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We study a two-state quantum-mechanical system, equivalent to a —,-spin dipole, with frequency

coo, linearly interacting with a set of quantum oscillators. The corresponding discrete nonlinear
Schrodinger equation (DNSE) has been given an analytical solution by Kenkre and Campbell [Phys.
Rev. B 34, 4959 (1986)]. We show that in the strong-coupling limit their analytical expression is

recovered from our microscopic approach when the thermal and quantum fluctuations of the bath
of oscillators are neglected. To take into account the influence of thermal and quantum fluctuations
on the prediction of the DNSE in the strong-coupling limit, we adopt a straightforward procedure
based on the direct evaluation of ( cr„(t)), under the assumption alone that the frequency coo is very

weak. A special initial condition is used, with (o, (t) ) = 1 and the oscillator at equilibrium in the

corresponding effective potential. It is shown that in the strong-coupling limit this expression coin-
cides with the noninteracting-blip approximation of Leggett et al. [Rev. Mod. Phys. 59, 1 (1987)]
and the result of the equivalent projection approach of Aslangul, Pottier, and Saint-James [J. Phys.
(Paris) 46, 2031 (1985); 47, 1657 (1986)]. Then, this expression is used to study the special case
where the

2 spin interacts with only one oscillator at zero temperature. It is shown that the fast os-

cillations predicted by Kenkre and Campbell in the strong-coupling limit are damped by a
Gaussian-like relaxation process provoked by the quantum fluctuations of the oscillator, which

eventually lead to the destruction of the trapped state. These collapses are followed by periodical
revivals reminiscent of those observed in quantum optics.

I. INTRODUCTION

The model of one —,-spin dipole interacting with one or
more quantum-mechanical oscillators plays a central role
in many different fields of investigation. Relevant exam-
ples are quantum-mechanical dissipation, ' quantum op-
tics, and the discrete nonlinear Schrodinger equation
(DNSE).

The latter field of investigation is currently the subject
of a debate concerning the microscopic derivation of the
DNSE proposed by Davydov. The DNSE was derived by
Davydov by modeling the energy transport in biological
macromolecules via the Frohlich Hamiltonian and mak-

ing use of an Ansatz for the form of the state vector
which is assumed to be a product of a normalized one-
exeiton vector and a many-mode product of phonon
coherent states. The essential ideas of Davydov's theory
were used by Brown et al. to develop a variation of the
Zwanzig-Nakajima projection technique that allowed
them to recover with a more rigorous statistical approach
the same nonlinear structure as that characterizing the
DNSE of Davydov. The problem of the microscopic

derivation of the DNSE is rather closely connected to
that of the microscopic approach to quantum dissipa-
tion. This is made evident by considering the two-site
version of the Frohlich Hamiltonian. In this case the mi-
croscopic Hamiltonian has precisely the same structure
as that used within the field of quantum dissipation, i.e., a
—,-spin dipole interacting with a set of quantum-

mechanical oscillators. In this special case, termed adia-
batic dimer, Kenkre and co-workers " have been able
to predict interesting effects produced by the strong in-
teractions of quasiparticles with the vibrations of a solid.
Within the perspective of this paper, more important
than that is the fact that they have been able to derive the
analytical solution of the DNSE. Since the Hamiltonian
behind their analytical results is the same as that used in
the field of quantum dissipation, we have available an al-
ternative approach to the microscopic derivation of the
DNSE. This is as follows. Instead of discussing the
Ansatze made by Davydov ' and the problems of the
rigorous statistical derivation of his equation, we can
proceed to a direct comparison between the analytical
solution found by Kenkre and Campbell and the solu-
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tions available in the field of quantum dissipation after
the investigative work of Leggett and co-workers. '

Actually, instead of using the results of Ref. 1, we
derive an expression for the time evolution of the mean
value of the x component of the spin at second order in
the unperturbed precession frequency. At this order our
result is proven to coincide with the theory of Leggett
and co-workers. ' This approximation allows us to dis-
cuss the effects of quantum Auctuations on the adiabatic
dimer of Kenkre and Campbell with a fully analytical
expression, but it will oblige us to keep our analysis in the
region of high couplings. Another reason for us to
"rederive" the result of Leggett and co-workers is that
within our approach it is straightforward to make the
semiclassical assumption, i.e., that the oscillator is classi-
cal. This approximation is proved to result in a simple
analytical expression coinciding with the prediction of
Kenkre and Campbell in the same limiting condition of
small coo's.

