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We present a numerical study of the two-wave system that reveals the occurrence of stochasticity
for a limited range of the perturbation only, beyond that it disappears. 4'e refer to this type of sto-
chasticity as "intermediate stochasticity. " Using a Fourier analysis, it is found that intermediate
stochasticity is closely associated with the mode-locking phenomenon taking place in the system. A
theoretical analysis of this phenomenon, based on an extension of the Krylov-Bogoliubov theory of
slow variation parameters, which is appropriate to strongly nonlinear equations, is presented. This
analysis explains the main qualitative features of the numerical observations.

I. INTRODUCTION

The chaotic behavior of dynamical systems has been a
major research subject in the physical sciences for the
past 30 years and is still actively pursued. The impetus
for this research was the formulation and proof of the
celebrated Kolmogorov-Arnold-Moser' (KAM) theorem.
This theorem is fundamentally concerned with Hamil-
tonian systems having a finite number of degrees of free-
dom, which are sufficiently closed to completely integr-
able ones. It establishes the conditions under which the
stability of generalized surfaces or tori in phase space
remains intact while increasing the strength of the per-
turbation in the system. Once these conditions have been
violated, one can expect unorderly or chaotic motion to
set in.

The practical phenornenological criterion for the
breaking down of the KAM surfaces has been studied by
Chirikov and is expressed in terms of overlapping of
neighboring nonlinear resonances. Refinements of this
criterion have been proposed by different authors, an ac-
count of which can be found in Ref. 3. This criterion
essentially claims that once the strength of the perturba-
tion reaches a threshold for which two neighboring reso-
nances do overlap, stochasticity is insured and increasing
the perturbation further will generally make the motion
even more chaotic. However, one can encounter situa-
tions for which this basic scheme for arriving at stochas-
ticity is not followed. Indeed, even in a Harniltonian sys-
tem as simple as the one describing the one-dimensional
motion of a particle in two electrostatic waves, stochasti-
city might set in for a given value of the perturbation and
may disappear suddenly when the perturbation parame-
ter is further increased. Increasing this parameter still
more, while all other parameters are kept fixed, leads to
the reappearance of stochasticity for which further in-

crease of the perturbation parameter will not stabilize the
motion anymore. We refer to this intermediate stage in
the evolution of the system arriving possibly to chaos as
"intermediate stochasticity. "

In Sec. II, we give a numerical study of the two-wave
system presenting some examples corresponding to
different sets of parameters and initial values for which
such an intermediate stochasticity phenomenon is exhib-
ited. This study consists of a dual complementary repre-
sentation of the solution of the equation of motion. One
representation utilizes the well-known Poincare surface
of section method in phase space, the other being the
standard Fourier power spectrum analysis of the velocity
of the particle under consideration. This last technique
enables one to follow the dependency of each individual
mode on the parameters of the system, thus allowing the
detection of any peculiarity in this dependency. Inspect-
ing the power spectrum, a striking feature was revealed:
the locking of a specific mode to a characteristic frequen-
cy inherent to the system. This locking was found to per-
sist with changes of the perturbation within a finite pa-
rameter range.

The analysis of the mode spectrum is conveniently
done considering three different regimes of the perturba-
tion parameter: (i) the perturbation parameter is below
the mode-locking threshold; (ii) the mode is locked to the
characteristic frequency; (iii) the perturbation parameter
is increased until the mode becomes unlocked again. In
this work we will be mainly concerned with the first re-
gime. Detailed studies of the other two regimes will not
be given here. Considering the first regime for which the
modes are still unlocked, we find it instructive to look
separately at the case in which the mode is well below the
threshold of locking and to the case when it is close to
this threshold. In the first case, there is a production of
beat notes, between the characteristic mode and the mode
under consideration, in the second case, the spacing be-
tween the beat notes might become very small, so that a
strongly distorted beat note is generated. The generation
of these slightly shifted beat notes, in conjunction with
the nonlinear mixing effect resulting from the nonlineari-
ty of the equation of motion, allows for the proliferation
of low-frequency modes in the power spectrum resulting
in its global raise. This is the signature of chaotic behav-
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ior of the system. At this stage, a further increase of the
perturbation may shift the frequency of the mode bring-
ing it into its locking range, the effect of which is the ex-
tinction of the low-frequency modes that had been gen-
erated when the system was close to the threshold of
locking. Consequently, a pattern of well-defined and
separated peaks is reestablished in the spectrum, signify-
ing a regular motion. This termination of the chaotic be-
havior of the motion with an increase of the perturbation
is characterizing the intermediate stochasticity.

