p in (4.4). This comes from the fact that
(g„P„g„)I —0 (z ) for weak disorder. Neverthe-

0 ] P

less, Eq. (4.4) cannot be used for strong disorder because
of the appearance of the quantities (w„"), which are
infinite in this case. It was shown in another context'
that strong disorder introduces nonperturbative effects
which ask for further rearrangement of Eq. (4.4).

We propose to do a sort of perturbative analysis
around an effective homogeneous medium to study the z

dependence of Eq. (4.4). First of all, we rewrite Eq. (3.2)
in Laplace representation adding and subtracting a
mean-field term: I (z)(E++E —2), I (z) being an arbi-
trary effective rate to be determined below:

zF„(z) F„(t—=0)= r(z)(E++E —2)P„(z)

+ (E++E —2)[p+ g„—I"(z) ]

XF„(z) . (4.5)

By defining the quantities rt„(z)=—w„—I (z), we see that
the role played by )M and g„ in Eq. (3.2) is played by I (z)
and g„(z), respectively, in Eq. (4.5). As before we can in-

troduce a projection operator P averaging over the
random variables i}„(z). Using that F(t)= (F(t) )
+ (1 P)F(t),—we can follow from Eq. (3.2) to (3.8) in the
same way as before. We only need to replace p by r(z)
and g„by i}„(z)in Eq. (3.8) to obtain an equation describ-
ing perturbatively the effects of the random variables
il„(z) on the mean effective rate I (z):

z(P„(z))—1=1 (z)R(F„(z))+ g g (rt„il„ il„) d"„„(r,z)8„„(r,z) 8„„(r,z)%'(F„(z)) . (4.6)
p 0 n ] y ~ ) n

A new propagator

( I,z)—:RG„(I',z) =6„+, +6„, —26„

(4.7)

e„(r,z) = W„(r,z)

Kk(r, z)pkk(r, z)

I+ (u„(r,z) )a„„(r,z}

(4.10a)
has been introduced. 6„(I'z, ) is the solution of

zG„.(r, z) —fi„.=r(z%6„.(r,z), (4.8)

where now

„(z)u„(r,z)=
9k(z)+kk(r z)

(4.10b)

satisfying 6~+ & „(I,z) =0 z, „(I,z) =0. The next
step is to write the analog of Eq. (4.1) with p replaced by
I (z), g„by il„(z), and J„(z)by d„(z).

In order to obtain a meaningful perturbative analysis
around the mean-field term we define a new random
operator %k(r, z) as follows:

%„(r,z)= g [8„„(r,z)il„(z)(1—P)]" il„(z) . (4.9)
i =1

k

and

z(F„(z))—1= r(z)R(F„(z))

p =0 nl&n,
n2an, ,

t

n Wn
P P

q„),

+nn +n n ~n n

It is clear that equations similar to (4.3) and (4.4) follow
in the same way as before: xx(P„(z) & .

P
(4.1 1)
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The steps made so far are formally the same realized in
Ref. 13 for the problem of averaging Eq. (2.11}to obtain
the moments of the position of the walker. In that con-
text, a diagrammatic analysis of the perturbation series
analogous to the second term on the right-hand side of
(4.11) showed that the best election for I (z) (the mean-
field rate, still undefined) was that given by the solution of
( 0'„(I,z) ) =0. This was the best choice in the sense that
it allowed to vanish an infinity of terms in the evolution
equation for (P„(t)), pertaining to a particular diagram-
matic class. In the present problem it is impossible to
have (%„(l,z)) =0 for all the values of n because the
boundary conditions implicit in the construction of
C(l, z) destroyed average translational invariance. Nev-
ertheless, we can tentatively define I (z) by (+„(I',z) )
=0 at some particular site n, and explore the conse-
quences of such an election. In the following, I (z) will
be taken as the solution of

(e„,(r,z)) =0. (4.12)

It will turn out that this election is a very convenient one
because, although it does not produce a drastic
simplification of the right-hand side of (4.11), it makes
useful an approach related to the EMA. It was demon-
strated in Ref. 13 that the EMA consists, within this for-
malism, in neglecting all the terms containing Terwiel's
cumulants in the evolution equation for (P„(t)) analo-

gous to (4.11). The analogous approximation in the
present problem would consist in reducing (4.11) to

z (F„(z)) —1 = I (z)(E++E —2)(F„(z)), (4.13)

with 1(z) defined by (4.12) or, more explicitly, using
(4.10) and go= wo

—I,

(
w, —r(z)

1 —[w, —r(z}]a (r,z}
(4.14)

Equations (4.13) and (4.14) define an approximation to
the averaged survival probability (P„(z)) for all the
values of z. The solution of (4.13) is obtained from (2.17)
by replacing p with the I (z) obtained from (4.14).