We are thus in a position to accomplish the proposed
plan. We proceed to a direct comparison between the
analytical expression of Kenkre and Campbell and a ful-

ly quantum-mechanical result that in the semiclassical
limits reduces to the expression of Kenkre and Camp-
bell. It is thus correct to interpret the discrepancies be-
tween these two different predictions as being an effect of
the quantum-mechanical corrections to the DNSE. A
crucial issue' on the DNSE is whether or not its
significant predictions are invalidated by the quantum-
mechanical nature of the oscillators, and we believe that
our approach serves very well the purpose of answering
it.

The outline of the paper is as follows. In Sec. II we
show that the adiabatic dimer of Krenkre and Campbell
implies the inhuence of both quantum and thermal Auc-

tuations to be totally neglected. In Sec. III we study the
time evolution of the mean value of the observable of in-
terest and we express it by an analytical equation ob-
tained with no approximation but that the spin preces-
sion frequency is very small. In Sec. IV we adapt this
equation to the special case of an interaction with only
one oscillator at temperature T =0. We then discuss the
effects of quantum Auctuations on the adiabatic dimer of
Kenkre and Campbell. Concluding remarks are found
in Sec. V.

II. HEISENBERG REPRESENTATION
AND HIGH-COUPLING LIMIT

We study the system described by the following Hamil-
tonian:

and the operators 6, and b, are the conventional creation
and destruction operators satisfying the commutation
rules

[b„b, ]=1 (2.3)

o. , 0. , and o., are the Pauli spin operators. For the sake
of concision we define the operator x,

x=+ I, (b;+b; ) . (2.4)

Thus the interaction Hamiltonian reads

g (2.5)

(2.6)

Then the bath oscillators are subject to harmonic poten-
tials with unperturbed frequencies but with a minimum
shifted by the quantity

In a recent paper, ' a theoretical procedure has been
adopted aiming at retaining the essence of Davydov's
idea, namely, the fact that the phonon system is held
away from equilibrium through a constraint supplied by
the moving excitation. It has been stressed that if the
bath consists of only one damped oscillator, then this os-
cillator must quickly relax towards an equilibrium distri-
bution with respect to a shifted harmonic potential. This
property has been partially taken into account by the
theory of Ref. 13, where at t =0 the spin is assumed to be
polarized along the x direction and the oscillator is
forced to stay at equilibrium in the correspondingly shift-
ed potential well. The theoretical approach of Ref. 13
has quite an attracting property: when thermal and
quantum-mechanical Auctuations are neglected, this
theory recovers the analytical predictions of Kenkre and
Campbell in the strong-coupling limit. However, the
thermal and quantum-mechanical corrections are intro-
duced with a Markovian assumption, and the resulting
theoretical predictions are then supported by comparison
with the results of a numerical method. In this paper we
plan to retain from this approach only the assumption on
the special initial condition. As far as the evaluation of
quantum and thermal Auctuations is concerned, this will
be carried out with no approximation but that the oscilla-
tion frequency coo is very small. This is the reason why
the comparison with the adiabatic dimer of Kenkre and
Campbell can only be carried out in their strong-coupling
limit.

To be more specific, let us assume that at t =0 the spin
is in the state f+ &„, the eigenstate of cr„with positive ei-
genvalue, therefore satisfying the condition

where

~+ma+mi (2.1)

(2.7)

COO

crz

%~ =+co;b; b, ,

Mr=ger„g I', (b, +b, ),

(2.2a)

(2.2b)

{2.2c)

the unperturbed equilibrium position being assumed to be
placed at x =0. We choose an initial condition with the
oscillators of the bath placed in an equilibrium state with
respect to this shifted potential and we study the ensuing
evolution of the system.

