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The class of Fokker-Planck equations considered in this paper bridges the gap between the gen-
eralized Verhulst-Landau process and the Rayleigh process, which were apparently unrelated up to
now. The equations are solved analytically for the transition probability density function of the un-

derlying stochastic processes. The solution method uses operational calculus, and simultaneously

produces all components of the spectral problem: spectrum, eigenfunctions, and their normaliza-
tion. The general results obtained are benchmarked with the known results for the above-
mentioned processes by inserting suitable parameters.

INTRODUCTION

(3)

the process [x(t)] becomes a one-dimensional Markov
process and is completely characterized by its transition
probability density function (PDF) w (x, t /xo)

This PDF is the solution of the Fokker-Planck equa-
tion (FPE) associated with (1),'

(& ) (A )
t3t t)x Bx

with initial condition

w (x, 0/xo ) =5(x —xo )

and eventually subject to suitable boundary conditions.
The diffusion and drift coefficients in (4) are given, respec-
tively, by'

B (x)=g'(x),

A (x)=f (x)+g dg
dx

(6)

when the Stratonovich interpretation of (1) is accepted,
considering F (t) as a zero correlation-time limit of realis-
tic continuous noise, and when a suitable rescaling of
time in (1) normalizes F (t) such that in (3) one has

F 2

Rules of classical calculus apply to (1), and a transforma-
tion x ~y (x) can eventually be used to make g —= 1 in (1)

A stochastic process I x ( t ) I can formally be described
by a stochastic differential equation (SDE) of the
Langevin type:

x(t) =f (x)+g (x)F(t),
where f,g are deterministic functions of x (eventually of
t), and where F ( t ) represents the stochastic excitation.
Restricting F(t) to white noise, with

and (6) ["additive-noise version" of (1) and (4)].
Clearly, the FPE is an appropriate tool for the study of

nonlinear stochastic processes. In spite of the growing in-
terest in nonlinear models, the number of cases where the
FPE has been solved exactly is still small in comparison
to the numerous instances where the equation has been
used for approximate or numerical analyses, e.g. , for mo-
ment calculations. See the extensive reference list in Ref.
1.

In general, the effort of searching for a new exact
analytical solution is rewarding only when the stochastic
processes underlying the FPE have a sufficient degree of
universality (see, e.g. , Ref. 3), or when tuning new solu-
tion methods (see, e.g. , Refs. 4 and 5). To some extent,
both conditions are met in the present paper.

A CLASS OF FOKKER-PLANCK EQUATIONS

The subsequent analysis will deal with FPE's of the fol-
lowing type:

Bw (x, t) O'
[(ae'+ b) w] — [(ce'+ d)w],

Bt g~' Bx

x E [—ao, + ao ] (8)

where the diffusion and drift coefficients exponentially de-
pend upon x.

Constants a and b in (8) are non-negative in order to
have a valid diffusion equation. They are in fact redun-
dant, as both can be made unity by translation of x and
scaling of t, but they will be kept explicit to facilitate the
identification of (8) with some known FPE's. Restrictions
for constants c and d will be specified whenever appropri-
ate.

The stochastic process [x (t)) that generates FPE (8)
can be modeled by the SDE:

x = c ——e "+d +(ae +b)'r F(t)
2

or, eventually, allowing for two normalized but mutually
uncorrelated white-noise functions:
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x = c ——e'+d +(ae")' F, (t)+b'~ F2(t) . (10)
Bw(x t)

[(ae +b)w] — [(ce"+d)w],
Bt Q

~ Bx

Some known physically important cases of (9) or (10)
are easily recognized. Setting

a =0, b=1, d= —c=2o)0
gives the SDE

x =2a(1 —e )+F(t), (12)

y = [a+F ( t) —py ~]y, y E [0, oo ], a, p, y )0 . (13)