We note that, although Eq. (4.14) has a structure very
similar to the equation for the kernel of GME for
(P„(t)) in the EMA approach, there is an important
difference: the propagator cf„„(l,z) has a completely
different z dependence. Then the I (z) obtained here is
not the same as the diffusion coeScient obtained in the
EMA, and Eq. (4.13) does not coincide with the adjoint
or backwards equation of the GME given by the EMA,
as would be the case if the R% considered would be Mar-
kovian. Physically speaking, we have taken into account
the correct realizations of the walker paths in the con-
struction of the non-Markovian contribution appearing
in the exact effective backwards master equation (3.8).
To stress these differences, coming from the finiteness of
the interval [ L,L] used to define th—e FPT, we call the
approximation defined by (4.13) and (4.14) the finite EMA
(FEMA). It will be demonstrated in Appendix C that the
FEMA gives the exact exponent for the small-z behavior
of (F„(z)) for models (a}, (b), (c), and (d). It can be also
seen that the large-z behavior given by the FEMA is the

same as the exact one obtained previously [Eq. (3.19)].
Then the FEMA can be taken as a good approximation
for all the values of z.

B. Survival probability
in the finite-effective-medium approximation

The solution of Eq. (4.13) follows immediately from
our considerations in Sec. II, by using (2.17), where now

p must be substituted by the I (z) obtained froin (4.14):

(x i
)"+ (xz )"

z(Pn(z) ) =1—
(L+1) (.L+1)(xi) +(xz)

with
1/2

xi 2(z)—:1+—+ s 1+—s S
1,2 4

(4.15a)

(4.15b)

and s—:z/I (z). The long-time limit can be obtained
from (4.15a) with z —+0. For models (a), (b), and (c) of
disorder, z/I (z)~0, as can be seen in what follows, so
that we obtain

(p ( )) (L+1) n—
2I (z~0) (4.16)

If we define the quantity

R (z) = —I (z) —
I cPOO[1 (z),z] I

we can write Eq. (4.14) in a simpler form:

N =I (z)
1

w +R (z) w+R (z)

(4.18)

(4.19)

R (z) behaves as R (z)-(L+1)z/2 for models (a), (b),
and (c) and for small z.

As the first application of the FEMA we will reobtain
our result for the MFPT in the case of weak disorder. In
this case the inverse moments pk —=(w„, ") are finite
quantities and we can expand (4.19) as

1 Rp, +R p~
—. —. =1(z)(p, Rp2+R'p3 — —) .

(4.20)

Solving for I (z) and using the small-z behavior of R (z),
we obtain

r() 1 1+ 2 1 L+1+p —(p )'
(4.21)

At this point an important difference between the EMA
and our FEMA appears: the analog of I (z) in the EMA

The z dependence arises from the behavior of I (z) for
each particular model of disorder.

In order to solve (4.14) for small z we need to find the z
dependence of the propagator &F00(I (z),z). This can be
obtained for models (a), (b), and (c) from our general ex-
pression (B10) as

1 1 L+1 z

r(z) r(z) 2 r(z)
+

(4.17)
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for the probability (P„(t)) has the meaning of a z-

dependent diffusion coefficient and, for weak disorder,
behaves for small z as a power series in z' . Equation
(4.21) contains no z '~ term, showing that the problem of
FPT in random media cannot be simply reduced to that
of the study of (P„(t)) or the frequency-dependent
diffusion coefficient. The substitution of (4.21) for z=O
into (4.16) gives the MFPT in weakly disordered chains, a
result previously obtained by a different method in Sec.
II:

L+1
( T„)=(F„(z=0) }=

2I (z =0)
(L+1) n — 1

2 LU

(4.22)

1 —R (z}ln[1+R (z)]+R (z)lnR (z)

