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Transient transport in a dynamical two-chain model
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We use a dynamical two-chain model to study anomalous transport in chainlike systems {like po-
lymers) with a statistical distribution of transition rates. Temporal disorder {resulting from energet-
ic or spatial randomness) is taken into account in the framework of continuous-time random walks.
The interchain and intrachain transitions are characterized by different waiting-time densities. The
effective current along the chains is studied as a function of the interchain and intrachain waiting-
time densities. The approach presented here allows an exact expression for the Laplace-
transformed effective current and for higher moments of the effective probability distribution of the
walker. The general scheme can be applied to a model consisting of X chains and also to higher-
dimensional lattices.

I. INTRODUCTION

Photoconductivity in amorphous media is a topic of
great importance both theoretically and experimentally,
and also due to the central role of the effect in the xero-
graphic process. '

As is well known, photoconductivity data often show a
temporal transition from dispersive to nondispersive be-
havior. ' The main feature of the recently developed
experimental techniques is the possibility of monitoring
the current over many orders of magnitude in time and
intensity. Such measurements often reveal crossover
effects in the transition form dispersive to nondispersive
behavior. ' Interestingly, these crossover effects can be
understood in the context of transport theories in random
media.

The situation is even more complex when one consid-
ers charge carriers moving along and across many
strands of polymers with different transition probabilities
for jumps along or across the chains. Such a situation is
encountered in the photoconductivity of doped quasilin-
ear polymers such as polyacetylene, where charge car-
riers move on and between parallel, one-dimensional po-
lymer chains with defects.

As a contribution to the understanding of the complex
situation that such models may lead to, a previous paper
studied transient transport in a hopping model with a
power-law distribution of transition rates for carriers
jumping along two parallel linear chains. In the present
work we will display a variant dynamical model consist-
ing of parallel chains by using the theory of continuous-
time random walks (CTRW) with internal states. ~ ~

We start by noticing that the CTRW theory was origi-
nally introduced into the physical literature to investigate
the effects of disorder on charge-carrier transport. '

From then on dispersive transport in disordered solids
has been studied intensely using different generalizations
of the CTRL approach. Recent investigations centered

on continuous-time random walks with internal
states, ' " ' so-called multistate CTRW (MCTRW),
and on models with dynamical disorder. ' '

There are several parameters that may be affected by
disorder, such as the intersite distances, the energy levels,
or the internal states of the walker. In the analysis of the
electric conductivity through strands of polymers, one
therefore has to take into account many possibilities of
walker-lattice interactions, which then lead to a complex
picture. A simplifying feature is the fact that for a sys-
tem of polymer strands the interchain and intrachain in-
teractions differ significantly, so that one can use a model
based on coupled chains.

In our approach we use a model consisting of N cou-
pled, infinite chains as depicted in Fig. 1(a). Physically
we imagine the walker to be at a certain time t on site s'
on chain 1 and take W„(l) to be the transition rate from
site s' to site s along the chain l. Note that we set the dis-
tance between two neighboring sites equal to 1, so that all
lengths are in units of the intersite distance.

The walker can also make a jump from site s of chain l
to the site s of a neighboring chain l, the jump being
characterized by the rate Mt t (in the MCTRW this corre-
sponds to a change of internal state). If the jumps along
and across the chains are independent, we can view the
walker as first jumping on a disordered chain character-
ized by random rates 8;,,(1), taken from a given distribu-
tion. At some random time the walker changes to a
neighboring chain (this fact is represented by the transi-
tion I~ l'); then during the next time interval the walker
is on the chain I characterized by newly distributed rates
W„.(1) (possibly taken from another distribution), and so
on.