A second example is the well-known Rayleigh pro-
cess '' which can be recovered from (9) or (10) by letting

which describes Brownian motion in a Toda potential'
and also is the additive-noise version of the generalized
stochastic Verhulst-Landau models ' ' which represent
multiplicative stochastic processes with state-dependent
feedback, e.g. ,

xE[—~, +~], a b d )0, c (0 (20)

subject to the initial condition

w (x,0/xo ) =5(x —x o )

and to natural boundary conditions' '

Bww(+~, t/xo)=0, =0 for x =+~
X

(21)

(22)

—kkt
w(x, t/xo)=w, (x) g yk(x)gj, (xo)e

k=0
(23)

(2) Determining the stationary PDF w, (x) from (20)
with

classically may consist of the following steps.
(1) Elimination of the time variable from (20), either by

Laplace transformation, or by an eigenfunction expan-
sion such as

a=1, b=0, c= 1y d 2& ) Oy y =2e

(14)
(24)

which yields the SDE

y= ——ay+F(t), yE[0, ~], a)0, p) —1 . (15}

y= . —atanh —+F(t), ye[0 oo], a p)0
sinh(y) 2

(16)

and is retrieved from (9}by the substitutions

a =b=1, 1—
d=cx, c =

2
y =2arcsinh(e "

) .

(17)

Equation (16) models Brownian motion in a strongly
asymmetrical potential well.

The above-mentioned stochastic processes (12), (13),
(15), and (16) appear to be stable in probability if the fol-
lowing sufhcient conditions are met:

c(0,
d &0.

(18)

(19)

These conditions will be accepted as a working hypothesis;
they will be sharpened or relaxed whenever it is con-
venient or necessary.

CONSTRUCTIVE SOLUTION METHOD

The mathematical problem of solving an FPE such as
(8):

[The sign of F (t) is unimportant. ]
Finally, the most general version of (9), with a and

6+0, can be cast in several forms. The additive-noise
version with a minimal number of parameters however, is
unique:

(p —bz —dz)6(z, p) =e '+(az +cz)6(z + l,p),
where

(25)

e(z,p) = f dt e 'e(z, t)
0

= f dt e ~'f dx e' w(x, t/xo),
0 OC

z =ice,

CATE

[—oo, + co ] (26)

i.e., 6 is the Laplace transformed characteristic function
for the stochastic process [x (t) j.

Equation (25) is devoid of all derivatives. It is a func-
tional equation with a unitary z-argument shift in e(z,p).

The initial condition (21) is incorporated via e '. Nat-
ural boundary conditions (and integrability) are implicit
in the use of the Fourier transform.

Considering (25) as a "functional recurrence equation, "
a solution is obtained by repeated substitution of the
shifted 6(z +k,p) functions in the right member:

(3) Normalizing w, (x).
(4) "Solving" the eigenfunction equation for the yk's,

possibly by transformation to some known type of
second-order equation, or by series solution, by further
expansion in terms of suitable known eigenfunctions, or
just numerically. This step usually involves a lot of trial
and error.

(5) Determining the spectrum of eigenvalues kk, by ap-
plication of the boundary and/or integrability conditions.

(6) Normalization of the yl, 's with respect to w, (x).
In contrast, with the actual solution method, all com-

ponents of the expansion (23) will almost simultaneously
and automatically emerge from a formal series solution,
and normalization is included. The method proceeds as
follows.

The Laplace and Fourier transformation, with respect
to t and x, respectively, applied to (20) results in
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ZXO
e az(z+c/a) «, +

A,o(p, z) A, ,(p, z)

a "(z)k(z +c/a)k

even with "divergent" series, sensible results will be ob-
tained, as such expressions may constitute an asymptotic
expansion of some other function, or as they may trun-
cate to a polynomial in a further stage of the calculation.

where

ZXO
e

g(p, z, xo),
Ap p, z

A,G(p, z) =p —Az dz =—b(z ——z )(z —z ),
1/2

d d
2b 4g2 b

z —(p) =—

(z)k=z(z+1)(z+2) . (z+k —1)= r(z +k)
r(z)