Having recognized the significance of the locking
phenomenon in this stochastic mechanism, we proceed in
Sec. III to analyze the conditions of its occurrence. This
analysis utilizes a basic formalism we developed that en-
ables the prediction of synchronized oscillations for a
given system. This formalism has as its point of depar-
ture the method of variation of parameters widely known
as the perturbation theory of Krylov and Bogoliubov,
which is in fact a development of the earlier formalism of
Van der Pol. Considering values of the perturbation in a
range close to the threshold of locking, we evaluate the
shifting of the frequency of the relevant mode. As a re-
sult of this shifting, closely separated sidebands are found
to be generated, leading to the existence of the above-
mentioned low-frequency beat notes.

Now, due to the nonlinear cascading process taking
place in the system, these low-frequency beat notes com-
bine with all the other modes, resulting in a diffused pat-
tern of the power spectrum. We suggest this mechanism
to be at the origin of the intermediate stochasticity.

II. NUMERICAL STUDY OF THE EQUATION
OF MOTION

We consider the nonlinear two-wave differential equa-
tion. This equation describes a variety of physical pro-
cesses and has the same generic form as the one describ-
ing the motion of a particle in a system consisting of two
electrostatic waves propagating in the same direction and
having different phase velocities. In its normalized form
this equation reads

X +sinx = csin(ax v—t ), —
dt2

where e is considered as a small parameter and a and v
are, respectively, the normalized wave number and fre-
quency parameters of the perturbation. The initial posi-
tion and velocity of the particle determine the nature of
its motion whether it is confined or not within the separa-
trix in phase space (for a trapped or an untrapped parti-
cle). In a search for the route to chaos and for exhibiting
the phenomenon of intermediate stochasticity, we limit
ourselves, in the following, to motion corresponding to
untrapped particles far away from the separatrix. Previ-
ous experience in analyzing such motions shows the
effectiveness of using a dual representation of the solution
of the equation consisting of a phase-space picture to-
gether with a complementary Fourier description. We
thus undertook the numerical solution of Eq. (1) and use
the well-known Poincare surface of section method to
visualize this motion in phase space. Simultaneously, we

apply a standard procedure for obtaining an accurate
power spectrum. To this end, we employ a fast-Fourier-
transform algorithm to process a 4096-point time series
of the velocity of the particle which was initially shaped
by a cosine bell window of the Hanning type, used to
eliminate spurious frequency components associated with
sharp edges in the time series. In Fig. 1(a), we show the
power spectrum corresponding to the motion of a parti-
cle for the set of parameters +=16, v=85, a=0.09, with
initial values x[]=0, vo=5. 8. In this figure, major well-

defined and separated peaks are clearly distinguished sig-
nifying an orderly motion of which the Poincare section
is shown in Fig. 2(a). Increasing e up to the value
@=0.155, keeping all the other parameters and initial
values fixed, will not significantly change these pictures.
For @=0.156, however, a chain of islands (of very small
size) pattern in phase space appears [Fig. 2(b)], while the
associated spectrum still remains characteristic of an or-
derly motion [Fig. 1(b)]. Increasing now e to 0.158 re-
sults in a destruction of the chain of islands, the motion
in phase space appearing to be chaotic, see Fig. 2(c), and
in the corresponding spectrum a raised plateau is recog-
nized with a diffuse structure of the peaks which is the
Fourier characterization of stochastic motion [Fig. 1(c)].
To appreciate the changes in the spectrum, compare Figs.
1(c) and 1(a). As this characterization seems to be a very
sensitive indicator of chaotic motion, we will use it in the
following as the main visual criterion for detecting sto-
chasticity.