In accordance with the above remarks it is convenient
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to adopt the following change of variables:

gI,
b,-=b, —

b, =b, —gr,
(2.8)

in the strong-coupling limit. This is equivalent to disre-
garding completely both thermal and quantum
mechanical fluctuations .This can be made clearer by
noticing that if the second term on the right-hand side of
(2.10) is not disregarded, the set of Eq. (2.11) must be re-
placed by

This means that we are using the new coordinates

x;=I';(b;+b;), (2.9)

which correspond indeed to shifting the reference frame
by the quantity of Eq. (2.7). In this new system of refer-
ence the Hamiltonian of Eq. (2.1) reads

a, 2P g—Q I;(6;+b;)+gap;b; b;
I I

g 2+2 g 2+2
—2o„g +g

CO; COI

(2.10)

where

P—:—'(1 cr —
) .

2 X (2.10')

Starting from the initial condition of Eq. (2.6), we are
tempted to assume the interaction between spin and sys-
tem, [second term on the right-hand side of (2.10)], to be
negligible. We then immediately obtain

o.„(t) =
coocr«( t),

o.«(t) = ~ocr, (t)+—4ho, (t),
c'r, (t)= 4ho (—t),

where

p2
g —g2 g

N;

(2.1 1)

(2.11')

coocos[(165 +coot )' ]+166,
(a, (t)) =

166 +co2
(2.12)

coosin[(165, +coot)'~ ]
(16g2+ 2)1/2

(2.13)

4~,a
(cr, (t)) =

t 1 —cos[(166 +coot)' ]} .
165 +coo

(2.14)

This coincides with the strong-coupling limit of the de-
generate dimer of Kenkre and Campbell. Thus we can
regard Eqs. (2.12)—(2. 14) as the prediction of the DNSE

This is formally identical to the dynamics of a linear non-
degenerate dimer, where the localized state appears to be
an effect of the disparity in the energy levels. However,
the microscopic Hamiltonian is the same as that behind
the degenerate dimer of Kenkre and Campbell and the
self-trapping is a consequence of the strong coupling with
the phonon bath. In other words, a degenerate dimer
strongly coupled to the phonon bath appears to be
equivalent to a nondegenerate dimer decoupled by its
bath. The solution of this set of differential equations is

d, (t)=cocoa (t),
d «(t) = coo—cr, (t)+46 cr, (t) 2g—x(t)cr, (t),
d, (t) = 46o—«(t)+2gx(t)o«(t) .

(2.15)

If we think of x ( t) as being a fluctuation, either classical
or quantum mechanical, then we see that the determinis-
tic dynamics of the set of Eq. (2.11) is perturbed by a sort
of multiplicative stochastic process which is reminiscent
of the well-known stochastic oscillator of Kubo. ' In the
present paper we shall focus our attention on the effect of
quantum-mechanical fluctuations. The thermal fluctua-
tions will be ruled out by reducing the bath of oscillators
to a single oscillator at the temperature T =0. We want
to remark in advance that if the quantum-mechanical
fluctuations are conceived as erratic motions of x(t) sur-
viving also at T=O, then it is not surprising that the
motion of the —,-spin dipole is characterized by collapses,
i.e., a sort of relaxation process triggered by the multipli-
cative nature of the "noise" appearing in Eq. (2.15). The
Kubo stochastic oscillator' ' sheds light on this impor-
tant aspect.

Note that the DNSE was derived by Davydov by as-
suming the oscillators to be in coherent states, and thus
very close to the classical condition. Thus it is reasonable
that the exact equations of (2.15) lead to the same predic-
tion as the DNSE when the quantum fluctuations of x(t)
are disregarded. The major purpose of the present paper
is precisely determining the physical effects of quantum
fluctuations in the strong-coupling limit.

