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The H™ ion is modeled by an effective one-electron potential specified by a regularized three-

dimensional &-function potential.

With the help of quasienergy methods, the multiphoton-

detachment rate of this model ion by a plane-wave field of arbitrary elliptical polarization can be
expressed as a one-dimensional integral that has to be evaluated numerically. The results exhibit
a pronounced dependence on the polarization of the laser: circular polarization yields a rate that
depends smoothly on frequency and intensity with barely noticeable thresholds. In contrast, linear
polarization generates marked thresholds as well as structure in between. All of the calculated
thresholds closely obey the Wigner threshold law. There is good agreement with the available
data where the ponderomotive energy is kept constant while the frequency varies.

The negative hydrogen ion is a unique system for the in-
vestigation of multiphoton detachment. The ion has no
excited bound states and, in contrast to ionization of
atoms, the detached electron is not subject to the long-
range Coulomb potential. These two circumstances great-
ly facilitate the comparison between experiment and
theory. Moreover, the H ™ ion is the simplest two-elec-
tron system, and this latter aspect is of strong fundamen-
tal interest far beyond multiphoton physics.

Due to its importance in astrophysics, the H ™ ion was
studied in the thirties. The first accurate calculations of
the one-photon detachment were performed by Chan-
drasekhar' and carried to a high degree of complexity by
Geltman.? This line of work consisted of more and more
elaborate variational two-electron calculations. However,
it was noticed by Ohmura and Ohmura® and by Arm-
strong* that a zero-range one-electron approximation
yielded very satisfactory agreement with the experimental
measurement by Smith and Burch?® of the one-photon de-
tachment cross section for photon energies up to 2 eV (as
well as with the result of the variational calculations).
The latest measurements by Sharifian® confirm this agree-
ment up to photon energies of several eV. The fact that a
one-electron description based on a short-range potential
gives quite good results is perhaps not too surprising, since
the two electrons in H ™ are equivalent, there is no excited
bound state, and the lowest continuum resonances do not
occur below about 9.5 eV. For a review of H™ one-
photon detachment up to 1974, see Risley;” more recent
two-electron calculations have been carried out by Broad
and Reinhardt,® Fink and Zoller,’ Park eral.,'® and
Saha.!!

Recently, the interest in the H ™ ion has been revived in
the context of multiphoton physics. Tang et al.'? mea-
sured total multiphoton detachment rates of H ™ ions us-
ing a relativistic H ™ beam colliding with a linearly polar-
ized CO, laser beam.'?>!> The angle between the two
beams was continuously varied corresponding to a photon
energy between 0.13 and 0.42 eV in the rest frame of the
H ™ ion. A characteristic feature of these experiments is
that the ponderomotive potential e*A2)/2m~1I/w?
(where A, I, and o are the vector potential, intensity, and
frequency of the laser, respectively) is a constant indepen-
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dent of the angle, since it is a relativistic invariant. The
magnitude of the ponderomotive potential is <0.1 eV
which is a sizable fraction of the detachment energy,
|Eo| =0.754 eV. The detachment rates exhibit a pro-
nounced threshold behavior whenever a new channel
(two-photon detachment, three-photon detachment, etc.)
opens up. Moreover, there is evidence of structure be-
tween the thresholds.

These experiments raise the interesting question of
whether multiphoton detachment of the H™ ion (as op-
posed to one-photon detachment) is still predominantly a
one-electron process. For multiphoton ionization of rare
gases, all evidence to date seems to speak'* for sequential
ionization, i.e., one electron at a time is involved in the
process of ionization. The situation may be different,
however, for H™ whose energy spectrum is so vitally
dependent on the presence of two electrons. In order to
obtain a preliminary answer to these questions we present
in this Rapid Communication calculations of the multi-
photon detachment rate in a one-electron zero-range po-
tential model and compare our results with preliminary
experimental findings of Tang et al.'> We employ the
three-dimensional regularized §-function potential