According to the conventional picture of the onset of
stochasticity, once the motion becomes unstable, any in-
crease of the perturbation would only make the motion
more chaotically unstable. Unexpectedly, it is found that
when increasing e to 0.18, the motion becomes stabilized,
the spectrum recovering a nonchaotic pattern character-
ized by sharply distinguished nondiffuse peaks, see Fig.
l(d), and in the corresponding Poincare section [Fig.
2(d)], a chain of islands [of much larger size than in Fig.
2(b)] pattern appears in phase space characterizing again
nonchaotic motion. Increasing furthermore e to 0.23 re-
sults in even a stronger stabilization effect, compare the
spectra in Figs. 1(e) and 1(d); the Poincare section corre-
sponding to this value of the parameter is quite similar to
the one given in Fig. 2(b). The further evolution of the
system with the increase of the perturbation in its course
for reaching final stochasticity might follow different
routes. However, this study will not be undertaken in
this work. In order to get an insight into this transitory
phenomenon it is instructive to analyze in more detail the
successive spectra associated with the different values of
the perturbation. It is convenient to start this analysis by
inspecting the simplest of the spectra given in Fig. 1,
namely, Fig. 1(a). In this frame one clearly sees a most
prominent peak that is associated with the free oscillation
at frequency coo=5. 59 corresponding to the unperturbed
motion of the particle, shifted, however, somewhat from
this value due to the finiteness of the perturbation.
Recognized in this figure is another major independent
peak to the left of the "~0" peak at a frequency
~) =4.358.

Now, due to the nonlinearity of the system, all the ma-
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FIG. 1. (a) Power spectrum S(co) of the solution v(t) of Eq. (1), using a log&p scale, as a function of the angular frequency co with
initial conditions x~ =0, v~ =5.8, and parameters, +=16, v=85, a=0.09. (b) Power spectrum for a=0. 156. Initial conditions, other
parameters, and equation of motion as in (a). (c) Power spectrum for e=O. 158. Initial conditions, other parameters, and equation of
motion as in (a). (d) Power spectrum for a=0. 18. Initial conditions, other parameters, and equation of motion as in (a). (e) Power
spectrum for e=O. 23. Initial conditions, other parameters, and equation of motion as in (a).



42 MODE LOCKING AND SIDEBAND GENERATION: A. . . T TW3

jor other spectral lines appearing in the figure can be at-
tributed to a linear combination of these two independent
frequencies coo and co, , in the form m; =mcoo+n~&, where
rn and n take appropriate positive or negative integer
values. The most important line resulting from this com-
bination is clearly distinguished at coz=mo —~, =1.232.
The free frequency coo depends only slightly on e, while

cu& does depend on it rather significantly, as can be seen
by comparing the positions of the co, peaks in the two
fratnes (a) and (b) of Fig. l.

Consequently, it is sufficient at this stage to follow the
shift in position of the co, peak with the changes of the
perturbation for acquiring a comprehensive understand-
ing of the evolution of the power spectrum of the system.
Hence, we draw in Fig. 3 the value of the frequency of
this ~, peak as a function of e. For values of the pertur-

bation parameter up to @=0.158, one observes a mono-
tonic decrease of the frequency co& with e. For a=0. 158,
as stated before, the system becomes chaotic, character-
ized by a broad diffuse structure of this peak. This chaot-
ic state continues up to a=0. 167 and is indicated by the
dotted line in the figure. At e=O. 167 suddenly the
motion gets stabilized. The position of the peak, howev-
er, when changing e further up to the values considered
in the figure, is fixed, locked to a specific value, being ra-
tional to coo as ~&/coo= —,'. These observations are not
confined to this specific example, but seem to be of a
more general nature and are valid for various other ex-
amples as well. Another example similar to the one
shown in Fig. 3 is given in Fig. 4.

From these observations, one is inclined to conclude
that the intermediate stochasticity is inherently associat-
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FIG. 1. (Continued).
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ed with the threshold of the mode-locking phenomenon.
This linkage will be elaborated theoretically in Sec. III.