(27)

(29)

(30)

LAPLACE INVERSION

It is clear from (27), (29), and (31) that, as a function of
p, 6(z,p) has an infinity of simple poles at the "points":

d
p =p k(z) =p o(z + k )= b z +k +

2b

k =0, 1,2, . . . (35)

and thus may equivalently be represented by its partial
fraction expansion:

Ak(p, z)=ho(p, z+k) . (31)

The factorization of A,o in (29) allows one to write the
denominators in (27) as

rk(z)
e(z,p)= g

k=0 P —Pk( )

where the residues rk are given by

(36)

„k I (z —z++k+1)
r(z —z +1)

X
r(z —z +k +1)

r(z —z-+1) (32)

„, „(z)k(z +c /a)k
rk(z)=e '(ae ')" Q(pk, z+k, xo) .

A,, (p„,z)
j=O

which clearly shows that P(p, z, xo) in (27) is a generalized
hypergeometric series; "'

C
P(p, z, xo)=3F2 z,z+ —,1;z —za' '

(37)

Here, use has been made of the self-reproducing property
of g in (27) and (33):

with

a+1 z —z + 1' ——e (33)
g(p, z, xo)= g T,

j=0
k —1

T, + Tk P(p, z +k, xo),
g=0

(38)

(a)k(b)k(C)k xk
F3(2,a,bc;p, g; x)=

k=0 Pk'lk
(34)

The convergence of the „I' series encountered in the
present analysis will not be questioned. Their use is pure-
ly formal, as operational calculus expressions, e.g. , and

i.e., when the kth term Tk (kWO) is factored from the
rest of the series, the function is seen to repeat itself with
z shifted to z+k. The term Tk contains the pole

p =pk(z), while the partial sum and p(p, z+k, xo) are an-
alytic there, which explains (37).

Some further development of (37) can be done:

kk, I (2 +d/b+2k)'p""= ~ [p"" p "]="""'r 2 +d/b+kj=0 j=0 I 2z+d/b+k
(39)

g(pk, z+k, xo)=3F2 z+k, z+ —+k, 1;z+k —zk++ 1,z+k —zk +1;——e
a

(40)

where, from (30):

z„+ =z+[pk (z)]=z +k,
d

zk =z [pk(z)]= z k
b

It follows that the 3Fz series in (40) contracts to an 2F, series:

(41)

(42)
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f(pk, z+k, xo)=zF& z+k, z+ —+k, 2z+ —+2k+1; ——e
c a xp

a
(43)

by equality of an upper and a lower parameter:

z+k —zk++1=1 .

Substituting (28), (39), and (43) into (37) yields
ka, 1 I (z+k) I (z+c/a+i) I (2z+d/b+k)

b k! I (z) I (z+c/a) I (2z+d/b +2k)

(44)

c d a xo
X2F& z+k, z+ —;2z+—+2k+1; ——e '

a' (45)

So, with (36) and (45), the inverse Laplace transform of (27} is

e ' "
p„( )~[(a/b)e ']" I (z+k)I (z+c/ a+k)r(2z+d/b+k)

r( )r( +./ ) „, k. I (2z+d/b+2k)
(46)

where pk(z) is given by (35), and zF, has arguments as in (45).
~k A, kf

This still is a formal expression and the "operators" e ' are not yet related to the decaying time exponentials e
in an eigenfunction expansion like (23). A rearrangement of (46) is necessary and may be performed by contour integra-
tion.