Vi) =252, )
Km or

that supports one bound state with energy |Eo| =«x2/2m
and wave function (x/27)'2e ~*/r (we use units such
that A =c=1). This potential was first introduced by
Fermi'® in the context of neutron scattering in hydro-
genous substances and has been referred to as the Fermi
contact potential. The regularizing operator (3/9r)r
makes sure that the potential V' (r) applied to the wave
function of the bound state yields a well-defined expres-
sion. Because of this regularization the potential is nonlo-
cal and, in fact, repulsive when acting on continuum
states. However, its salient features are the ultrashort
range, the existence of just one bound state, and the fact
that it only depends on the one parameter x=Q2m
x |Eo|) 2. The 5-function potential (1) allows for a com-
paratively simple, largely analytical calculation of
quasienergies and quasienergy wave functions in the pres-
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ence of an external plane-wave field in the dipole approxi-
mation for circular polarization'® and arbitrary elliptic
polarization. !’

The first nonperturbative calculation of multiphoton de-
tachment of H ~ was carried out by Reiss.'® It was based
on what is now referred to as the Keldysh-Faisal-Reiss
(KFR) approximation and used the same zero-range po-
tential wave function for the ground state that we dis-
cussed above. A similar approach including corrections to
the KFR approximation and using a cutoff Coulomb po-
tential in place of the zero-range potential was recently
followed by Mu.'® Shakeshaft and Tang? applied Flo-
quet theory to multiphoton detachment of a Yukawa po-
tential modeling the H ™ ion. Seven-photon detachment
of H™ was considered by Mercouris and Nicolaides?! in
terms of two-electron Floquet theory with some evidence
for electron correlation effects. Our calculations agree
well (within 20%) with the results of Shakeshaft and
Tang?® within the (quite limited) range of parameters
where we could compare. The qualitative agreement with
the Keldysh-type calculations'®!? is also good. This is not
surprising, since it has been shown?? that for the &-
function potential (1) the Keldysh approximation is very
good.

In solving the model we will use the electric-field gauge
so that we will look for quasienergy solutions of the
J

Y
|Eol 47f|Eo|
where
(ea) 0T
z(1)= (1 £%)sin 5
X cos[—w—r]——z—sin[ﬂH @)
2 o7 2 ’
E'=E-U, ®)
and
v=Le) (|1 p2) ©)
4dm
|
F=Re 4(|E0|+U)

which we evaluate numerically.

f drt " exp(—iE'r) {exp [—zﬂsm
(0]

f drr” exp[l(|Eo|+U)t]{exp[—z—“—gj—smz[ 5
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Schrodinger equation
i v(r,t) [ sz + mb’(r) i
—er'E(t)]‘Il(r,t) ) 2)

Quasienergy wave functions have the Floquet form
v(r,t)=e Ey(r,e) , 3)

where ¢(r,7) =¢(r,t +2n/w) has the period of the exter-
nal field and

E =Re(E) —é’r (@)

is the quasienergy. For the quasienergy of the ground
state, Re(E) = — | Eqo| + A, with A a real level shift which
is small for not too high intensities. The real quantity I is
the total multiphoton detachment rate which we want to
determine. When the external field E(z) is turned off, T
and A vanish.

For an external field with general elliptic polarization,
viz.,

E(t) =walsin(wt)x — &cos(wt)p] , (5)

the following integral equation holds for the quasienergy
E7

Jo(z(r))—l} (6)

f
is the ponderomotive (quivering) energy. For circular po-
larization, £ =1, we have z(z) =0, and Eq. (6) simplifies
considerably. Equation (6) is exact for circular polariza-
tion. In general, the quasienergy is exactly obtained by
equating to zero an infinite determinant with elements
much like the right-hand side of Eq. (6). Hence for any
polarization other than circular, Eq. (6) is an approxima-
tion whose relative accuracy has been estimated !’ to be of
the order of (w/4|Eo|)2. As long as " and A are small
compared with | Eq| we may, on the right-hand side of Eq.
(6), replace E by — |Ey, i.e., the value in the absence of
the field. The total detachment rate is then given by