The second case that we want to study is model (b) of
strong disorder. We need to solve Eq. (4.19) where the
average has to be performed with the probability distri-
bution for the w„'s given by (1.3). From (4.9) we arrive at

The survival probability behaves for small z in the follow-
ing way:

(L +1) —n 2 m(1 —a)
(L +1) sin(era)

(4.29)

showing the announced divergence of the MFPT for case
(c) of strong disorder. It will be shown in Appendix C
that the law ( F„(z)) —z is an exact result. The
coefficient in (4.29) is not the exact one, but the numerical
results of Appendix C and Ref. 8 show that it is an accu-
rate approximation, especially for small a.

%'e remark that the law z is a consequence of having
used the I (z} solution of (4.17)—(4.19). As was previously
pointed out, this result cannot be obtained from the ad-
joint equation of the GME for the probability (P„(t))
given by the EMA, which predicts the incorrect result
(F( ))-z

The last example we want to work out is that of
diffusion in presence of randomly distributed absorbing
sites. The probability distribution for the rates w„ is
given in (1.5), so that sites can be normal with probability
p or perfect traps with probability 1 —p. Substituting
(1.5) into (4.19) we obtain

=I (z) [ln[1+R (z)]—lnR (z)], (4.23)

and, solving for I"(z),

pwo R (z)+ u)o(1 —p)=r
wo+R (z) [wo+R (z)]R (z)

so that

(4.30)

r(z 0)-11~i 1+Ii~I 'ln +—1 L+1
2

(4.24)
r(z) — R (z) ——

a„[l.(z),z]
(4.31)

Then the small-z behavior of the survival probability is
given, from (4.16) and (4.24), by

for small z. We have used (4.18) and (B9). Equations
(4.31) and (B9) give for z ~0 and p%1

L +1)—
(4.25)

r(z)-Cz . (4.32)

(
1

w+R (z)
[R (z)] — + R (z)

sin(na) a 1+a

and

1 —o.
R (z) +O(R (z))2+0 (4.26)

This result shows that the MFPT is a divergent quantity
for all the values of L and n. This divergence is charac-
terized by the singularity law of the survival probability
in the limit z~O, (F„(z))—~lnz~. The result (4.25), al-
though obtained in the FEMA, is an exact result. This is
demonstrated in Appendix C by an analysis of the correc-
tions to the FEMA.

Case (c) of strong disorder is characterized by the prob-
ability distribution for the w„s given by (1.4). Evaluating
the averages in (4.19) for small z:

The coefficient C is a function of p and L satisfying a
complicated implicit equation. It can be solved in some
limits; for example, for L ~~,

»m C=~ (2 —
)

4(1 —p)
(4.33)

The survival probability is obtained from the replace-
ment p~l (z) in (2.17). The result predicts a behavior
(F(z))-z ', which could also be obtained simply by
noting that there is a finite probability for the walker to
become trapped in any finite interval. The coefficient of
the law z is the probability q of no escape from the in-
terval D. The FEMA predicts

(x, )"+(xz )"
q

= lim z(F„(z))=1—, , (4.34a)z-.o (x) ) +(x2)

with

1/2

(
W

to +R (z)
1

w+R (z)
(4.27) x) 2=1+ + 1+1 1 1

2C 2C 4C
(4.34b)

the solution of (4.19) gives

~(1—a)
L+1

2
sin( ~a )

~(1—o. )

In Appendix C we show that the behavior z ' is correct,
but the coefficient is not the exact one. Exact results for
q were obtained in Ref. 8 for L=1, 2, and 3 by directly
solving the (2L + 1)X(2L +1) matrix problem (2.7) and



FIRST-PASSAGE-TIME STATISTICS IN DISORDERED MEDIA 4513

then averaging by exact enumeration of all the
configurations.