III. EFFECTS OF QUANTUM-MECHANICAL
FLUCTUATIONS

where

Instead of adopting the procedure of Ref. 13, we ap-
proach the problem of determining the influence of
quantum-mechanical fluctuations on the predictions of
the DNSE in quite a different way. This consists of deter-
mining the time evolution of (cr„(t)) under the assump-
tion alone that the transition frequency coo is very small,
while retaining the initial condition of the preceding sec-
tion. The resulting expression for a generic bath of oscil-
lators is virtually equivalent to that of Leggett and co-
workers. ' However, our procedure makes the connection
with the DNSE of Davydov clearer. For this reason, we
think it worthy of a fairly detailed illustration. We
proceed as follows.

In principle, the exact expression for the time evolu-
tion of (o „(t)), ensuing from the special initial condition
of the preceding section, is given by

(cr, (t) )—:Tr[P+ pro (t)]:—Tr [P+pz [exp(Xt)o „]),
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(3.1')

The superoperator —iX is the commutator associated
with the Hamiltonian of Eq. (2.1). It can be divided into
two parts as follows:

ing X„ to be small compared to Xt+Xz. For this
reason it is convenient to write Eq. (3.1) under the follow-
ing form:

( o' ( t ) ) =Tr P+ pz exp(Rot )exp &

where

(3.2)

(3.3)

X f ds exp( —Xas)
0

XX„exp(/os)a„ (3.4)

and 2„,Xz, and Xt denote the commutators associated
to &„,&~, and &t of Eqs. (2.2a) —(2.2c). As mentioned
above, we make the assumption alone that the transition
frequency co0 is very small. This is equivalent to assum-

The symbol exp&- denotes the time-ordered exponential.
Let us expand this time-ordered exponential at second or-
der in X„,or at second order in the tunneling frequency
~0. %e obtain

(o „(t)) =Tr[P+ psexp(Lot)a„]+Tr P+pttexp(Sot) f ds exp( —Sos)X „exp(Los)o „
0

+Tr P+ p&exp(X&t) f ds f 'ds'exp( —Los )X „exp[SO(s —s') &„exp(Los')cr,
0 0

We note that the definition of Eq. (3.3) implies

Zoo „=0,
Thereby resulting in

exp(Xzt)a„=o, .

Thus Eq. (3.5) becomes

( a„(t) ) =Tr(P+ pz o „)+f ds Tr {P+ pz exp[SO( t —s) jX„o„j
0

(3.5)

(3.6)

(3.7)

+ f ds f ds'Tr{P+pzexp[XO(t —s)&&exp[ED(s —s')&„o, I .
0 0

Using the properties

exp[So( t —s ) ]o„=exp[i&0( t —s) ]a'„exp[ i JYo( —t —s)],
&wax ~oay ~

[P A+]=00,
and

(3.8)

(3.9)

(3.10)

(3.1 1)

P+0 P+ =0,
we see that the second term on the right-hand side of Eq. (3.8) vanishes and this equation reads

ta„(t))= )+coo f ds f ds'Tr~ {ps(+~„exp(i&os)X„[exp(Sos')o ]exp( i&os)~+ )„—I .
0 0

Applying the commutators X„and Xo to a and averaging over the spin variables, we obtain

2
Q)0 t s

ds ds' Trs {p~exp[i (&~+gx)s]exp[i (&s —gx)s']exp[ i (JY~+gx—)(s +s')] I +c.c.
0 0

(3.12)

(3.13)

(3.14)

Let us now express the operators appearing in Eq. (3.14) in terms of the reference system of the preceding section. We
obtain

&s+gx =As —b, (3.15)

and

gx =Kg + 35 2gx

Using Eqs. (3.15) and (3.16) we can write Eq. (3.14) as follows:

(3.16)
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2

{o „(t)) = 1 — f ds f ds'[Trs(psexpI i[&&—2gx(s)]s'I exp( —i% ss')exp(4ihs'))+c. c. ] .
2 0 0

The time evolution of x(t) is defined by

X(t}=ex—p(i%tt t )xexp( i—JVttt)

=g I', [b;exp(iso; t ) +b; exp( i c—o, t) ] . .