III. MODE LOCKING AND SIDEBAND GENERATION
IN THE TWO-WAVE SYSTEM

The mode-locking phenomenon is associated with
effects due to nonlinear interaction taking place in the

system, affecting the time dependency of the mode fre-
quencies. A mode will be locked to a fixed frequency in-
herent to the system if its phase reaches a stable steady
state. The analysis of this steady state involves generally
the temporal development of the amplitude and the phase
of the different modes. A very convenient formalism pro-
viding such a functional time dependency of these param-
eters is the theory of Krylov and Bogoliubov (KB) as
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FIG. 2. (a) Particle trajectories in phase space (x, v) with x modulo 2', viewed at successive times t =2m. ,4~, . . . , 2N~, with

N=4096. The plot corresponds to the trajectories of one particle starting with initial conditions xp=0 vp=5. 8, and parameters
a= 16, v=85, a=0.09. (b) Same as (a) with a=0. 156. (c) Same as (a) with e=O. 158. (d) Same as (a) with a=0. 18.
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refined by Haag, which employs the method of averag-
ing in conjunction with the technique of variation of pa-
rameters. In terms of this formalism it is possible to ex-
press the temporal development of the amplitude and the
phase of the modes in a set of two coupled first-order
differential equations. Mode locking and synchronization
phenomena are then, in general, searched for via this set
of equations.

In order to facilitate the presentation of our analysis
that utilizes the KB formalism, we will now briefly out-
line its basic features. After establishing in a general
manner the form of the basic set of equations and the
conditions for the existence of synchronous solutions, we
will proceed to analyze the two-wave equation [Eq. (1)]
and to express it into such a basic set form. The struc-
ture of the power spectrum of the two-wave system will
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FIG. 3. The position in frequency of the "co~" peak de6ned in the text, as a function of the strength of the perturbation e. The
points on this graph are deduced from power spectra similar to those shown in Fig. 1 for initial values xo =0, Uo =5.8, and parame-

ters a = 16, v= 85. The dotted points correspond to chaotic motion.

then be deduced from analyzing this set of equations.
The Krylov-Bogoliubov theory is a scheme for obtain-

ing approximate solutions to certain types of second-
order differential equations that include a small periodic
perturbation term. The KB method, as proposed origi-

nally, was intended to provide approximate solutions to
weakly nonlinear differential equations. However, gen-
eralizations of the method are possible. ' Such generali-
zations enable one to obtain approximate solutions to
some strongly nonlinear differential equations including
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FIG. 4. Same as in Fig. 3, with initial values xo =4.71, vo =4. 5, and parameters n = 16, v =85.



42 MODE LOCKING AND SIDEBAND GENERATION: A. . . AAA7

the basic equation of our problem, Eq. (1). The KB
method starts from a generating solution which is the
solution of the unperturbed equation of motion. This
solution depends on two time-independent parameters,
say, a and P. It is assumed that the effect of the perturba-
tion is to introduce a time dependency in the parameters
a and P without afFecting the form of the expressions of
both the unperturbed solution and its unperturbed
derivative with respect to time. Using this assumption
and expressing the perturbation term in a Fourier series
in terms of the parameters a and P, one arrives at a set of
two first-order differential equations for a and P. This set
is the basic set of equations of the analysis. If the condi-
tions of the problem under consideration are such that
the nonderivative (with respect to time) terms appearing
in the equations are of the same order of magnitude of
the small parameter, say e, characterizing the perturba-
tion, it is then possible to write the basic set in the form

dx
dt

=V (8)

dv = —sin(x) —eF(x, t ),
dt

where

(9)

F(x, t ) =sin(ax vt —
) . (10)

dependency of power spectra on the strength of the per-
turbation. Thus, we will consider especially the depen-
dency of the frequency dP/dt (in our notation) on this
parameter. We will try therefore to analyze the equation
of motion, Eq. (1), bringing it to the form of the basic set
of equations, Eqs. (2) and (3), the second of which is in a
form which might be useful to our analysis. To this end
we write Eq. (1) in the form of a set of two first-order
equations in the variables x and v:

da =eg(a, P, t),dt

d =eh( aP, t),

(2)

(3)

The Hamiltonian corresponding to the unperturbed
motion reads

V
2

H = —cosx0

A(a, g)= —J g(a, g, t)dt,T

T 0
(4)

where g and h are periodic functions in time with period
T. Following Haag, " one introduces a set of associated
functions A and 4 defined as

and is an exact integral of this motion. It is well known
that for both cases of librational or rotational motions,
corresponding, respectively, to HO & 1 or HO & 1, the
motion is periodic. In order to exhibit the periodicity of
this motion, we introduce an angle variable 0 through the
usual relation