V. CONCLUSIONS

(L +1) n 1—
2 t2

[model (b)]

f„(~) ' (L+1) n2 —'(1 —a) I (1—a)
(L +1) 2 Q

(5.1)

[model (c)]. (5.2)

The long-time tails predict a divergence in the MFPT for
both models of disorder. We can associate the concept of
strong disorder to a divergent MFPT and characterize
the degree of disorder by the long-time behavior in (5.1)
and (5.2). The exponents of r in (5.1) and (5.2) are exact
results. They are independent of the size of the interval
and of the initial condition, so that FPTD and survival
probabilities show universal behavior for different values
of L, n, and small z, if they are adequately normalized, as
was numerically shown in a previous work. The
coefficient of the power law in (5.1) is also an exact result.
The one in (5.2) is a good approximation. For the case of
diffusion in presence of traps, the correct exponent z
giving the small-z divergence in (F(z)) has been ob-
tained, and the FEMA gives approximate expressions for
its coefficient, which is a residence probability.

The question addressed here has been the study of the
random walk in a disordered chain by first-passage time
techniques, characterizing anomalous diffusion and the
degree of disorder by the long-time behavior of a survival
probability. Disorder was represented by random vari-
ables appearing in the master-equation matrix H. This
matrix was split into a disordered and an ordered part. A
fairly general method, based in a projection-operator for-
malism, has been presented. It has been applied in detail
to the random-trap model, but our approach is rather
general and similar steps can be followed to study other
models of disorder.

We have been able to derive a general evolution equa-
tion for the survival probability for arbitrary statistics of
the random rates characterizing the disordered medium.
A generalized Dynkin's equation has also been obtained.
We remark that these are exact results and that the
correct backflow exclusion has been automatically taken
into account by averaging the backwards equation for
each realization of the disorder.

For the case of weak disorder the expression for the
MFPT has been exactly obtained [Eq. (3.29)]. It is
surprisingly simple when compared to the behavior of the
moments of the position of the walker, which are infinite
series in decreasing powers of t' . A new approxima-
tion, the FEMA, has been introduced to take into ac-
count nonperturbative effects, of crucial importance in
cases of strong disorder. The long-time behavior of the
survival probability for cases (b) and (c) of strong disorder
has been obtained [Eqs. (4.25) and (4.29)]. The following
asymptotic behavior for the FPTD follows as t ~ ~ from

f= 1 zF and Taub—erian theorems:
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APPENDIX A: FIRST-PASSAGE-TIME
DISTRIBUTION IN A NONDISORDERED CHAIN

We want to obtain the survival probability and the
FPTD to leave the domain D =[ L,L]—for a RW in an
homogeneous chain. Equation (2.14) can be written in

Laplace representation as

zF„(z)—1 =p(E +E .
—2)P„(z) . (A 1)

We must solve this equation with the artificial boundary
conditions

F—I, - &(z) =FL, +i(z) =0 .

Equation (Al) can be written as

[(E+) —(2+r)E "+1]A„=—1,
where r =z Ip. and the vector A is defined by

A„+, =pF„(z) .

(A2)

(A3)

(A4)

Equation (A3) is a second-order linear inhomogeneous
difference equation which can be solved by adding a par-
ticular solution to the general solution of the correspond-
ing homogeneous equation. The general solution of the
homogeneous part is

A„"=c,(x, )"+c2(xz)" . (A5)

r r
x (z)=1+—+ r 1+—

1,2 4
(A6)

A particular solution is the constant

A~= 1/r . (A7)

Then, using (A4) and the solutions A " and A ~, we obtain

1F„(z)=—+c, (x& )"+'+c2(x~)"+' (A8)

c, and c2 are obtained by imposing the boundary condi-
tions (A2):

(
)L+1

C1X1 = ( )2( L)+ j

( )2(L + 1)
( )2(L + 1)

1 2
(A9)

c1 and c2 are arbitrary constants and x, 2 are the roots of
the equation x (2+r)x +1=0, giv—en by

1/2
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C2X2 = ( )L+1
( )2(L + 1)
X1

( )2(L+1) ( )2(L+ 1)
1 X2

„ t dt=
n

Z=O =1, Vn (Al 1)

is satisfied. From (A10) we can obtain the known results
for the Wiener process: defining a lattice spacing l, a
variable xo:—nl, and a domain 2)—:[—X,X] with X =Ll,
we can take the continuous limit as L ~ ~, p~ ~, I ~0,
with b =—pl and X finite. The FPTD to leave the domain
2) having started at point xo is

cosh[xo(z/5)' ]
f(xo, s) = (A12)

cosh[X(z/b )'i ]
where we have used that x, 2=1+i(z/b, )' + in
(A10) for I ~0. It is easy to see that the MFPT is