(10)

Jo(z(7)) —1 }]

For circular polarization, £ =1, the integral representation (10) of the total detachment rate can be rewritten as the

double sum'®

I AU(Eo|+U) | {lno/(|Eol +U)] — 1}3+'2
F=4(|Eo|+ -t , (1
WEl+ 2 2 (=1 > (2s+1)(s —m)i(s +n)!
|
wherex+=xforx>Oandx+=0fo.rx<0'. o 8 . |Eol"(0—|E|)¥
The one-photon detachment rate is obtained from the or=7Ti=3ro o ) (12)

integral (10) as the lowest-order term in an expansion
with respect to the intensity, that is, the parameter U. For
one-photon detachment, the rate is independent of the po-
larization, so that we can use the sum (11). The corre-
sponding one-photon detachment cross section is

with ro=e?/mc? the classical electron radius and A the
laser wavelength. This agrees with the result of effective
range theory as given in Eq. (5) of Ref. 4 except for the
effective range factor. The cross section (12) should be
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multiplied by a factor of 2 to account for the presence of
two equivalent electrons. The following numerical results
include neither this factor of 2 nor the effective range fac-
tor? f2=1.3.

The results of our numerical calculations are shown in
Figs. 1-3. The integral (10) was evaluated numerically
for linear polarization while the sum (11) was used for
circular polarization. In each case the detachment rate I
is plotted versus the photon energy in the rest frame of the
H ™ ion. Figure 1 shows the detachment rate for both cir-
cular and linearly polarized laser fields for three different
laser intensities. The thresholds are visible for each chan-
nel opening and the thresholds are shifted by the pondero-
motive potential as the laser intensity is increased. It is
interesting to note that the structure is largely indepen-
dent of the intensity. For higher intensities the thresholds
and other features are shifted to higher photon energies
and the overall slope decreases but the shape of the
detachment-rate curves show little change while the inten-
sity is increased by nearly 1 order of magnitude. The de-
tachment rate for a linearly polarized field is greater than
that for a circularly polarized field except in the one-
photon region where they are equal and in portions of the
two- and three-photon regions where the rate for circular
polarization is greater. This is in qualitative agreement
with results derived using the Keldysh model.'®'? Figures
2 and 3 are magnified views of the two- and three-photon
thresholds, respectively, for a linearly polarized laser. In
each case the threshold is at hw =I[|Eo|+ (ea)?/2ml/n,
where n is the number of photons in the new channel.
After the three-photon threshold the detachment rate
rises 1 order of magnitude to a peak and then decays 30%
before reaching the two-photon threshold. For a pondero-
motive potential of 0.05 eV the detachment rate peaks at
6.8%10'° per sec at a photon energy of 0.32 eV. This is in
quantitative agreement with the data from Tang ez al.'?
The rate also peaks after the two-photon threshold but the
peak is not as pronounced, the rate decays 10% before the
one-photon threshold. This is also in agreement with the
experimental results.

When the photon energy is slightly above the n-photon
threshold the detachment rate for the H ~ ion should obey
the Wigner threshold law?3

FeEY 2= —|Eo| —U)! V2, (13)

I (sec?)

0.1 w (eV) 1.0
FIG. 1. Detachment rate I" as a function of the photon energy
o in the ion frame for fixed ponderomotive energies; top 0.15
eV, 0.05 eV, and 0.02 eV bottom; for linear (solid) and circular
(dashed) polarization.