4(a, P) =—J h(a, P, t )dt,
T 0

d0
= F0(HQ ), (12)

da =@A(a,g),
dt

(6)

where the variables a and P under the integral sign are
considered to be independent of time. It was shown by
Haag that for the same initial conditions a ( t = 0) and
P(t =0) the solutions of the set of equations

where co0 is the frequency of the free oscillatory motion.
From the constancy of HO and therefore of co0, one notes
that HO and 8 may serve as an alternative set of two in-
dependent entities. In terms of this Hamiltonian, Eqs. (8)
and (9) of the unperturbed motion will read

dt
=@4(a,P) (7) dx BH0

tv0(HQ) = v =
v

(13)

differ from those of Eqs. (2) and (3) at most by terms of
order e. This set of autonomous equations [Eqs. (6) and
(7)] allows for the analysis of the steady-state solutions in
the plane (a, P) for the different modes of oscillation of
the system. Haag's synchronization theory then asserts
that the solutions for which the frequency of the mode
under consideration is locked to the external perturbation
frequency are those corresponding to the singular points
of Eqs. (6) and (7), namely, the points in the plane (a, P)
for which da/dt=dP/dt=0. These solutions are re-
ferred to as synchronous solutions. Since e&0, mode
locking is associated with the simultaneous vanishing of
the functions A (a, P) and 4(a, P).

As here we will be mainly interested in the behavior of
the solutions of the equation of motion, Eq. (1), just out-
side the locking region, the synchronization process itself
will not be of major interest to us in this work and there-
fore it will not be elaborated upon further. Motivated by
the numerical results, we would like to investigate the

dv . WHO
to (H ) = —sin(x)=-

d8 Bx
(14)

The variables x and v can now be expressed in terms of
Ho and 0 or more conveniently' as functions of a and 0
where a =(1+H0)/2. When considering the equation
of motion including the perturbation term, the variable a
will now acquire a time dependency. In analogy with the
Krylov-Bogoliubov approach for weakly nonlinear sys-
tems, we assume that the relations between x and v as
given by Eqs. (13) and (14) are still valid when the pertur-
bation is included. This method has been generalized by
Cap' and utilized by us for strongly nonlinear unper-
turbed equations, allowing for nonharmonic periodic
solutions (in general expressed in terms of elliptic func-
tions). Expressing then the total derivative of x and v

with respect to time through the variables a and 0, the set
of equations [(8) and (9)] reads
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x 80+ Bx c4 Bx
i30 dt Ba dt 00

(15)
a ))1 in accordance with the numerical study, we ex-
press the solution of the unperturbed motion as'

BU dO BU da BU

BO dt Ba dt BO
(16)

Multiplying Eq. (15) by —(Bu /BO) and Eq. (16) by Bx /BO
(assuming Bx /BONO) and adding, one obtains

x(a, O)=2am[P(a, O), a '],
U(a, O)=+2a dn[P(a, O), a '],

where

(21)

(22)

da ax aU ax a. , ax
dt BO t) ~) BO

'
BO

(17)

a0
P(a, O) = —=-a(t —to),

~o(a)

where to is the initial time, the frequency is

(23)

Now multiplying Eq. (15) by BU/Ba and Eq. (16) by—(Bx /r)a ) and adding, we get
~a

coo(a) =
K(a ') (24)

d0
dt

BX BU

a0 aa
BX BU Bx=eF(x, t)
Ba 80 Ba

(18)

Let us note that the Jacobian of the transformation
(Bx/BO)(Bv/Ba) —(Bx/Ba)(BU/BO) has to be evaluated
using the expressions of the dynamical variables x and U

corresponding to the solution of the unperturbed motion
and it is found to be explicitly 4a /coo, where use has been
made of the relation ( 1/too)(dHo /da ) =4a /coo; thus
finally we find

K(a ') (Ref. 13) stands for the complete elliptic integral
of first kind, and am and dn are the standard Jacobi ellip-
tic functions. Utilizing the solutions x(a, 8) as given by
Eq. (21) with a )) 1, an approximate expression for
cos[ax(a, O)] and sin[ax(a, 8)] can be readily obtained
to read

m=.=+ c

sin[ax(a, O)]=— g J [2au(a )]sin(a+m )8,
(25)

da ~o ax= —e F(x, t)
dt 4a

(19)
cos[ax(a, O)]-=g J [2au(a)]cos(a+m )8,

with
d0 o Bx—

coo = + e F(x, t—)
dt 4a Ba

(20)