It should be remarked that the present model is
different from that of Ref. 5, because here the distribution
of rates W„(l) between sites is reset after every jump
across the chains. The model analyzed here introduces
an additional feature through the dynamical change of
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rates W„(1).
Let thus W„(l) be the transition rates for a given, sta-

tistically disordered configuration. We now follow the
spirit of the CTRW theory ' ' ' ' and replace the set of
W„(1) by a (decoupled) spatiotemporal transition proba-
bility density ft(s —s, t) [see Fig. 1(b)]. Disregarding for
the moment jumps across the chains, and focusing on
chain I only, we have

gt (s s', t—) =A t (s —s '
)gt ( t ),

where the A, t(s —s') are the jumping probabilities from
site s' to site s for a simple random walk on chain I and

P&(t) is the waiting-time density associated with this
chain. Note that Pl(s s', t) —is translationally invariant
and that g,-At(s")=1. The probability that no jump
along chain 1 has occurred up to time t after the last step
will be denoted by P)(t):

pt(t)=l —g f pt(s", r)dr
s-

=1—f g((r)dr . (2)

In the same spirit the jumps across chains, represented by
MI.I, can be characterized by general transition probabili-
ty densities P&&(t). Then the probability that the walker
does not leave chain l during the time interval t since the
last step is

yf(t)=1 g f P,—(~)dr . (3)
I'

Using Eqs. (1) and (3), we can immediately write down
the effective transition probability density hatt(s

—s, t) as-
sociated to the jump of a walker on chain l from site s' to
s after a waiting time t:

rt()(s s'—, t)=A((s —. s')Pt(t)Pf)(t) . (4a)

In the same way we can find the effective probability den-
sity gt. t(s s—', t) for transitions from site s on chain 1 to
site s' on chain l':

rtI I(s s',—t)=5„$t(t)g&,I(t) (for 1%1') (4b)

(note that we allow only such interchain jumps for which
s =s').

Now, the matrix rt=[g& &] satisfies the following nor-
malization condition:

g g f rtl t(s' s, t)dt —=1, (4c)

II. GENERAL APPROACH

which ensures that the walker will certainly leave any site
at some time either by moving to another site s' of the
same chain or by jumping to another chain I'.

The particular form of Eqs. (4a) and (4b) can be visual-
ized as follows: The probability that a walker, arriving at
t' on site s of chain l, performs its next step at time t'+ t
along chain I is the combined probability of not having
yet performed a jump to another chain up to time t'+t
and of moving to another site on chain l just at time
t'+t. This explains the diagonal parts of the matrix g.
The nondiagonal parts can be understood in a similar
way.

We want to remark that the structure of Eqs. (4) is
reminiscent of dynamical disorder models;' ' however,
only if the waiting-time density Pt(t) of the walker is ex-
ponential (Markovian CTRW) will we be able to associate
our present MCTRW approach to an external-noise mod-
el (see the Appendix).

In what follows we are going to use the probability
densities of Eqs. (4) to treat the problem of photoconduc-
tivity through strands of polymers. The outline of the pa-
per is as follows: In Sec. II we derive expressions for the
effective current along the chains and review some basic
results of the MCTRW theory in order to obtain the
higher moments of the effective probability distribution
of the walk. In Sec. III we illustrate the model by
presenting the results for two parallel chains. In Sec. IV
we study analytically the long-time limit of the current
and we display numerically evaluated plots of its full
time-dependent behavior. We end the paper in Sec. V
with a short discussion of crossover effects. The Appen-
dix is devoted to an analysis of the connection of the
present model to other models for dynamical disorder.

site s s+1

FIG. 1. (a) Illustration of the considered model, consisting oi
X parallel chains with jumping rates H, , (1) along, M» across,
the chains. (b) The same model in CTR%' description, using
site-independent transition probability densities P, Is s', t) and-
+, ( t) instead of discrete jumping rates.

A. The current

Let Rt(s, t) be the probability that a walker arrives at
site s on chain 1 just at time t. The functions RI (s, t) obey

the following integral evolution equation:
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Rt(s, t)= g $ rfn'(s s—', t —r)Rt'(s', r}dr+5(t)5, oc& .
s

(5)

Here we assumed that the walker starts at time t =0 on
site s =0. cl is the probability that the walker initially
occupies chain 1 (etc& = 1).