& —
XO

2 2

T(x() ) = —(),f (x(),z ~0)= (A13)

APPENDIX B: GREEN'S FUNCTION
IN A FINITE DOMAIN

The problem of solving the finite-dimensional matrix
equation (3.7) is reduced to that of solving Eq. (3.10) with
the boundary conditions Eq. (3.11). This is equivalent to
finding the Green's function for a RW in the finite
domain D = [ L,L] with —absorbing boundary conditions
at the domain ends. It is known' that the method of the
images is a good technique to solve this problem. It con-
sists in summing to the Green's function in the absence of
boundaries (G„), with indices in D, terms of the form
+6k, with k being the specular image of n with respect
to the boundary considered. In the case of absorbing
boundaries the image must have a negative sign. Due to
the fact that we are in a closed domain, each boundary
rejects the other boundary. This introduces an infinite
set of images leading to the result in (3.12). From this re-
sult it is easy to see that the initial condition is satisifed:
for any n, rn ED we have

X ~n —m, —4k(L+()
k = —oo

~n +m, —2(L +1)(2k+1) ~n, m (B1)

because n —m ~2L+1. The boundary conditions are
also satisfied, as can be seen from

G (L +1)(4k —1),
k = —cc

Equation (2.17) follows from (A8) and (A9). The FPTD
f„(z) is related to F„(z)by f„(z)=1 zF—„(z),so that

(x, )"+ (x2 )"
f„(z)=

( )(L+1)+( )(I+1.)X1 2

We see from (A10) that the normalization condition

and

G„, (rlt )= y G(I+, )(4k, ) m
k = —oo

( A n(+4(L +1)k —m)

k = —oo

A (n +2(L +l)(2k +() +m~
) (B4a)

where

A (z)=1+
2p

2
~ 1/2

Z Z'
+

2p 4p
' —1/2 (B4b)

B(z)= —+
2p p 4p

We will sum each term separately. If n —m &0 and us-
ing that n —m & 2(L + 1), we can write the first sum as

A m —n y A 4(L+1)k+ A n ——m y A 4(L+1)k

k = —oo k=0
4(L + 1)-n n —m 1

4(L + 1)
1 —A 1 —A 4(L+1)

The case n —m &0 can be considered in a similar way.
The general expression for the first sum is

A (n +4(L+ 1 )k —m

g m —n g
—4(L +1)g 4(L +1)H(n —m)

g —4(L +1)

g n —mg 4(L+1)H(m —n)

+
g 4(L+1) (B6)

where H(n —m) is the Heaviside step function. In the
same way, using n+m &2(L+1), we can write for the
second sum the following general expression:

n + 2(L + 1 )(2k + 1)+m( g —n —m —2(L + 1)

g —4(L + 1)

g n+m+2(L+1)
+

g 4(L+1) (B7)

Putting (B6) and (B7) into (B4) we obtain the exact result
(3.14). From this equation we can see that G„(z) is a
function that is symmetric in the indices n and m. How-
ever, it does not depend only on the absolute value
ln —ml. This can be seen, for example, from a large-L
expansion of (3.14). The first correction to the free
Green's function G „(z)is

G(L+1)( 4k —3) m 0 . (B3)
k = —oo

We are interested in the expression of the Laplace trans-
form of G„(tlt'). Laplace transforming Eq. (3.13) we
can write (3.12) as

~0~ (L + 1)(4k —1),m
k = —oo

(B2) —2( A ') cosh[(n +m)ln A ] . (B8)
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We now analyze the propagator J (z)—:(E++E
—2)G„(z) in the limit z~0. We remark that we will

not perform an expansion in the parameter L, which
gives the size of the system. We will keep the exact

dependence in L given in (3.14) and study the small-z lim-
it. In this way we conserve the correct L dependence in
the limit of long times. Applying (E +E —2) to
(3.14), the following expression is found (e=—A ):

4g4) —
1[ (g jn+1 —m + g jn —1 —mj 2g n —mj)

e2g 2( ~ —(n+1+m)+ g n+1 —m+ g
—(n —1+m)+ g n —1+m 2g —(n+m) 2g n+m)

4g4( g
—n+1 —mj+ g —jn —1 —mj 2g —jn —

mj)]