This last system [Eqs. (19) and (20)] is fully equivalent to
the system of equations [(25) and (26)] derived in Ref. 7.
For completing the change of variables in the equation of
motion we have thus to evaluate the terms
F(x, t)(Bx/89) and F(x, t)(Bx/Ba) as functions of a, 0,
and t. To this end, we first introduce the function

G(a, 8, t ) = ——cos[ax (a, O) vt ]—1

0,'

and express these terms as (BG/BO)(a, O, t) and
(BG/Ba)(a, O, t), respectively. Then, as in the standard
procedure of the KB theory, we express
cos[ax(a, 8)—vt] and sin[ax(a, 8) vt] in a Fouri—er ex-
pansion. Hence, considering the motion of the particle
far away from the separatrix corresponding to values of

u(a)= 2q(a)
1+q (a)

where

q(a) =exp —[~K*(a ')/K(a ')]

is Jacobi's nome, the associated complete elliptic integral
of the first kind K*(a ') being equal to K(1—a ), and
J are Bessel functions of order m. In deriving this ex-
pression, use has been made of the following approximate
expansion for the function am:

am[P(a, O), a '] -=nP(a, 8)/2K(a ')

+u(a)sin[mP(a, O)/K(a ')] . (26)

In terms of this Fourier expansion, using the function 6
introduced previously, Eqs. (19) and (20) will now read

@coo(a )

dt 4ao,

m=+oc m=+ ~
cos(vt) g (a+m)J (2au)sin(a+m)0 —sin(vt) g (a+m)J (2au)cos(a+m)8, (27)

d 0 e~o(a) du m=+oc ??2 —+ oc—coo(a)= — cos(vt) g J' (2au )cos(a+m )8+sin(vt) g J' (2au )sin(a+m )9
2a da m= —~ t?1—

(28)

When inspecting Eqs. (27) and (28), one notices that the frequency of a given mode and the frequency of the external im-
posed oscillation v may combine into a phase expression that allows for the occurrence of a resonance phenomenon.
Previous experience' in analyzing such resonances shows that the analysis is facilitated by the introduction of a new
stroboscopic phase:

=—0—vt,
q

p and q being integers, which is a measure of the deviation of the system from exact resonance. In terms of this variable
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P, the equations of motion will read

da
dt

pe (g) m=+ oo

(a+m )J (2au )sin (a+m )P—+vt (a+m )——1
4am p p

(30)

d(t p ~too( ) du qcoo(a) —v —— J' (2au )cos (a+m )P—+vt (a+m )
——1

dt q q 2a da p p
(31)

Considering now initial values of the equation of
motion in the range of a given p/q resonance, the stro-
boscopic frequency Q=[p/qtoo(a) —v] will be a small
quantity of the same order as the perturbation term in
the phase equation (31), namely, e. In this case, the sys-
tem of equations (30) and (31) can be written in the form
of the basic set of equations [Eqs. (2) and (3)].

Considering a to be a rational number of the form
a = r /s, r and s being integers, we get for the phase terms
of Eqs. (30) and (31) the expression

g (t)= (r+ms)qP(t) vt+—[(r+ms)q —sp] .
ps ps

Since r, s, m, p, and q are integers (r +ms )q —sp will also
be an integer. Let I„qp

denote this integer. By in-

I

specting the second term of g, (vt /ps )I, , ~ ~, one no-
tices that when the time has changed from t to t + T with
T =2m.(ps/v), the second term of g will change by an
integer multiple of 2m. . If, as is assumed in the KB
theory, on this time scale the change in P is negligibly
small compared to changes in the other term of the phase

, then, to a good approximation each harmonic term
in the sum in Eq. (30) will fulfill the relation

sin[( (t+T)]=sin[( (t)] .