In the following, the Fourier and Laplace representa-
tions will be understood by their arguments, i.e.,

f (k)= g f (s)e'"'

and

g (u) = f g (t)e "'dt .
0

Then we get from Eq. (5) the solution for RI(k, u):

R I ( k, u ) = + elI ( k, u )c, ,
I'

(6a)

where e(k, u)=[etI.(k, u)] is the inverse of the matrix
[1—q(k, u)]:

B. Higher Moments: The MCTR%' approach

t
PI(s, t)= f 4i(t r)R—t(s, r)d~, (8)

where 41(t) is the probability that in the interval [O,t] no
further jump occurred:

@I(t) 1 g g f rll"l(s, 'r)dr . (9)
0

As before, we start with our walkers from the origin;
however, we allow them to be situated on different
chains. The initial condition is then

Pt(s 0)=5.
, ocI (10)

with c, + +c~= 1 (X is the number of different
chains). Notice that Eq. (8) is a convolution in time,
which simplifies in the Laplace representation. Further-
more, for @I( t) one has in the Laplace domain

As in Ref. 12, we start with a general set of coupled
CTRW to characterize a MCTRW; an example of such
coupled equations is provided by Eq. (5). Now the proba-
bility Pt(s, t) that the walker is at site s of chain I at time t
is given by

e(k, u)=[1—rf(k, u)] (6b)

The total effective current I(t) along the chains can be
written as

I(t)= g g f g s "rftI(s", t r)Rt(s, v)d—7. .
s I Os-

In the following we will use the vectorial notation
7a

P(k, u)=(P, (k, u), . . . , P~(k, u))

f (k =0)= g f (s) and f (k)
S

/& =0
=i +sf(s) .

Then the Fourier and Laplace representation of Eq. (7a)
1S

This formula can be understood as follows: A walker,
which arrives at time r & t on site s of chain l contributes
to the current time t, if it jumps after a waiting time t —~
along the chain I. The contribution of each such jump to
the current may be negative or positive, according to the
direction in which the walker jumps, and is proportional
to the length s" of the step. Thus the total current along
all chains is the sum over all integers s and s" and over
all chains l, integrated over all ~.

As usual, one has the Fourier-domain relations

and denote by Po(k) the Fourier transform of the initial
occupation probability P(s, t =0): Po(k)=P(k, t =0). In
our case from Eq. (10) it follows that Po(k) =Pa indepen-
dent of k. The solution of the MCTRW in the Fourier
and Laplace representation is then' '

P(k, u)=4(u) [1—g(k, u)] ' Po, (12)

where 4(u)=[5t 1@1(u)]and g(k, u)=[ril &(k, u)].
Then the probability that the walker is at time t on site s
of chain l is given by the Fourier-Laplace inversion of the
1th component of Eq. (12): Pt(k, u). If we are only in-
terested in the position of the walker at time t (indepen-
dently of the chain), ' " we have to calculate the
effective (marginal) probability distribution, defined
through

I(u)=( i) g rttt(k, —u) R, (k, u) (7b) P(k, u}= QP, (k, u) .
I

(13)

I(u)=( i) gg —„r}II(k,u) R&(k, u)
a

I I'
(7c)

If more information about the process is needed, i.e, if
higher moments of the positional distribution of the
walker have to be evaluated, one can make use of the
MCTRW formalism, as we now describe.

This formula gives the full temporal behavior of the
effective current in our dynamical ¹hain model given in
Eqs. (4). We note that if the interchain jumps to sites
s'Ws are also allowed, the generalized form of Eq. (7b) is

Marginal quantities represent an average in the sense that
one does not distinguish between different chains. For
the problem that we are interested in (a hopping model
with jumps along and across chains), the effective distri-
butions, Eq. (13), allow us to determine the current as the
time derivative of the position of the walker independent-
ly of the actually occupied chain. We see that from the
waiting-time density matrix g(k, u) the determination of
many quantities of interest is reduced to a Laplace inver-
sion. Thus from Eq. (12) all the moments of the distribu-
tion P(s, t} can be easily calculated. ' One has
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tsr (t))—:gs Pr(s, t)

=( —i) X P, (k, u)
Bk k =O

(14)

The advantage of the MCTR% approach lies, howev-
er, in the fact that even higher moments can be readily
evaluated. For example, the generalized diffusion
coefficient

where X ' stands for the inverse Laplace transform.
Setting again e(k, u):—[1—g(k, u)] ', for example,

the first and second moments can be written as

D (t) =-' —(&s'(t) ) —&s(t) )')
dt

can be obtained from Eqs. (15) and (16).