CONTOUR INTEGRATION

Considering (46) as the sum of residues of a suitable complex function G(s} at the poles s =sf, =k, k =0, 1,2, . . . of
the summation function I (

—s), one has'

ZXp

e(z, t)= f ds exp[po(z+s)t]
2nir z I' z+c/a

Sa, r(z+s)r(z+c/a+s)r(2z+d/b+s)r( —s)
b I (2z +d /b +2s)

c a
X F z +s z+ —+s '2z+ —+2s +1' ——e '

2 1 & &

b
(47)

where the contour C, in the s plane circles all poles of
r( —s) clockwise (Fig. 1), without enclosing any of the
other poles of the integrand. These constitute three des-
cending pole chains, originating, respectively, from

r(z+s): s =s, , = —z —k,

dI 2z+ —+s: s =s = —2z ———k2, k b
(48)

s plane
Im{s) h,

C,

C CI z+ —+s: s =s = —z ———k,
a a

0 X 0 XQQO X 0 X 0 X 0 X 0 X 0 X 0 X 0 X

c/0 9

Re(s)
z =iso, k =0, 1,2, . . . .

~%

1,Ic

3,k

FIG. 1. Original pole configuration and contour in the corn-
plex s plane.

The interference (Fig. 1) of the sets s& k and s3 k on the
same horizontal is undesirable in view of the subsequent
contour transformations, as it will appear that the set s, k

which starts on the imaginary axis is the proper candi-
date for generating the eigenvalues. The set s3 k can,
however, be avoided by a "fiip-over" in (46) before the
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contour integration is introduced:

r(z+c/a+k) k r(1 —z —c/a)=( —1)
I (z +c /a ) I ( 1 —z —c la —k )

(49)

tion

r(z)r(1 —z) = .sine.z
(50)

which is based on the reflection formula of the I func- The new suitable version of (47) becomes

e ' I'(1 —z —c/a) i.
d a, I (z+s)I (2z+dlb+s)I (

—s)
2mi I (z) "c~ b I (1—z —c/a —s)I (2z+dlb+2s) (51}

with the pole configuration and the contour C, as in Fig.
2.

d
Im(s) = —co —— Re(s) 0 z =ice (55}

po(z +s)=b (z +s +d l2b) d l4b —= —
A, , (52)

A variety of pole-separating s contours, equivalent to
C„ is possible (e.g. , Cz in Fig. 2}. For real non-negative
eigenvalues to emerge from (51), a contour should be
chosen such that

intersecting in the point 0( d/2—b, imp) —A.contour
closely approaching this locus and still equivalent to C,
or C2 is given by C3 in Fig. 2.

In the limit, one gets an integral over the line L (54)
and a 6nite set of N+1 "pinched-oF' residues at the
poles (48) s, o, s, , , . . . , s, ~ of the integrand, with

where A, is real and non-negatiue. The locus where this
condition is met can be found from N =int(d/2b) . (56)

(53)
Im(z+s+d/2b) =0,
(z+s+d/2b) ~d /4b

and consists of two connected parts (Fig. 2): the vertical
line I.,

This corresponds, respectively, to a continuous and a
discrete part of the spectrum of eigenvalues in the eigen-
function representation of the time-dependent charac-
teristic function:

Re(s) =—
2b

'

and the horizontal line segment

(54) e(z, t) =S+I,
with

(57)

N
S= g Res(s =s, k)

k=0

I'(1 —z cia) —
k bk d

I (z+dlb —k)r(z+k) [—(a lb)e ']
I (z) „0 r(1 —c/ a+)krd(/b—2k) k!

c d aX F —k ——k' —+1—2k' ——e2 1 o
b b

(58)

and

bI=f ds . , s= —z — +i@, pG[ —oo, ao],
L

aI=
b

—d l2b
I (1—z c/a), z~&4„~—, a xp

e —e
2m I (z) b

&(f dye b"' —e '
oo b

'"
r(i& d/2b}r(z+d/2b+l p, )

—I (z+d '/2b —i p)
r(1+d /2b —c /a i')—r(2ip)

d . d c . . a x,X 2F& +f'P + —iP; 1+2iP; ——e
2b

'
2b a

(59)
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s plane
Irn(s)t)

C,

The discrete part of the spectrum of eigenvalues kk is
clear from the time exponentials:

A.„=k(d —bk), k =0, 1, . . . , X=int . (62)
d
2b

o II-o
l

I —d
2b

I 2b

S 1,I(

FOURIER INVERSION

The k =0 term (A.O=O) of (58) yields the normalized
stationary first-order characteristic function:

FIG. 2. Adapted pole configuration, locus of real non-

negative eigenvalues, and equivalent contours in the complex s

plane.