One thus concludes that the functions g(a, P, t) and
h(a, P, t) in Eqs. (2) and (3) can be considered to be
periodic functions of time with period T=2m(ps/v). Ap-
plying now the Haag theorem to Eqs. (32) and (33) we
first evaluate the associated functions A and 4:

A(a, g)=—too(g)g 1
rm:+ Gor
dt g —+m J 2—u sin —+m P++vt —+m +—1

4ar T o „ s s s p s p

coo(a)s —+m J 2—u sing,
4ar s s

(32)

~ ~o(u) du4(a, g)=Q/e dt
q 2a da T o

m=+ oc J' 2 —u cos —+m P++vt
$ $ p

—+m + —1
s p

n n ~o(a), r duJ' 2—u cosP,
e q 2a s da

(33)

da
dt

Ecoo(a )
(a+m )J (2au )sing,

4am
(34)

where m is an integer having a value for which the condi-
tion (r/s+m)(q/p) —1=0 is fulfilled. Thus, to a good
approxiination one can write Eqs. (32) and (33) in the
form =A(1 —

A, cosP),
dt

(36)

where

ior of the system in this region we rewrite Eq. (35) in the
form

p ~o(u) du,=0—e— J' (2au )cosP,
dt q 2a da

(35) p ~o(tt), du
A. =e— J' (2au) 0 .

q 2a da
(37)

where we have denoted a=r/s. One should note that
choosing a to be a rational number of the form e=r/s,
as we did here, is not a very restrictive choice, since any
nonrational e could be approximated rather closely by a
rational number. Thus the analysis is approximately val-
id for real o. as well.

From the numerical analysis, one realizes that the
physical process taking place in the frequency region just
in the vicinity of locking is determinant in originating the
intermediate stochasticity. In order to study the behav-

Equation (37) has been extensively studied in the search
for locking in engineering electrical problems; an early
example is given in Ref. 15. Assuming, as is us~ially
done, ' that the entities 0 and A, are approximately in-
dependent of time having the free running oscillation
values, we can solve this equation analytically. Consider-
ing the region just outside the locking range which corre-
sponds to values of A, just less than 1, we proceed to in-
tegrate Eq. (36) in the form
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(38)

P =2 arctan tan( g/2 ) (39)

where

(40)

One should notice that as k is close to 1, in this region,
the phase g might be very small. The important physical
consequences of this fact will now be elaborated upon.
As readily seen from expression (39), the phase P is a
periodic function of time. This allows for an attempt at a
Fourier analysis of its time dependency. To this end, we
first consider the Fourier decomposition of cosP and sing.

From Eq. (39),
1/2

1 —
A,

tan(P/2) = tan( P/2),

since

1 —tan (P/2)cosP=
21+tan (P/2)

one obtains

1 —k
1 —

A, cosP=
I + A. cosf

(41)

In order to facilitate the use of the standard Fourier
series tables' for such expressions, it is convenient to
define the auxiliary parameter p as

(42)

In terms of this parameter, we write Eq. (41) as

1—2

1 —A, cosP=
1+p

p2

1 —2p cosP+p,
(43)

The right-hand side of this last equation is immediately
recognized as the Poisson kernel for which the Fourier
trigonometric series is well known and given by

2 k=oc
=1+2 g p, "cos(ktt) .

1 2/l cosf+ p

Thus,

(44)

where $0 is an initial phase which can be equal to zero
without loss of generality. For A. &1, the solution for P
can be expressed as'

1 /2

Now, the Fourier decomposition of the phase tI) itself is
readily obtained by integrating Eq. (36) with respect to
time, utilizing the Fourier series of the expression
(1—

A. cosg) as given by Eq. (43). One finds

k=oc k

/=1(+2 g sin(kP) . (47)

As was stated in Ref. 7, the equation of motion, Eq. (1),
can be conveniently viewed as an equation of motion for
a nonlinear pendulum driven by oscillatory force terms.
The pendulum responds to the excitation of these driving
terms in an oscillatory motion characterized by frequen-
cies which are not far from the frequency of the driving
terms themselves. The larger a driving term is, the larger
will be its corresponding components in the power spec-
trum. Since the dominant terms in the perturbation are
those associated with resonance eft'ects, it is sufficient to
consider these terms for studying the main features of the
spectrum. The contribution to the perturbation, due to a
dominant term associated with a resonance characterized
by the integer m for which the relation (a+m)q=p
holds is

sin(ax vt ) „—, =—J (2 au)sin[( a+m )9 vt]—
-=J (2au )sing

—=J (2au )(1—p )

X g p" 'sin[kA(1 & t)' ] —(4g)