After a straightforward but tedious algebra we obtain

1J„(z)———5„
p
[L +1+min(n, m)][L +1 max—(n, m)]

2I4(L + 1)

z
X —+ '''

p
(810)

APPENDIX C: ANALYSIS OF THE CORRECTIONS
TO THE FINITE-EFFECTIVE-MEDIUM

APPROXIMATION

for all n, m, L, and small z. From this expression we can
see that the first z-dependent contribution is different
from that which would be obtained by using the usual
free Green's function. Namely, the first z-dependent term
in J„(z)=(E++E —2)G„(z) is of order z' . This
difference is an example of the effects coming from the
new ingredients needed in the study of FPT statistics in
random media, absent in the study of the position of the
walker in disordered media.

(x, &T=(x, &,

&x)x, &T =(X,X, ) —&x, ) &x, ),
&X1 2X3 &T &X1X2X3) &X1)&X2X3)

—(x,x, &&x, &+(x, &(x, &&x, & .

(C3)

Note that the order of the x's on the right-hand side of
(C2) must be the same as in Terwiel's cumulant. The
same result (C2) is obtained when the x's are random
variables as when they are random operators.

Another important property of Terwiel's cumulant
(xix2 . x„)T is that, if it is possible to split it into two
sets [x, xk] and Ixk+, x„] without altering the
order of the x's in such a way that the variables in one of
the sets are statistically independent of those in the other
set, the cumulant vanishes.

Equation (C2) can be applied to the cumulants
(%„%„)I(„)T appearing in (4.11). Then an expres-

sion in terms of the moments ()I1, )Il, ) is obtained.
1 A.

These moments can be further manipulated to obtain an
expression in terms of averages of random variables, in-
volving no random operators. This can be done by using
that [Eq. (4.10)]

In this appendix we study the exact equation (4.11) in
order to establish whenever the FEMA gives the exact re-
sult for the small-z behavior of (F„(z)). To this end we
need some properties' '"" of Terwiel's cumulants ap-
pearing in (4.11). The first one, easily obtained from its
definition

(x,x, x„)T—:Px, (1—P)x, (1—P) . (1—P)x„,

e„=At.„(1—Ã„PAi„),

where

t) (z)n

1 —i)(z)cP„„[r(z),z]
'

(C4)

(C5)

(C1) and

is the expansion of Terwiel's cumulants in moments:

(x,x, x„&T
n —1=g ( —1)'
i=0

&x x )1 Il

X (x( +1
' ' ' x( )

The algebraical steps needed to evaluate

& q', . . . +„&= P.w, (1 JV,PJR, )JR,(1—S,PJM, )—

(C6)

X (Xl, +) Xn )

Explicit examples of this formula are

(C2)
X.M„(1—A'„(Af„)),(C7)

are very similar to those needed to obtain (C2) from (Cl).
The final result is
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)= g (
—1)' g &AL,At, .A, )

i=0 1&1 & . . &l, &n
I

XIV, &A. , A, +, .R., )JV, &A, ) . JV, &91, A, „) . (CS)

As an example of Eq. (CS) we can see that

&e,e, ) = &u,u, & &—~, )w, &u,w, &

—&u,w, )w, &~, )

+&~, &w, &~,u, &w, &u, & .

A convenient expression for JN„in (C, 5) is

(C9)

(L +1) n—
R„(z)- z+ =g z+

2(L +1) (C12)

Up to this order, R„(z) is I independent.
After these preliminaries we are in the disposition of

analyzing the corrections to the FEMA from Eq. (4.11),
which can be written as

z &F„(z)) —1=1 (z)R& F„(z))
w„—I (z)

At„= [I (z)+R„]
m„+R„

(C 10)

where we have used g„(z)=w„—I (z) and the definition

+X X
p =0 nl &n,

n, ~n, ,

„ (p, z% & F„ (.)) ,

R„=—I (z) —1/8„„. (Cl 1)
7

n &n

The small-z behavior of R„ for cases (a), (b), and (c) of
disorder [for which z/I (z)~0] is where we have defined

(C13)

A„„.. . „(p,z)—:.
&q„), p=o.

