
PHYSICAL REVIEW A VOLUME 42, NUMBER 7 1 OCTOBER 1990

Amplitude-noise reduction in lasers with intracavity nonlinear elements
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We consider lasers with intracavity nonlinear elements, e.g., two-photon absorption, second-

harmonic generation, as a possible means to reduce the amplitude fluctuations in a laser. While am-

plitude squeezing up to 37% may be obtained for the internal field, only a modest amount of noise

reduction (10% for two-photon absorption, effectively zero for second-harmonic generation) is

found in the output field at the laser frequency. In the second-harmonic field an amplitude-noise

reduction of 50% below the shot-noise level may be achieved.

I. INTRODUCTION

In this paper we investigate stabilization of the laser
amplitude by the use of intracavity nonlinear elements.
The goal is to achieve subshot-noise operation of an ac-
tive laser system by a feedback system internal to the
laser cavity. The prototype of such a system is a laser
with a two-photon absorber present. Large intensity fluc-
tuations will be reduced by the action of the two-photon
absorber and consequentially the laser intensity should be
stabilized. The potential of such a system has already
been recognized by Bandilla and Ritze, ' and Herzog,
who calculated the intensity fluctuations of the laser
internal to the laser cavity. They found a maximum
reduction of intensity fluctuations in the limit where the
two-photon loss mechanism is dominant over the one-
photon cavity loss. The quantity of experimental in-
terest, however, is the intensity fluctuations in the output
light. To achieve maximum reduction of intensity fluc-
tuations in the external field then involves a trade-off be-
tween the two-photon absorption and the one-photon
cavity loss.

We shall first present an analysis based on the Scully-
Lamb master equation for the laser in the photon-
number representation. We then show that similar re-
sults are obtained using Langevin equations derived from
Louisell's Fokker-Planck equation for the laser in the
Glauber-Sudarshan P representation. ' We then use this
method to study the situation of intracavity second-
harmonic generation. Intracavity second-harmonic gen-
eration is known to produce squeezed light ' with re-
duced amplitude fluctuations and hence might be expect-
ed to reduce the amplitude fluctuations in an active laser
cavity. We shall determine how effective intracavity
second-harmonic generation is in reducing laser ampli-
tude fluctuations.

II. LASER WITH TWO-PHOTON ABSORBER:
MASTER-EQUATION APPROACH

We consider a laser with an intracavity two-photon ab-
sorber. We take as our starting point the Scully-Lamb

laser master equation in the photon-number representa-
tion

p = —A(n+1) 1+(n+1)—8n Pn

Pn —i

—ttn p„+tc( n + 1)p„+, , (2.1)

where p„=(n ~p~n ),
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p„=y[(n +2)(n + 1)p„+z—n (n —1)p„],
where g is the two photon absorption rate.

Combining Eqs. (2.1) and (2.2) we have

p„=ttC (a„p„&—a„+&p„) K+[(n + 1)p„+&

—n p„]

+y[(n +2)(n +1)p„+,—n(n —1)p„],

(2.2)

(2.3)

where we have defined

l+
n,

~ is the cavity loss rate and g is the dipole coupling con-
stant; y, and yb are the decay rates of the upper and
lower levels of the lasing transition; and r, is the rate at
which excited atoms are injected into the cavity. The
two-photon absorber introduces the additional term'
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where n, is the saturation photon number, n, = A/8
=y, yb/4g . C=(r, /2trn, )(y, /y, b) is the modified
upper-level pump rate.

The steady state of the above equation does not satisfy
the usual detailed balance conditions. Hence we shall
adopt a method developed by Gortz and Walls. We
define the quantity

approximation for the distribution
—(6mj /2o.

n+6m I n

Using Eq. (2.5) we may write

n+6m —
1

P; .=P; II

(2.13)

qn=
Pn+1

Pn
(2.4) =p exp

n +6m —1

lnq (v)

which is characteristically a slowly varying quantity with
n. The probability distribution may be obtained from the
ratios q as

m —1

v=n

n+6m=p exp d v lnq( v)
n

Making a Taylor expansion of q ( v) about the mean

(2.14)

p po II q (2.5) q(v) =1+q'(n )(v —n ), (2.15)

An approximate steady state solution of Eq. (2.3) may
be found in the limit of large photon numbers (n + I =n )

and slowly varying q„(q„+&=q„),

we find

q
Bn

(2.16)

0=@Ca„(q„'—I )+trn(q„—I )+Xn (q„1) .—(2.6)
Applying this result to Eq. (2.17) we find

One root of this equation is the unphysical qn =1 for
every n which is a consequence of equating the upward
and downward transition rates.