III. RESULTS FOR THE TWO-CHAIN MODEL

(19)

[s(u)I= —i e e eP1 gk 0
k=0 I

(15a)

[s(u)I= —C&2e "e "e+e "e P,a an a'9
ak ak ak2 k=O jl

(15b)

From now on and due to the fact that we are interested in
the effective probability distribution, given by Eq. (13),
we are going to use only the effective moments:

&s (t})—= g Isr (t)I .
I

(16)

I(u)=u g [sr(u)) .
I

(17a)

It is now straightforward to show that Eq. (17a} is the
same as Eq. (7c). Inserting Eq. (15a) into Eq. (17a) and
using Eq. (6a), we get

I(u)=( i)u g —4 e R(k, u)
'll

ak k=0 1

(17b)

From the normalization condition gr Pr(k =0, t) = 1, one
has for the MCTRW propagator from Eq. (12)

1—= QPr(k =O, u)= g 4 e Pp
u k=O I

(18)

The last expression holds for every initial condition Po.

gr gr'@rr'er'r" l k =p= 1 /u for all I". From Eq.
(17b) now Eq. (7c) immediately follows.

Thus, using the MCTRW approach, the effective current
can alternatively be written as

We now turn to the specification of the waiting-time
density matrix q for a two-chain model. The structure of
si, already presented in Eqs. (4a) and (4b), can be under-
stood from earlier works on diffusion in the presence of
external noise. ' Using the translational invariance [the
disorder along each chain is characterized by the
waiting-time density tj'rr(t} of the walker], one has for a
two-chain model with biasing external field in the Fourier
and time domains:

(k)f, (t)pr(t) $2(t)/12(t)
rt(k, t) =

(t)pal(t) k2(k%2(t)pz(t)f (20)

err =en(u) =~(0r(t)4r(t})

rtr r—:9r r(u}=&(0'r(t)Wr(t}}
(21)

we get from Eqs. (6) and (7b) after the matrix inversion of
[1—g(k =O, u)] in matrix representation

The diagonal parts of g are transition probability densi-
ties, representing the motion of the walker along the
chains. The nondiagonal parts are also densities but
these elements represent jumps across the chains which,
however, do not change the position of the walker (site s)
with respect to the externally applied field.

For strong external electric fields, the motion of the
charge carriers is dominated by jumps in the direction of
the field, so that we can assume a biased model allowing
only jumps in one direction, i.e.,

)t.r(s —s') =S„,„,
independently of I. Then the structure function of the
walk along each chain 1 is A,r(k)=e'". With this condi-
tion and the definitions

I(u)= 1

(1—
ni r )(1 —

n22)
—

mr 2n2r

This finally results in

I21

912

1 —
g1]

C1

C2 ."Jr22
(22)

C1111+C2 /22+ C1'g22IF21+ C2 I12'f11 'f11'f22I(u)=
911 /22+ 911 /22 912 I21

(23)

where, as before, the constants c& give the initial population of particles on the chains, so that here c, +c2=1. Note
that the same result [Eq. (23)] can also be obtained by evaluating Eq. (17a).