„,po
(C14)

n'&q„)- z+O(z ) .
(p )~ 2(L +1) (C15)

Remember that Px. —= & 1/w"). Then the contributions

Because the sums in (C13) are all finite, taking the indices
values in D, the small-z results for &F„(z)) obtained in
the FEMA will be the exact ones whenever I (z) is more
important than A„. . . „(p,z) for all p and small z. Other-

P

wise, the FEMA would need corrections from
A„.. . „(p,z) in order to give the exact small-z behavior

of &F„(z)).
Let us begin analyzing the order in z of (C14) for weak

disorder and pPO. In this case, by (4.21), I (z) is of order
z, so that, using (Clo) and (C12) and the fact that all the
moments of the form &(I/wj) ) are finite, &AJ(z)' ) is
of order z for all N. From (C6) it can also be seen that
ÃJ(z)-O(z ). Combining this result with (C2) and (CS)
we see that &ql„+„%„)z. is of order z . We note

l P

that only the nondiagonal parts of the 8's enter in (C13),
so that according to (Blo), 8„(z)—O[z/I (z) ]—O(z)
and from (C14), A„. . . „(p,z) —O(z~). The smaller value

P
of pAO entering in (C13) is p= 2 because the cumulant in
(C13) for p = 1 consists of two independent random
operators, so it vanishes. Then the most important con-
tribution from A„. . . „(p,z) for pWO is of the order z .

P

For the case p=O, we can see that

= g &q„q„q„&,@„„,a„„a&F„(z)).
niw n

(C16)

In writing the last equality we have used the fact that, un-
less n2 =n, the cumulant vanishes because it can be split
into independent pieces. The equation for &F„(z)) be-
comes more complicated when successive higher-order
terms are added. Equations (C15) and (C16) introduce
explicit n dependence in the coef5cients of this equation,
and higher-order terms break down its nearest-neighbor
structure. Nevertheless, standard approximation
schemes" can be used in these cases, so that Eq. (C13)
provides a systematic method to calculate &F„(z)) order

from the sum in (C13) are negligibly small when com-
pared with I (z) for small z. This demonstrates that the
FEMA gives the exact result for the small-z behavior of
& F„(z)) in the weak disorder case.

The first correction to the FEMA term I (z)%'&P„lz) )
in (C13) is of order z and can be obtained from (C15).
The next correction, of order z, comes from the next
term in the expansion of & 4„)and from the p=2 term:

A„„„(p=Z, z)A&F„(z))
nl xn

n&&nl

&qi„q „e„& d"„„cP„„WF„(z)&
nl~ n

n2& nl
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1 )lVr( )2 V

(X —1)R„(z)~-'

I (z) z

1)gN
—I

(C17)

if %~2. g„was defined in (C12). If %= 1, the average
reads

&At„(z) &
—r(z) ln

go
(C18)

by order in z.
We analyze now (C14) for model (b) of disorder, for

which r(z)- }lnz} '. The integrals defining the moments
of JK„behave for small z as

/V

&At„(z) &
—I (z) j dw

[w +R„(z)]

max[A„. . . „(p,z)]—O((zI ) (I z ')i' 'z )

-o(r')-o(}1~}-'). (C21)

This contribution, which is simply & 0'„&T, is less impor-
tant for small z than 1 (z), so that the FEMA also gives
for this case the exact result for & F„(z~0) &.

In general, the order of A„. . . „(p,z) is I z ', in-
p

dependent of p, so that in order to obtain systematic
corrections to the FEMA, an infinity of terms with
different values of p &0 must be summed up. A calcula-
tion of this kind was done in Ref. 13 to calculate the
frequency-dependent diffusion coe%cient beyond the
EMA.

Next, we analyze (C14) for model (c) of disorder
[I (z)-z ]. In this case care must be taken in evaluating
the small-z singularity in the moments of At„W.e find,
for S&2,

In any case, we have

&At„(z)"&-O z

~ P
T

r(z)
N 12 3 (C19)

N

&At ( ) &=[r( )+R„( )] f d
w [w +R„(z)]

'N
r(z) R„(z) (1—a)
R„(z)

Then, for averages of the form

which I of the indices [no, n„
Ii, ,iz, . . . , ii j, being the i,
(g~ im =p+1), wefind

&At„At„At„& in

. . . , n } are different,
repeated m times

XB(1—a, %+a—1) (C22)

and, for A"=1,

&At„(z) &
—I (z)[1—(1—a)I (z)R„(z) B(1—a, a)] .