Dividing out this unnormalizable root one obtains a
quadratic equation

O=Xn q„+n (~+Xn )q„—trCa„.

0. =n

where

, nX
2 n,
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n
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(2.17)

1n=—
2

K
n, +

2X

The peak photon number occurs at qn =1. We shall as-
sume the peak and mean photon number n are approxi-
mately equal. This gives for the mean photon number

2a.n, (C —1)
+

Ba„a'=
n=n

In the limit of large pumping Ca„'~X. This term

along with 1 may be neglected in comparison to the lead-
ing term 2nX/n, =&4CX, leaving us with

K
ns+

21
(2.8)

C»1 3—:—n .4 (2.18)

which is real and positive provided C & 1.
This may be compared with the solution for the usual

laser where no two-photon loss is present:

This result is in agreement with that obtained by Bandilla
and Ritze' and Herzog in the limit y)) K.

Spectrum of intensity fluctuations
n=(C —l)n, .

A useful scaled measure of the nonlinearity is

2nsX=

(2.9)

(2.10)

The above result refers to the distribution of photons in
the cavity mode. The experimentally measurable quanti-
ty is the spectrum of intensity fluctuations in the output
field. The boundary condition linking the output field
with the input field and the cavity field is

which is just the ratio of nonlinear to linear loss at the
saturation intensity. In terms of this we have

b.„,(t) =b,„(t)+&ma (t), (2.19)

' ]/2
Cn=
X ns . (2.12)

[[(X+1)+4X(C —1)]' —(X+1)I . (2.11)
ns 2X

If we consider the large pumping limit C »1,X (and
CX»1), we find

where a (t) is the internal cavity mode.
For a vacuum input field the intensity correlation spec-

trum is related to the internal moments using

(b,„,(t)b„„,(t)b,„,(t'}b,„,(t') )
=v (T[a (t')a (t)]T[a(t)a(t')])

+~(a (t)a(t'))5(t -t'),
(2.20)

The variance may be calculated by using the gaussian where T and T are the time-ordering and time-anti-
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ordering operators, respectively. The steady-state inten-

sity fluctuation spectrum may be written as

S(co)=f dr e '"'(I,„,(r),I,„,(0) }ss

=2 Re f dr e ""'(&,„,(r), &,„,(0) }ss
0

g(r)=nK 1+2K Re d~e '"' —n
0

(2.21)

g(r)=n +(cr n)e— (2.22)

where g (r) = (a (0)a (r)a(r)a(0) },w) 0.
It may be shown that under the Markovian and Gauss-

ian approximations'

2KnX6~ ~&4XC ~
n,

and

n, 1S(0)~1— ~1—
4nX 4&XC

(2.26)

so for large pumping we will not see any significant
reduction in the intensity fluctuations since K &(ny.

In the region of somewhat lower pump strength where
we may no longer neglect K compared to ny, we may still
pump strongly enough to make n ))n, and KCa' ((ny.
In this case an extremum is found at

where 5=4ny+K —KCa„'. This gives for the output spec-

trum of intensity fluctuations

4ny=K

for which

(2.27}

2

S(co)=n~ 1+2&Ref dr
n

e
—(5+i cu j7.

2K5 0.
=nK 1+

5 +a) n
(2.23)

Inserting the results for 0. and 5 the normalized spec-
trum

S(co)—: = 1—S (co)

nK

2~(n —a„' )

$2+ ~2
(2.24}

which represents a Lorentzian dip of width 5 below the
shot-noise level.

The minimum occurs at co =0 where

S(0)=-,' . (2.28)

So even for this optimum condition the reduction in in-
tensity fluctuations below the shot-noise limit is only
modest.