(3.17)

(3.18)

With this definition, Eq. (3.17) can be rewritten under the following form:

2

(tr„(t) ) =1— f ds f d s'[exp( 4ibs') Tr~(p exp( iA—ss')expIi[A's —2gx(s +s')]s'I )+c.c.] .
2 0 0

Adopting the new integration variables

z=—s+s'

and

we obtain

2

(o„(t))=1— f dq f dz[exp(4ihq)Trs{psexp( i&s—q}expIi[&s 2'(z—)]qI )+c.c.] .
2 0 2q

Note that

(3.19)

(3.20a)

(3.20b)

(3.21)

expIi[i%tt 2'(z)]q—I=exp i +co;b; b; —2g Q I';(b;e ' +b;e '
) q (3.22)

This means that we have to deal with a product of terms, the form of each of which, omitting the index i, is of the fol-
lowing kind:

exp[i (cob b +5' b +5b )q],
where

5= —2gI e

Using Eq. (A9) of Appendix A, derived from a result of Weiss and Maradudin, ' and Eq. (3.24), we get

(3.23)

(3.24)

expIi[&tt —2gx(z)]qj=exp(iffttq)g exp
l

2gI ' —'
q ) 2gF —' '

q
e ' (e ' —1)b, — e ' (e ' —1)b,

COt. COt.

Xexp
i4g I;

[ar;q —sin(co;q)]
N.

1

(3.25)

Note that the exponential exp(4ib, q) appearing in Eq. (3.21) can be expressed as follows:

4ig2I 2

exp(4ib, q ) =g exp (3.26)

Using Eqs. (3.25) and (3.26), from Eq. (3.21) we derive

2 2 20 t q+t 4g I,(o,(t)) =1— dq dz Tr~ ps g exp[a;(z, q}b, a,*(z,q)b;]exp i — sin(co;q)
2 0 2q CO;

with

2g~j lcd z lcd qa;(z, q)= e ' (e ' —1) .
c

We study the case where

+c.c. (3.27)

(3.28)
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pa II p (3.29)

exp( P—co, b t
b; )

Tr(exp
~

P—co; b; b; ( )
(3.29')

Using Eq. (3.29) and the well-known relation for generic operators A and B, only fulfilling the condition that [ A, B) is a
c number,

exp( A +B)=exp( A )exp(B)exp( —
—,
' [ A, B]),

from Eq. (3.27) we obtain

CO

(cr„(t))=1— P f dq f dz TrIp;exp[a;(z, q)b;]exp[ a—,'(z, q)b;]]exp
0 2q

2 24 ~l lN g
(e ' —1) +c.c.

CO.
l

(3.30)

(3.31)

The calculations leading to the evaluation of the trace on the right-hand side of Eq. (3.31) are illustrated in Appendix B.
Using Eqs. (B6) and evaluating by means of Eq. (3.28) the square modulus of a;, involved by Eq. (B6), we obtain

8g I;[1—cos(cu;q)]
Tr[p;exp(a;b; )exp( a,"b; ) ]—=exp

co;(1—e '
)

(3.32)

Inserting Eq. (3.32) into Eq. (3.27} and evaluating the inner time integral, we finally derive

4g I, ;„~ cos(co;q) —1

(o„(t))=1—
F00 f dq(t —q)Re exp g e ' —1+2

N. P, (3.33)

(a, (t)) =1—too f dq f dz Re[exp(e+s')],

where

(3.34)

4g 2+2
P(q)=g

COt

cos(to;q) —1
e ' —1+2

Pcs�.
e ' —1

(3.35)