The usual CTRW current can be obtained from Eq. (23) by decoupling the chains, i.e., setting P&, r
=0. In this case

one has

r 911( )22}+ 2 f22 /11) )lr 922I(B)= =C1 +C2
(1—

nr r )( I —
n2z)

'
1 —sir

'
1 n22

(24)
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IV. EVALUATION OF THE CURRENT

In this section we evaluate the effective current I(t)
and focus on its long-time behavior. Let us assume that
along each chain we have a certain long-tailed waiting-—

1
—a(time density i((((t) —A(t ' (which might, for example,

result from energetic or spatial disorder on chain l}. For
this we use the Weierstrass form

i(I((t)= g (ab)"e
a

(25}

This form is a general time-fractal event-time density
function, ' and it has the advantage of being very flexible,
so it can be easily Laplace transformed or evaluated nu-
merically. Under the change t~bt, Eq. (25) is scale in-
variant at longer times. So we get

~(b) &( 1 —a b, 1(
ab a ab

(26)

from which for large t we obtain
—

1 —a(i((((t)- A, t (27)

Furthermore, for P&.(=0 one also has Pf((t) =1 for all t
and thus il»(u)=g, (u) and i12z(u)=i((z(u). Equation (24)
thus reproduces the Montroll-Scher-Lax result

I(u)= (i((u)/[I —i(((u)],

here weighted for the two separate chains according to
their initial population.

In the context of CTRW Eq. (24) shows the transition
from dispersive to nondispersive current by modeling the
strength of disorder. Remember that for a waiting-time
density with a long-time tail, such as i(((t)- At
(t~ ao ), the usual CTRW expansion, Eq. (24), leads to
the asymptotic behavior I(t) t-'+ . Our expression
for the effective current, Eq. (23), however, goes beyond
the CTRW result because it takes into account the com-
petition of jumps along and across the chains (i.e., the
walker can waste additional time in interchain loops
without changing the site).

From Eq. (23) we can learn several things: First, look-
ing at Eqs. (21) and assuming that either the waiting-time
density along the chains l(((t) or that across the chains
i(((((t) is Markovian [i.e., the waiting-time densities and
also the P(if (t) are exponential], the transition probabili-
ties gl l and gll may no longer have an algebraic long-
time tail, due to the product in Eq. (21). Thus, even in
the presence of strong disorder along each chain, i.e.,—1 —a((i((t()-t ', the effective current stays diffusive. This
is so because each jump across the chains resets the
watch for the motion along the chains and thus the long
waiting times are cut off. Second, if the jumps across and
along the chains both have a long-time tail, the asymptot-
ic behavior of the current along the chains will also be
strongly influenced by the jumps across the chains.

In Sec. IV we are going to display the long-time behav-
ior for the effective current taking into consideration
different waiting-time densities, both for the motion along
and also across the chains.

From Eqs. (27) and (28) we obtain for $((t) and (((I(t)

(((((t)-
A Af

and (((f(t)—I p
(29)

In order to use our formula for the effective current, Eq.
(23), we have to make the Laplace transform of the prod-
ucts of the i(((t) and ((((t) functions. An Abelian theorem
states that if 0&y (1 and

f,(t)- A, t ' r for t

one has

(30a)

X(f~(t))=f~(u)-C —A~ ur for u~0 .
I (1—y)

y

(30b)

Thus we get for the i)( I(u) elements in the limit u ~0
a(~p

jill ll ~ll ~

a, +p
rt( (

- II( ( 8( (u —
( l &1'),

where

A(A I (1—a( —p)

p a, +p
r(I —a, —P)

a( a(+p

(31a)

(31b)

(32)

Equations (31) hold for a(+p & 1. Note that the constant

n((= f q(I(t)dt =1 II(.(—
0

has the meaning of the probability that the next step goes
in the direction of chain I (independently of the time at
which the next step occurs), whereas 0(« is the probabili-
ty that the next step goes from chain l to chain I'. Using
Eqs. (31) in the formula for the effective current, Eq. (23),
we have

0„+022 —201,022 P

II' ll I'I
(33)

where l denotes the chain with al ~ ul . Then for
p+min(a(} & 1, the long-time behavior of I(t) is as fol-
lows:

P+ min( a( )
—

1I(t)-constXt (t~~) . (34)