The conditions for a large reduction in photon-number
fluctuations inside the cavity is that the two-photon ab-
sorption rate ng greatly exceeds the one-photon cavity
loss rate K. However, a large internal loss is deleterious
to the amplitude squeezing in the output field. Clearly
there must be a trade-off, and the result is that only a
small reduction in intensity fluctuations of the output
field is possible.

2~(nX vCa„'—)

S(0)=1-
(4n X+~ ~Ca„' )

' 1/2
Cn~
X n, ,

Ca' ~X,
so

For very large pumping r, rf &)n„~, r )&f we find

(2.25)

III. LASER WITH TWO-PHOTON ABSORBER:
LANGEVIN EQUATION APPROACH

The laser with an intracavity two-photon absorber may
be described entirely by the diagonal matrix elements of
the density operator in the number state basis. However,
for different intracavity elements, for example, an intra-
cavity second-harmonic generator, phase-dependent
terms are present and hence it is necessary to use a
Langevin equation treatment of the stochastic field am-
plitude. We therefore use the stochastic equations for the
laser derived by Louisell in the Glauber-Sudarshan P
representation:
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These equations are valid far above threshold.
To demonstrate the equivalence of this approach to the

master-equation approach used in Sec. II we shall analyze
the intracavity two-photon absorber. The Hamiltonian
for two-photon absorption is

H =
—,'ga 2I ~+H. c. , (3.2)

where C and n, are defined in Sec. II and I =a*a and e&,

and e2 are fluctuating forces with the following correla-
tion functions:

(~&(r)e, (&')) =&(r —&'),

(e2(r)~,(r')) =&(r —r'),

(ef(r)e, (r') ) =O . a
a'

ga a2

+
ga a

—ga
0

0
1/2

E)

E2

(3.3)

where a and a are independent variables.
We may then write the Langevin equations for the

laser with intracavity two-photon absorber in the general-
ized P representation by combining Eqs. (3.3) and (3.1)
with a* replaced by a . This gives

where g is the strength of the interaction and I is a reser-
voir operator modeling the absorbing system.

A master equation may be derived for the field density
and transformed to a Fokker-Planck equation using the
generalized P representation. The equivalent Langevin
equations are"

a
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As these equations stand, they do not have a deter-
ministic steady state because of the laser phase diffusion.
So we change to intensity and phase variables, defined by

I=a a, P= —.ln (3.5)
2l a

for which the Langevin equations are

an in,
1+n /n,

1+X+2 X
n,

ai = —~,or+(D„)'"e, ,

where

(3.7)

vC( 1+I /2n, )=I ~ —1 —2yI
Bt ]+IIn, (1+Ijn, )

1/2

Drr =~n

2 1+ X
n,

1+n /n,
X

n,
(3.g)

2~CI —2 I2. 2 X

1+ '
ns

Remembering that the P representation gives normally
ordered moments, the photon-number variance inside the
cavity is

dt 2

2~C /I
2 +21

1+ '
ns

1/2 (3.6) V(n) 1+ V(I)

Drr=1+
2n Ar

That is, the freely difFusing phase has no effect on the in-
tensity. The second drift term in the intensity equation is
very small (in the regime of interest it changes the mean
intensity inside the cavity by less than one photon) and
will be dropped. The deterministic steady-state solution
n =(I) is then given by the same relation as in Sec. II,
Eq. (2.11). Linearizing about this gives

=1+
1+ X —

—,
' 1+ X

n, n, n,

n,
1+X+2 X

ns

For sufficiently large n /n, this becomes

(3.9)
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V(n) 1 —3
4 4 ~

n
(3.10)

as in Sec. II. The output intensity fluctuation spectrum is

K)

a1
C

a&a&1+
"s

1 a) +pa)a2

(3.11)

Assuming large intensity (n In, ))1) but small nonlinear-

ity (X «1) gives Daa
1 1

—,t~, Ca, In,2

a)a)1+
2
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n,

2

This has its minimum value of —', when
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n,

a&a&1+
2ns

D y
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1 1

n,

2 X=1.
n,

(3.13)

This is the same condition as Eq. (2.27), namely that the
average linear loss is twice the average nonlinear loss.
Thus we see that in all important respects the results
from Louisell's Langevin equation laser model agree with
those from the Scully-Lamb master-equation model.