The Laplace transform ofp(t): (o„(t)), p(z), rea—ds

P(z}=——coo
1 2 4(z)
Z Z2

(3.36)

where 4(z) is the Laplace transform of ReIexp[f(t)]J.
On the other hand, in the limiting condition of a very
small coo, Eq. (3.36) can be considered as a second-order
Taylor expansion in coo of

P(z) = 1

z +coo 4(z)
(3.37)

If we replace the approximant of Eq. (3.36) with Eq.
(3.37), then we recover the result of Aslangul et al. ,

'

which, in turn, coincides with the well-known
I

To discuss the relation between this result and that of
Leggett and co-workers, ' let us rewrite Eq. (3.33} as fol-
lows:

I

noninteracting-blip approximation of Leggett and co-
workers. ' Since we limit the investigation of the present
paper to the case of very small co0, we can conclude by
saying that the comparison, carried out in the next sec-
tion, between the prediction of the DNSE and Eq. (3.34),
is equivalent to comparing the prediction of the DNSE
(Refs. 5 and 9—11) to the theory of Leggett and co-
workers. ' This is certainly true in the time region defined
by t & I/coo. Actually, as shown at the end of this section
and in the next section, the region of validity of Eq. (3.33}
is much more extended. Equation (3.33) is basically exact
provided that (o, (t) ) does not significantly depart from
the initial condition (cr„(0})=1.

In Sec. II we saw that if both thermal and quanturn-
mechanical fiuctuations are suppressed, Eq. (2.15) be-
comes identical to Eq. (2.11) and the result of Eq. (2.12) is
recovered. In the strong-coupling limit, Eq. (2.12) coin-
cides with the prediction of Kenkre and Campbell, 9

which is merely the analytical solution of the DNSE in
the same regime. Thus we expect that in the absence of
both quantum and thermal fiuctuations, Eq. (3.33) also
results in the analytical expression of Kenkre and Camp-
bell. To prove that the central theoretical result of this
section fulfills this crucial property, let us rewrite Eq.
(3.19) under the following form:

(a„(t))=1—~,' f 'ds f d sRe(exp(4ib s')(exp( iAss')ex—p[i [4,—2gx(s+s')]s') ) } . (3.38)

With the symbol ( ) we denote an average which must be
evaluated over the equilibrium distributions of the bath
oscillators regarded as being classical. At temperature
T =0 the coordinate x, thought of as a classical variable,

is obliged by the classical equilibrium distribution to keep
the value x =0. The classical equilibrium distribution at
zero temperature behaves indeed as the delta of Dirac,
5(x ). In conclusion we have
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(exp( —iAzs')exp{i [Att —2gx(s +s')]s'I ) =1 . (3.39)

In the genuinely quantum-mechanical case, on the con-
trary, we have to take into account the ground-state fluc-
tuations which are equivalent to a background noise
making x fluctuate around x =0. In other words, the ap-
proximation of Eq. (3.39) corresponds to neglecting both
thermal and quantum fluctuations. Using Eq. (3.39) we
get from Eq. (3.38) the following result:

(o„(t)) =1—co,' f ds f ds'cos(4bs'), (3.40)
0 0

which can be rewritten as follows:
2

F00
(a„(t))=1+ [cos(4bt) —1] .

165
(3.41)

On the other hand, the prediction of the DNSE, Eq.
(2.12), can be rewritten under the following form:

2

(,o„(t)) = 1+ {cos[(coo+166, )' t] —1I .
(coo+166 )

(3.42)

We thus find that in the strong-coupling limit &0&&6,
and when both quantum and thermal fluctuations are
neglected, Eq. (3.38) coincides with Eq. (2.12) and conse-
quently with the predictions of Kenkre and Campbell.
In the same limiting condition, the theory of Leggett and
co-workers' would have led us precisely to Eq. (3.42).
This supports the view that the result of Eq. (3.38) coin-
cides with the prediction of Ref. 1 beyond the time region
t ~1/coo, provided that (cr„(t)) does not significantly
depart from the trapped condition (v„(t))=1. Within
our approach, the breakdown of the localized state would
be signaled by the presence of secular terms, which in the
large time region would conflict with the constraint