(60)

[—(a lb)e '] C aF —k, ——k' —+1—2k' ——e '
k! 2 1 b

Formulas (58) and (59) come straightforward from (51),
and no atempt will be made in this paper to simplify or to
symmetrize them.

The expression (57)—(59) for B(z, t) is of direct use for
the calculation of conditional moments, e.g. ,I (t lxo) = (e "Ixo)

dxe 'u x, t xo =em, t

by mere substitution of z =m, m =0, 1,2, . . . .
The xo-dependent parts in each term of (58) already

display the unnormalized discrete eigenfunctions yt, (xo)
which, due to truncation of 2F1 are kth-degree polyno-

Xp
mials in (b/a)e ' and eventually can be identified as
Jacobi polynomials Pz""(x)

B,(z)= lim B(z, t)
f ~ oo

, I ( 1 —z —c la )1"(z +d Ib)
I (1 c/—a)1 (d lb)

and, by Fourier inversion, the stationary first-order PDF:

tc, (x)=—I dz e ' (a/b)
2&l —i oo

(63)

X
I (1—z —c la )I (z +d /b)

I (1—cia)Pd lb)
I (1+d lb —cia) [(a lb)e" ]
I'( 1 —c /a )I (d /b) [1+(a lb)e" ]'+

(64)

(65)

under the conditions (see Ref. 15—Mellin transforms)

—&0 ord&0, (66)
b

—&1 ore&a,C (67)
a

which henceforth replace (18) and (19).
The normalizing constant in (65) can be written in

terms of a beta function (8)

c
71=

c d
U 1.

a b

I (k d lb) (—„„) 2b
I'( 2k d lb )

—" a

(61)

I (1+d/b —c/a) 1

I (1 —c/a)I (dlb) B(dlb, 1 —c/a)
Only the normalization of the eigenfunctions cpk remains

to be found.
Considering a general term of (58) with k&0, the

Fourier inversion of the z-dependent part is expected to
yield a function proportional to tc, (x)yk(x) [in reference
to (23)]:

1 +i~,„,I (1—z —c/a)1 (z+dlb —k)1 (z+k)
2'trl —

r oo r(z)
cc tLt, (x)qk(x) . (69)

G12 —xb
22

1 —k, 1+k —d/b

1
—c/a, 1

The integral I, is not readily available from tables. When
compared to the integral (64) and (65), I, is seen to
represent a generalization of Rodrigues's formula' for
orthogonal polynomials with weight function w, (x), but
more straightforwardly it can be identified as a particular
case of Meijer's G function

I, = I (k +1—c/a)I (dlb —c/a —k +1)
I (1—cia)

[(a/b)e ]""
[1+(alb) x]1 dlb +—c!a

(71)d c bx 2F1 k k 1 ' eb' a' a

In this last expression tc, (x) (65) is already apparent, and

2F1 indeed is a Jacobi polynomial again

=G —e x
22 b

c/a, O

k, Kj/6 —k

which in turn is related to a 2F, function: .11, 15

(70)

d c b
2F1 k k —;1 ——;——eb' a' a

k!I (1—c/a) ~„~ 2b
I (1—c/a +t() a

(72)
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with zi and v as in (61). Using now (71), (72), (61), and
(65) one has

V «(x)V «(xo)

=B(d/b, 1 —c/a)

I (d/b —c/(z +1—k)I (k d—/h)k!X
I (1—c/a +k)I (d/b —2k)I (2k d/—b)

XP«"'"'[h (x)]P«"'"'[h (x() )],
z) = —c/a,
v = c/a d /iz——1,

h (x)=1+ e
2b

a

showing the normalization of the eigenfunctions p«(x).
This completes the inversion for the discrete part of

the spectrum. A similar treatment of the continuous
spectrum (59) is possible but will not be undertaken in
this paper, as the essentials of the method should be
sufficiently clear from the above analysis.