At„&=&At, '&&At, '& &At,"& (C23)
'p+I '

I (z)
z

(C20)
B(x,y) is the beta function. Using (C12) we find, for all
the values of X,

Here we have used the fact that the [At„} are indepen-
J

dent random variables for different n . In the expansion
of & %„%„+„&in moments of At [Eq. (CS)], we see

0 I p

that the dominant term for z~0 is precisely (C20). This
is so because (a) all other terms are split at least once
more [this introduces a factor O(z)], (b) at least one re-
petition of some At is added somewhere [this introduces a
factor O(I z )], and (c) a factor JV [-O(I ')] ap-
pears with each split in (CS). These three circumstances
introduce at least a factor O(zI z 'I ')-O(I )

-O(}lnz} ') with respect to (C20), showing that (C20) is
the most important term in & 4„%„+„&for z~0.

0 l p

Using these results, we see that in the expansion of
&'p„'Il„+„&r in moments of 4' [Eq. (C2)], the

0 I p

term with i +1 moments is of order (I z ')~+'z, where
X =g'k OIi, . I Ik } are the numbers of different su-
bindexes of Af present in the moments. Since

—p Ik ) I, the dominant term for small z is that con-
taining only one moment,

0 l p—O((I z ') 'z ). Combining this result with the fact
that the contribution in (C14) coming from the cF's is of
order (zl )i', it follows that the dominant contribution
to the sum in (C13) comes from the A„„.. . „containing

1 p

the minimum number I of different random operators 4'„,
that is, I=1:

&At„(z)'& -O(z'- [r(z)'z-']~),

so that

&At„At„At„&-&At,"&&At,"& &At,"&
p+]

(C25)

max[ A„. „(p,z)]—O({zr-')~(r'z ')~+ 'z"'-'), ,
p

—O(I ) . (C26)

We have used the fact that 1(z)-O(z'"). Then the
FEMA needs a correction which, although does not
change the predicted divergence law & F„(z)& -z, does
change its coe%cient.

To estimate the importance of this correction we write

It turns out that all the terms in the expansion of
'Il„& in moments of Jkt~ are of the same or-

0 I p

der in z as (C25). In the expansion of & ~II„+„.'P„&T0 1 p

in moments of 4, , the dominant term is again
4„&,so that the cumulant is also of the or-

0 I p

der of (C25). Using this result in (C14), the leading
A„. . „(p,z) is again that one containing the cumulant

with I=1, &+„&T:
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the equation which contains the whole dominant z depen-
dence:

.&F„(.) ) —1=f (.W'&&„(.) )+ & ~„(.) ),~&F„(.) )

L+1 n——1 (z) JV(P„(z}) . (C27)
(L +1)

This last expression has been obtained by calculating
(4„)T

= (4„)from (C4)—(C6), (C12), and (C23). We see
that the correction to the FEMA becomes negligible for
small a. %e can test the accuracy of the FEMA by con-
sidering small values of L, so that (C27) could be exactly
solved as a (2L + 1)X (2L + 1) matrix equation. For ex-
ample, for the case L = 1, the exact solution of (C27)
shows that the FEMA result (4.29) underestimates the ex-
act coefficient of z in an amount which, for the worst
case a =1, is less than the 19%%uo.

A„. . . „(p,z)-0(z~+'[zl (z) ]~)-0(z) . (C28)

Then there are corrections to the FEMA term 1 (z)
which need to be taken into account. The exponent in
the FEMA result (F„(z))-0(z ') is the exact one, as
can be seen from the fact that there is a finite probability
for the walker to remain trapped in any finite interval,
but the coefficient will not be the exact one.

Finally, we analyze the case of diffusion in the presence
of randomly placed traps. The average (At„(z) ) can be
readily evaluated by using the binary distribution (1.5).
The result is of order z . All the terms in the expansion
of ('lt„'lt„. 4„)r in moments of 4, and in the ex-

0 1 P

pansion of (4„W„. 4„) in moments of Jkt, are of
0 1

the same order in z, so that (%„4„%„)7.
0 1—0 (zt'+ ' ). Finally, using the fact that I (z) —0 (z),
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