~
(o „(t))

~

~ 1. The renormalization approach of Leggett
and co-workers' serves indeed the purpose of amending
Eq. (3.38) from this fault, by replacing the secular terms
with harmonic functions of time. Our secular terms are
derived from these harmonic functions of time via an ex-
pansion up to second order in cop. However, it is much
easier to handle Eq. (3.38) than the resulting differential
equation of Leggett and co-workers. ' This is the key
reason why the comparison with the prediction of the
DNSE will be made (see the next section) using Eq. (3.38)
rather than the renormalized version of it.

IV. INTERACTION WITH ONE OSCILLATOR

(4.1)

By using the result of the preceding section, we can
easily evaluate the effect of quantum fluctuations on the
adiabatic dimer of Kenkre and co-workers. " In the
special case of a single oscillator, with frequency 0 at
zero temperature, we obtain from our general result of
Eq. (3.33) the following simple expression:

(cr„(t))=1—
coo f dq(t —q)

4r'g' nXRe exp (e' ~ —1)0

(4.2)

Equation (4.2) shows that in this time region the effect of
quantum fluctuations is perceived as a sort of Gaussian-
like dissipation process, eroding the harmonic oscillations
of the adiabatic dimer. Of course, the mere fact that 0 is
finite, and not infinitely small, implies that collapses are
followed by revivals. Thus we are in a position to predict
a physical property quite similar to that discovered by
Eberly et al. At finite values of 0 we expect indeed re-
vivals to take place with the time period r=2m /Q.

To make this aspect clearer, let us rewrite Eq. (4.1) in
the completely equivalent form

(~at)' 4g'r'
(o„(t))=1— exp 0

4g 2+2—co exp
Q2

n

4g r 1 1 cos(nn, t—)
Q n!

(4.3)

If we neglect the second term on the right-hand side of
this equation, we see indeed that revivals are predicted to
take place with the time period T =2m /Q.

In Figs 1 and 2 we explicitly compare the prediction of
Eq. (4.1) [or (4.3)] to that of the adiabatic dimer of
Kenkre and Campbell. We see that the effect of the
quantum-mechanical fluctuations is that of damping out
the fast oscillations of Kenkre and Campbell. This re-
laxation process is followed by periodical revivals with
the time period T =2~/O. In Fig. 1, the occurrence of
periodical revivals is clearly illustrated. Figure 2 shows
the early decay process in an enlarged scale. It is evident
from this figure that due to the relaxation process associ-
ated to the quantum-mechanical fluctuations, the original
oscillation survives approximately for only one half of its

From the analysis of the preceding section, it is now clear
that the discrepancies between the prediction of this sim-
ple formula and the DNSE must be attributed to the
influence of quantum-mechanical fluctuations. We have
seen that the dimer of Kenkre and Campbell disregards
the Kubo-like multiplicative fluctuations. At zero tem-
perature these fluctuations are of merely quantum-
mechanical origin and, due to their multiplicative struc-
ture, can produce dissipation. ' This is fully taken into
account by Eq. (4.1). To make clearer why quantum-
mechanical fluctuations imply that dissipation comes into
play, let us now make the assumption that the coupling
gI is very large compared to the frequency Q. At times
much smaller than 1/0 we should see many of the oscil-
lations predicted by the adiabatic dimer. On the other
hand, this short-time region can be safely explored by ex-
panding the exponential exp(iQq) into a Taylor series
truncated at the second order. We thus obtain

(cr„(t) ) —= 1 —
coo f dq(t —q)

0

4 g'I'
XRe exp q

—4g r2q0
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necessary for this special condition to be reached, and
that, at zero temperature, the lower the frequency of the
quantum-mechanical oscillator, the more stable the ensu-
ing trapped state is.