We see that the long-time tail is governed by the motion
between the chains (exponent P) and by the jumps along
that chain in which the motion is most hindered [i.e.,
minimum of (a()]. The constant that appears in Eq. (34)
carries information on the probabilities Ql. l and on the
constants 8l l. Then, if we fix the value of the smaller of
the al, say, n„and vary o.2, we obtain the same long-time

where al = lna /lnb.
Let us assume that jumps between the chains have also

a similar form, possibly with a different coefficient P. We
also set, for simplicity, i((I I =i(((( =—i(( . Thus,

(28)



42 TRANSIENT TRANSPORT IN A DYNAMICAL TWO-CHAIN MODEL 4467

form, but the prefactor will change; this will be manifest
in a shift of the effective current. This and other interest-
ing crossover effects will be displayed in the following,
where we show the full time dependence of the effective
current.

After this asymptotic analysis of the current, we now
turn to the numerical evaluation of the temporal behavior
of I(t), in order to study the intermediate time regime.
For g'(t) we use the Weierstrass form, Eq. (25), taking
for a' different values of lna/lnb. The ('1(t) functions
can be obtained by a simple integration of Eq. (25) with
respect to time:

(35)
10' 1 010

2
0.5
0.3

0.2

Similar expressions are used for the function Pl, ~(l) and
P~&(t). The )I,&(u) functions are given from Eqs. (21).
Then the full time-dependent effective current is obtained
by taking the inverse Laplace transform of I(u); this step
has to be performed numerically.

We first remark that the role of the parameters cI
which appear in Eq. (23) is not decisive. In Fig. 2 we
plotted the currents for three different initial populations.
As one can see from this figure, after a short transient re-
gime the time dependence of I(t) reaches the same shape
regardless of the initial conditions. In the following
figures we therefore only display the curves that corre-
spond to the initial condition c

&

=cz
=

—,', i.e., where the
walker may start with equal probability on each chain.

Figure 3 shows the typical behavior of I(t) In this.
plot we have set the exponents for the jumps between
chains to the value P=0.5 and for jumps along chain
number 2 to the value a&=0.3. By changing now a, from
small a

&
(az to large values a

&
)az, we readily demon-

strate that the shape of the currents is always controlled
by the minimum of a, and az. This agrees with Eq. (34),
from which the asymptotic behavior of the current is
given analytically by

P+ min(a, ) —iI t r-

FIG. 3. Effective currents for a&=0.3 and P=0.5, where a,
varies from 0.1 to 2. As long as a

~
& e2, the current decays

P+a) —1

asymptotically as t ', whereas for al & a2 the decay follows
P+ a2 —1

the form t

Furthermore, for a, )az changes of a
&

do not influence
the qualitative shape of the current and only produce a
shift in its absolute magnitude. This is because changes
of a, (for a, )az) only vary the value of the prefactor in
Eq. (33). Hence, even if one has normal diffusion along
one chain (for example, a1) 1), the behavior of the
current is always controlled by the chain in which the
motion is more hindered. This agrees with the original
picture of the multiple-trapping model, where already the
presence of some deep traps may lead to dispersive trans-
port, even if the conductivity in the conduction band is
good.

In Fig. 4 we have fixed the degree of dispersion in both
chains to the same value (a, =a&=0.5). Then if we
change the values of p, which characterizes the jumps be-
tween the chains, we see a crossover from dispersive
current (which obtains for a+P & 1) to nondispersive

10 10 0.5

10
10

0.3

10 '
10 10

10' 10"
0.1

FIG. 2. Effective currents for a, =0.1, a&=0.5, and P=0.5,
starting with different initial occupation probabilities: c 1

= 1,
c2 =0 (curve a) cl =c2

2 curve b); c, =0, c2 = {curve c

FIG. 4. Effective currents for a, =a~=0.5 where P varies
from 0. 1 to 1. As long as a+ @&1, the current decays asymp-
totically as t + ', whereas for a+p) I the current approaches
(after an initial transient decay) a constant for large t.
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current, I(t)-const (which obtains for a+P) 1). This is
in perfect agreement with Eq. (34). Note that, as also
found in Ref. 4, for P such that a+P= 1 the asymptotic
form is reached only at very long times, the time to reach
the asymptotic regime diverging for a+P~ l.