SPECIAL CASES

forming a limit in (72):

1
lim zF&

—k, k —2e;1+2'/a, ——e
a~0 a

1
2 0

—k, k —2a; — e

=(2ae ) "U( —k;2a+1 —2k;2ae")
= (

—2ae x) —«k!L z(a —«)(2ae x) (76)

where U is a confluent hypergeometric function, and
Lg(x) is a generalized Laguerre polynomial. '

Further substitutions, as well as the treatment of the
continuous spectrum, exactly reproduce the results which
are available in Ref. 7, in terms of the variable z =2ae .
(See also Refs. 2 and 10.)

(b) The Rayleigh-process results ' can be recovered
exactly by insertion of the parameter set (14). Limits are
now related to b~0. The spectrum (62) now becomes
entirely discrete, as the vertical integration path L (Fig.
2), and simultaneously the pole series sz «, disappears to
infinity when b ~0. Eigenvalues are now equidistant:

We have the following.
(a) Results for the Verhulst-Landau stochastic process

are reconstructed by choosing the parameters (11), which
involves some plausible limiting processes as a~0. The
stationary PDF is

A« =2ak, k =0, 1,2, . . .

and "confluence" of (72) yields"

1+
lim zF) —k, k 2a/b;— ; be-
b~o 2

(77)

I (1+2a+2a/a) (ae')
w, (x)= lima-o I (1+2a/a)I (2a) (1+aex))+za+zaia

(2a)" z.(, —.)

I (2a)
(74)

1+= iF, —k;;2ae
k!I ((P+1)/2) (p, )n ayz

I ((P+1)/2+k) 2
(78)

The discrete spectrum is

A«=k(2a —k), k =0, 1,2, . . . , N=int(a) . (75)

The discrete eigenfunctions are, e.g. , obtainable by per-

which is a generalized Laguerre polynomial with con-
stant, k-independent parameter (p—1)/2.

For completeness, the stationary PDF follows from
(65):

I (2a/iz + (P+ 1)/2) [(1/b)e "]
w, (x)= lim

(,-o I ((p+1)/2)l'(2a/g) [1+(1/h)e "]zatb+ (p+ i)n

(2a)'~+" „(P+1)
I'((P+ 1)/2} 2

(79)

or, in terms ofy =2e CONCLUSIONS

8x
w, (y) =w, (x)

dy

)()s+ ) ) /2 2

y/2 &exp — y
r((P+1)/2)

(80)

The spectral problem has been solved for a rather gen-
eral class of Fokker-Planck equations. The considered
class realizes a unification between, and a generalization
of, such apparently unrelated stochastic processes as the
Verhulst-Landau and the Rayleigh process. The same re-
sults, and the same unifying characteristics apply to the
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class of one-dimensional Schrodinger equations (with
imaginary time} that can be associated' with the FPE's.

The solution method employed basically starts from a
first-order functional recurrence for some integral-
transformed function, and thus is not strictly limited to
the equation type or the integral-transform type of the
actual application. The method considerably enlarges the
scope of operational calculus techniques, and the formal

solution of the recurrence equation may be a good start-
ing point in the search for alternative solution forms
[such as, e.g. , the closed form of the Rayleigh-process
PDF (Ref. 10}].

The unification between the two-parameter Jacobi po-
lynomials and the one-parameter generalized Laguerre
polynomials as limiting cases is a spin-off which does not
seem to be well documented yet in applied mathematics.
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