As k is proportional to e, by changing the strength of the
perturbation, the frequency A*=A(1 —X )'~ might be-
come very small, when A. is approaching 1. Thus, one can
expect to observe in the power spectrum lines at low fre-
quency having non-negligible amplitudes. The size of the
amplitudes depend however on initial values and parame-
ters of the system. Let us note that in the limit A. ~1,
which corresponds to the threshold of locking, 0,*—+0
and no low-frequency spectral lines can be generated. To
get further insight into the manifestation of these low-
frequency modes, we consider explicitly the Fourier ex-
pansion of the velocity of the particle. Note that accord-
ing to the basic assumption underlying the slow variation
parameters method, the functional dependency of the ve-
locity of the particle on the parameters of the system is
still given by expression (22) corresponding to the unper-
turbed solution. Using the approximation of the stan-
dard Fourier expansion of the Jacobi's elliptic dn func-
tion one gets

2 k=-o-

cosP = —Il+ g p"cos(kg) . (45)
u (a)

v =+~oa 1+ cos0
2

(49)

Next, expressing sing in terms of g as

sing=(1 —
A, )' sin1(j/(1+A, cosg),

one obtains by following the same procedure'

2 k=~
sing= g p"sink/ . (46)

In order to facilitate the presentation we consider a
simplified example where p/q =1 for which 0=$+vt,
corresponding to the case where the resonance frequency
is the fundamental harmonic of the driving frequency v.
The case considered in the numerical study corresponds
to a subharmonic resonance at a rational value of v and
will not be treated analytically here. For the case under
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consideration

cos0=cosg cos(vt )
—sing sin(vt )

= —p cos(vt )+( I —)I ) g p" 'cos(kg+ vt ) .
k=1

(50)

Thus,

U =+too(a) 1 —2u (a )p, cos(vt )

2 k=oo
+2u(a) g p"cos(kg+vt) . (51)

In arriving at this expression, use has been made of ex-
pressions (45) and (46). From Eq. (51) one immediately
realizes that the velocity power spectrum consists of lines
corresponding to the resonance frequency (in this case v)
and sidebands separated from this frequency by values of
0'(dgldt =II*). If 1, is small, not close to the locking
range, one expects to observe well-separated beat notes.
However, when k is close to 1, the separating frequency
0* becomes very small and a distorted beat note might
appear. Due to the nonlinear coupling process taking
place in the system, this low frequency and its harmonics
are translated into the full spectrum, combining with all
the existing peaks into a raised spectrum consisting of
broad diffuse patterns. Such a structure has been indeed
observed in the numerical study, signifying onset of sto-
chasticity. Let us note that the amplitude of the low-
frequency modes so generated, depending on the initial
values and parameters affecting the Bessel coefficients,
might be rather small and consequently the stochastiza-
tion effect due to the coupling of these modes with the
other peaks of the spectrum might be quite limited.

In conclusion, we have presented a numerical study of
the two-wave system that reveals the phenomenon of in-

termediate stochasticity. This type of stochasticity is in-
duced for a finite range of the strength of the perturba-
tion and was found to be closely associated with the lock-
ing phenomenon of a specific mode to a fixed frequency
inherent to the system. It was observed to occur for
values of the perturbation just below the threshold for
locking. The detection of this stochasticity was done via
the Fourier spectral analysis of the velocity of the particle
and the visual criterion for its onset was taken to be the
observation of broad diffuse patterns including a low-
frequency structure with considerable size. The theoreti-
cal analysis accompanying this numerical study consisted
of employing the slow variation parameters technique in
conjunction with an averaging procedure to establish a
set of equations describing the evolution of these parame-
ters. A slow phase variable associated with the oc-
currence of a resonance in the system was evaluated and
its Fourier representation was presented. From this rep-
resentation one concludes that for a perturbation close to
the threshold of locking, a low frequency and its harmon-
ics can be generated and translated into the complete
spectrum, leading to s,tochasticity, in agreement with the
observations of the numerical analysis. One should note
that inherent to this picture is the possibility of the ex-
tinction of stochasticity when the threshold of locking is
reached, consistent with intermediate stochasticity. Since
the two-wave Hamiltonian system is a paradigm equation
describing a variety of physical processes, one should ex-
pect this intermediate stochasticity phenomenon to be
realized in systems relevant to these processes. The im-
plications of this phenomenon to magnetic turbulence in
toroidal devices are presently under investigation.
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