W. BECKER, S. LONG, AND J. K. McIVER 42

1012

(sec™?)

r

0
. 0.5
0.3 0.4 w (V)
FIG. 2. The two photon threshold in the detachment rate I’
for linear polarization as a function of the photon energy o in

the ion frame with the ponderomotive energy fixed at 0.05 eV.

where / is the angular momentum, and E. is the kinetic
energy of the detached electron. For n-photon detach-
ment in a circularly polarized field it is easy to see that the
detachment rate obeys Wigner’s law. The angular
momentum of the electron is # and the lowest-order term
in the expansion of the detachment rate [Eq. (11)] is
I (nw—|Eo| —U)"*'2. For a linearly polarized field
the final electron can have any even angular momentum
between zero and n for n even or any odd value between
one and n for n odd. When the excess energy is small
enough only the lowest-order term will contribute. The
contribution of the new channel to the detachment rate
will be proportional to (nw — | E¢| — U) *2 for photon ener-
gies just above an odd threshold and proportional to
(nw—|Eo| —U) 2 just above an even threshold. This is
clearly visible in Fig. 4 which is a plot of the logarithmic
derivative of the detachment rate near the first six thresh-
olds.

Finally, Fig. 5 shows the detachment rate for fixed fre-
quency as a function of the ponderomotive energy which is
proportional to the intensity. For linear polarization, pro-
nounced thresholds are visible at the ponderomotive ener-
gies (ea)*/4m =nw —|E¢|, where the n-photon channel
closes. In each case if one follows the graph from lower to
higher intensities the channel closing is anticipated by a
precipitous drop in the detachment rate. A better way of
looking at the situation is to read the graph from higher to
lower intensities. Then a new channel opens up whenever
the intensity goes through a threshold, and the rate tem-

8 x 1010

I' (sec™!)

0

0.2 0.3 0.4
w (eV)
FIG. 3. The three-photon threshold in the detachment rate I
for linear polarization as a function of the photon energy o in
the ion frame with the ponderomotive energy fixed at 0.05 eV.



RAPID COMMUNICATIONS

42 SHORT-RANGE POTENTIAL MODEL FOR MULTIPHOTON . .. 4419
2 n=1 2 3 4 5 6 10
—_ m O ¢ O A A -
5] paa s == -, S T T R n
E “ - a N e *a - 9 §
1 1 a o8 < ~
":;‘ PN :A - -
E: E°E°f° o, l::!<> O o o o o - o
| & a N ° o o £ o g o . 1012
3 0 a L 8% o5 o a9 4
a -
i
~
-1
0.001 001 B (ev) 0.1 |
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netic energy of the detached electron, E, =nw —|Eo| —U, in a ' (eV)

linearly polarized field, where w, is the energy of the n-photon
threshold.

porarily rises. In no event does the rate follow a simple /"
power law. The same behavior has been observed in a
one-dimensional numerical simulation?* and in a Floquet
approach.? No thresholds are visible for circular polar-
ization. This is again readily understood with the help of
the Wigner threshold law. The channel closings in the
figure correspond to n = 3, and therefore, for circular po-
larization, to / = 3. The onset of channels with angular
momenta this high is hardly noticeable.

Note added. After this work was completed we became
aware of several closely related references. Faisal, Fili-
powicz, and Rzazewski,?® in a time-dependent solution of
the potential (1) with a circularly polarized field, also ob-
served the smooth dependence of the total detachment
rate as a function of intensity and conjectured a more
ragged behavior for linear polarization. Geltman?’ calcu-
lated n-photon detachment rates for a zero-range poten-
tial. His results exhibit many of the features observed in
our model. A quantitative comparison is cumbersome
since he displays his results as generalized multiphoton
cross sections. Finally, Dorr, Potvliege, Proulx, and

FIG. 5. Detachment rate I' for linear (solid) and circular
(dashed) polarization as a function of the ponderomotive poten-
tial U for a fixed photon energy,  =0.29 eV, in the ion frame.

Shakeshaft?® presented an extensive treatment of H ™
multiphoton detachment comparing the exact Floquet re-
sults (for a suitable Yukawa potential) with Keldysh-type
approximations for one and two electrons. They corro-
borated the, in general, excellent agreement between the
exact Floquet results and the Keldysh approximations.
We compared their Yukawa-potential-based Floquet re-
sults with ours and found agreement within a factor of 2
between our Fig. 1 and their Figs. 1-3 over a wide range
of frequencies (0.11 eV < Aw < 0.85 eV) and intensities
such that the total detachment rate varied over 10 orders
of magnitude.
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