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Parameter-free exchange potential for excitation in the density-functional theory:
Application to excitation energies within the fractional-occupation approach
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The density-functional theory for ensembles of fractional occupation formulated by Gross,
Oliveira, and Kohn [Phys. Rev. A 37, 2821 (1988)] has been applied. The excitation energies of
several atoms have been determined using a parameter-free exchange potential of Gaspar [Acta
Phys. Hung. 35, 213 (1974)]. The calculated excitation energies are in good agreement with the ex-

perimental values.

I. INTRODUCTION

II. FRACTIONAL OCCUPATION APPROACH

Gross, Oliveira, and Kohn developed a density-
functional theory for unequally weighted ensemble densi-
ties. The main results of their general formalism for the
ensemble constituted by the ground state and the first ex-
cited state are as follows: One has to solve the self-
consistent equations

t
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The density-functional theory provides a rather simple
way of treating the many-electron problem. It was origi-
nally developed' for the ground state of the electron sys-
tem. Theophilou extended the theory to the excited
states. Later Kohn investigated the density-functional
theory for excited states in a quasi-local-density approxi-
mation. Gross, Oliveira, and Kohn ' formulated the
density-functional theory for ensembles of unequally
weighted states on the basis of the generalized Rayleigh-
Ritz principle. Density-functional calculations for
excited-state energies were also presented by Englisch,
Fieseler, and Haufe.

The density-functional theory is exact; however, the
exact form of the exchange-correlation potential is not
known, so approximations have to be applied. Oliveira,
Gross, and Kohn calculated excitation energies of the
He atom using the quasi-local-density approximation for
the equiensemble exchange-correlation energy functional.
Here, another approximation for the exchange potential
is studied. The fractional occupation approach is applied
with a parameter-free exchange potential of Gaspar.
This exchange potential has proved to be suitable in cal-
culations for the ground state of atoms and molecules. '

In this paper, it will be shown that this exchange poten-
tial can be applied to excited states as well. To test it, the
first excitation energies of several atoms have been calcu-
lated and found to be in good agreement with the experi-
mental values.
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where g1 and g2 are the degeneracy of the ground and

the excited states,

M2=gi+g2,
1

M2'

and n are the occupation numbers. The excitation en-

ergy takes the form

1 dD(w)

g2 dW

where the derivative of the ensemble averaged energy
6(w) is given by
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N —1+gl

j=N
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(8)

X is the number of electrons. The ensemble exchange-
correlation potential v„, and energy functional E„, are
different from the ground-state exchange potential and
energy. Gross, Oliveira, and Kohn used the quasi-
1ocal-density approximation for the equiensemble
exchange-correlation energy functional. Here a

where u (r) is the external potential, and u, are the one-
particle orbitals. The exchange-correlation potential for
the ensemble

oE„,, [w,p]
u„,[w, p](r) =

5p r

is the functional derivative of the exchange-correlation
energy functional E„, and p is the weighted ensemble
density. (Rydberg units are used in this paper. ) p is

given by

1 —
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parameter-free exchange potential is applied to determine
the excitation energy.

III. EXCHANGE POTENTIAL

for spin orbital uj, where

a, (r)= PT

Vj
1 —

—,'rt —
—,'r) + —,'(q —1) ln

J
(14)

The method of providing a parameter-free local ex-
change potential has already been discussed in previous
papers. '" Here only a summary is presented. Starting
out from the free-electron-gas theory, where the ex-
change potential is given by

' 1/3

V„(r)=—8F(ri) p&(r)
3

and

g =(1—v /pt )'i3 (15)

To eliminate the need for different potentials for different
orbitals an average for the shells is done and the potential
is given by

' 1/3
3V„(r)=—6a&(r) pi(r) (16)

PF
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2 4g 1 —g

an average is performed in the momentum space leading
to the result

where

g n, a, (r)
a&(r)=

gn,
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3V„(r)= —8 p„(r)
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and n is the number of the electrons in the shell j. It has
been shown" that the function a(r) is very close to a con-
stant value. As the potential (13) depends explicitly on
the spin orbital considered it is very flexible and it can be
successfully applied in both ground- and excited-state cal-
culations.

Vi (r) = —6 p (r)3

4~ a, (r) (13)

(12)

p& is the total electron density of the electrons with spin
up and pF is the Fermi momentum. If the average is
done over the entire Fermi sphere, i.e., F1=0 and F2=1,
the exchange potential of Slater' is obtained. An aver-
age carried out for a thin shell near the Fermi sphere, the
thickness of which goes to zero, i.e., 7), =(pF —e)/pF,
g, =1 and c.~0, leads to the exchange potential pro-
posed by Gaspar' and later by Kohn and Sham. A
physically more acceptable average must be between
these extreme cases. So averaging near the Fermi sphere
for a layer containing the reference electron, i.e., contain-
ing v = u *- u electrons in the unit volume

[g, =(1—v, /p& )' ' and gz= I], the exchange potential
1/3

IV. RESULTS AND DISCUSSION
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The excitation energies of certain atoms are presented

The potential v„, in Eq. (2) is approximated by the po-
tential V„ in Eq. (16). The ground state and the ensemble
potentials are different not only because the ground state
and ensemble densities are different but because e in Eq.
(17) has different values for the ground state and the en-
semble spin orbitals. However, there is only a small
difference between the ground state and the ensemble a.
(It has already been shown" that a depends above all on
the number of electrons. ) So the explicit dependence of
E„on m is negligible and the excitation energy can be ap-
proximated by

TABLE I. Excitation energies of certain atoms {in Ry).

Atom

B
C
0
F
Na
Mg
Al
Si
P
Cl

Ground
state

2p ('P)
2p'(3P)
2p (P)

3s (2S)
3s ('S)
3p ('P)
3p(P)
3p (S)
3p 5( 2P)

Excited
state

3s ('S)
3s ('P)
3s ('S)
3s( P)
3p( P)
3p ('P)
4s( S)
4s ('P)
4s{ P)
4s (2P)

Ensemble
state

0.753 0 25

2p 1 53s0 5

2 37s3 02s

2p
4 53 0. 5

3 0253 075

3 1 253 0 75

3 0754 025

3p
1.54s 0 5

3 2. 254 0 75

3p4 '4s' '

Calculated
excitation

0.291
0.523
0.762
1.088
0.151
0.256
0.168
0.314
0.487
0.707

Experimental
energy

0.365
0.550
0.698
0.946
0.154
0.259
0.231
0.368
0.512
0.665
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in Table I. Besides the ground-state and excited-state
configurations, Table I also contains the fractional occu-
pation configurations of the ensemble states. For com-
parison the experimental excitation energies' are
presented, too. There is a good agreement between the
calculated and the experimental excitation energies, ex-
cept in a few cases. Here the results of an exchange-only
non-spin-polarized calculation are presented. Perhaps
this is why there are slightly larger derivations from the

experimental data in certain cases. It is interesting to
note that in several cases the fractional occupation
configuration of the ensemble state is the same as the
transition-state configuration of Slater. '

In conclusion, it can be stated that the parameter-free
potential of Gaspar provides generally adequate results
for the first excited states. It is believed that the method
can also be applied for molecules.
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