As a final remark, we observe that neither the model of
Ref. 5 nor the present model can be seen as being a pure
dynamical disorder model, ' ' because in neither case
does the generalized matrix master operator decouple in
a walker (noise-dependent) operator and in a Van
Kampen-type external-noise operator (see the Appen-
dix).

—1 Pt(k, r) +At .t(k =0, t r)—dr, (Al)

where the connection between r1 and A=At. &(k, u) is
given through

be extended to MCTRW. Following Ref. 12, the
MCTRW probability P& can be expressed as solutions of
the following system of coupled generalized master equa-
tions (CGME):

I3,Pt(k, t)= g A&&"(k, t r—)Pt (k, r)dr

V. DISCUSSION
usta (k, u)

1 —gg, , (k =O, u)
(A2)

In this work we have used a dynamical quasi-one-
dimensional model which accounts both for the statistical
features of disorder encountered by the particles in their
motion along the chains and also for fairly general mech-
anisms which lead to interchain coupling. We have ana-
lyzed the crossover from dispersive to regular transport
in a one-dimensional model by studying the dynamical
renewal produced by the reset in time caused by jumps
across the chains. We note that we have presented only a
special case: The general scheme can be applied to a
model consisting of X chains and also to higher-
dirnensional lattices. For this we only need to introduce
the adequate d-dimensional structure matrix A, &(s

—s')
and consider the corresponding N XN matrix g.

In the present dynamical model the anomalous
diffusion is dominated both by the disorder along the
chains and by the probability distribution for performing
jumps across the chains. The approach presented here al-
lows an exact expression both for the Laplace-
transformed effective current and also for higher rno-
ments of the effective probability distribution. The mech-
anisms studied in this article should show up in photo-
conductivity experiments on doped quasilinear polymers,
where charge carriers move on and between parallel one-
dimensional polymer chains with defects. Experimental
results would be helpful in order to establish the impact
of the models presented here and those which we studied
earlier. The models are both simple enough to be stud-
ied analytically and rich enough to be able to mirror the
inhuence of competitions between transitions along and
across chains.
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APPENDIX

It is we11 known that the CTRW scheme is connected
to the generalized master equation. This idea can easily

So we can rearrange Eq. (Al) to show the explicit struc-
ture of its elements. Using Eq. (20), we see that only the
diagonal elements of A are k dependent. For example,
for the component l= 1 we have

a, P, (k, t)

= J [A„(k,t —r) —A„(k =O, t —r)]P, (k, r)dr
0

—A~, (t —r) A, 2(t —r)
+

0 A2)(t —r) —A(2(t —r)

P)(k, r)
X p (k )

d7 (A3)

u&(y, (t)A",, (t))
A, ,(u)= (A4)

1 —X($((t)P(((t) ) —X(k((0)ft(t)gt (t) )

—a&t
Thus, if we use a Markovian CTRW (ttI&(t)=a&e '

), we
will get

t i(u +a()
A( t(u) = (1%1') .

Pf((u +a()
(A5)

So, if we put, for example, a Markovian external noise

P&.&(t)=y&.&e
'', we will obtain

A(, (u)=y((, (A6)

independently of the time scale a& of the walker. In all
other cases, however, the time scale of the walker (at)
also influences, through Eq. (A5), the transitions between
internal states. Thus the noise is not purely external for
non-Markovian waiting-time densities P&(t) or P&&(t)

Note that this split shows a generalized walker kernel
(noise dependent) plus a generalized master operator
which works only on the internal states. This is a gen-
eralization of the van Kampen composite Markovian pro-
cess. But even when the noise kernel is k independent,
the elements A&t (t —r) (1%1') carry information on the
time scale of the walker, so formula (A3) is not a pure
external-noise model. For instance, for our two-chain
model we have
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