A further limitation of our approach is the fact that it
is limited to the second order in coo. As we have seen, this
obliges us to keep our analysis in close proximity with the
trapped condition. The direct use of the theory of Leg-
gett and co-workers' would have prevented us from car-
rying out the discussion in terms of simple analytical re-
sults. Furthermore, there are still doubts as to the relia-
bility of the noninteracting-blip approximation in the re-
gions of intermediate couplings. ' We believe that the
feedback of the system on the bath is properly taken into
account by this theory only in the proximity of the condi-
tion (, cr„(t ) &

= l. Our view is based in part on our in-

dependent rederivation of the results of Ref. 1 in the
strong-coupling limit (Sec. III). For these reasons we are
not yet in a position to discuss the interesting discovery
of Tsironis and Kenkre, ' who found that initial condi-
tions play a very important role in the self-trapped re-
gime and can enhance the role of nonlinearity. Thus we
plan to study this aspect along completely different lines
in a forthcoming publication.

&(q)= f A(r)dr+ ,' f—dr A(q), f A(0)dcr
0 0 . 0

+ —,
' f dq A (q.), f A(cr), f dp A (p) dcr

O 0 0

+ —,', f'dr A(r), f do A(cr), f dp A(p)
0 0 0

+ 0 ~ ~ (A7)

Q(q)=— (e ' q q)b —+—(e'"q —1)b
CO

sin(coq)
(A8)

From Eqs. (A2), (A6), and (A8) we get

exp[i (cob b +5* b +5b )q]

= exp(i cob bq)exp
—(coq )b t

+—(e' q —1)b
CO

In our case this series is truncated at the second order,
since the nested commutator is in our case a c number.
Thus we have

APPENDIX A

We plan to write the expression (3.23) under the fol-
lowing form:

X exp — [coq —sin(coq ) ]
N

(A9)

exp[i(cob b +5* b +5b )q]

=exp(icob bq)exp(ab ++Pb)exp(icp), (Al)

where a, P, and y are complex numbers to be deter-
mined. This will allow us to make the factor
exp( i&sq)—disappear, thereby simplifying the evalua-
tion of the Trace in Eq. (3.21).

Let us consider the operator f (q), function of the time

q, defined by

f (q)—:exp( i cub bq)exp[i—(cob b+5' b +5b)q] .

(A2)

Through differentiation with respect to q we obtain the
differential equation

APPENDIX B

In this Appendix we plan to evaluate the trace appear-
ing on the right-hand side of Eq. (3.31). From the
definition of trace, we have, omitting the index i,

Tr[exp( Pcob b—)exp(ab )exp( —a* b )]

= g exp( Pron)—( ienxp(ab )exp( —a' b)in & .
n=0

(Bl)
Via expansion of the exponentials in a Taylor series and
using the properties of the destruction and creation
operators, we obtain

exp( —a" b)in&= g, in&
( a"b)—

p )

f '(q) = A (q)f(q)

with, in our case,

A (q) =i (5'e ' —q b +5e'"q b )

(A3)

(A4)

(
—a*)

n!p=0

n!
(n —p)!

'
]. /2

in —p& .

(B2)

and the initial condition

f(0)=1 . (A5)

Then, using Eqs. (B2) and (Bl), it is shown that

Tr[exp( P~b b )exp—(ab )exp( —a' b )]

According to Weiss and Maradudin, ' the solution of
Eq. (A3) with the initial condition of Eq. (A5) and A as a
general operator is given by Let us define

(B3)exp( Pron) . —n!
(p!)' „,(n —p)!

f (q) =exp[A(q)]

with

(A6)

Using this definition, we show that

(B4)
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n! yg I

exp( —Pton)= g x"
(n —p)! „(n—p)!

pp oo

=xt' g x"
px

oo p —j
=xp x"— x"

n=o n=oP

pcs
pI

(1—e ~ ) (1—e

(B5)

Inserting Eq. (B5) in Eq. (B3) and taking the normaliza-
tion factor of the density matrix into account, we finally
get the following result:

Tr[p, exp(ctb; )exp( —a' b; ) ]=exp
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