IV. LASER WITH INTRACAVITY
SECOND-HARMONIC GENERATION

—a= A (a)+D' F(t),a
at

(4.1)

We now consider the operation of a laser with an intra-
cavity second-harmonic generator. It is established that
second-harmonic generation in a passive cavity will
squeeze the amplitude fluctuations in the output field.
We shall now investigate whether it will have a similar
effect on the output of an active laser system. The dy-
namics of a laser with intracavity second-harmonic gen-
eration has been studied by Mandel and Xiao-Guang. '

In order to study the quantum fluctuations we shall use
the Langevin equations describing second-harmonic gen-
eration which have been derived in the generalized P rep-
resentation by Drummond, McNeil, and Walls. '

We may combine these with the Langevin equations
for the laser to give the following equations for a laser
with intracavity second-harmonic generation:

A~ =K)

n,

K)C+
I)1+ '

n,

I)
2ns +2yI, ( I2 )

'/ cosp,
1+

n,

Ar = —a2I2 yI, (I2)'/ co—sg,

2I2
I, 4I2+ sin—g,

)
1/2

(4.2)

Ds, r, =2I K)C
.

2 +y(I2)' cosp
I)1+
n,

Dr g=Dpr = —2y(I2)'/ sing,

and all other elements of the diffusion matrix are zero. C
and n, are defined as in the preceding sections. K, and K2

are the cavity decay rates of the fundamental and
second-harmonic modes, respectively, and y is the
strength of the second-harmonic nonlinearity.

Changing to intensity and phase variables

)1/2e ''Pt

a =(I, )' e

where K)C
D« I, 1+I yn,

g(I2 )
' cos1(t—

and

a&

e(t) =
a2

2

e, (t)

e)(t)

e2(t)

ez(t)

where /=2', —p2. The phases p, and ti't2 separately have
no steady state and play no role in the intensity fluctua-
tions.

For I, &&1 the second term in Az is small and may be
1

neglected. The steady-state solutions may be obtained
from the drift terms. Two regimes of operation may be
distinguished. For pumping strengths such that
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2
K2

2:Icnt ~

4X

the phase difference g becomes bistable. We shall con-
centrate our attention on the region below this transition,
in which the difference phase is locked to m, and intensity
and phase fluctuations decouple, making the calculation
of the spectrum particularly easy. It should be pointed
out that this critical point is not physical, but an artifact
of the choice of variables. It is closely related to the fact
that the phase distribution for a finite-amplitude squeezed
state can be bimodal. '

We find below the transition

V(II )

I)

K2+ 2K)l X+

K)lI) 1+X,
2 K2+ 2K)l 1+i

1+X,.

X+ 1+Xi'
1+I

can become negative for sufficiently large I, /n, (i.e.,
large C). Note that large X alone is not sufficient since
for large X, I, /n, ~ 1/X.

The steady-state variance V (I, ) may now be calculated

cosg= —1, x
K2

'2 + lX sX ~ X+ oX + s 1 +Xl
(1+i) 1+i

(4.5)

n,

(4.3)

I[(X+1) +4X(C —1)] —(X+1)] ~

2X

. 1+Xi
1+i

. 1+Xi
1+i

where X=2n, X /a, az. We. n. ote that this equation has
the same form as Eq. (2.11) for two-photon absorption
since for the mean intensities the second-harmonic gen-
eration acts as an effective two-photon absorber. The
fluctuations about the mean intensity will, however, be
different for the two processes.

Note the diffusion coefficient

V(n i ) V(Ii ) iX3iX 5=1+
I, I, 2(2iX)(2iX) 8

(4.6)

wherei =I&/n, and io=xz/2~~X(critical value of i) The.
best sub-Poissonian variance in the photon number is for
i =io, ioX large

2C
Dr r K&I &.

. . 2—
1 1 I]1+

n,

IiX
n,

(4.4) The condition ioX large implies K2&&K& which means
that most of the output is at the second harmonic. The
variance in the photon number in the second-harmonic
mode is

Dr, r,V(nz) V(Iz)=1+ =1+
I2 I2 I]

X

aq+ 2~)( 1+Xi ) . X+i 1+Xi

=1+-' .
2

1+iX
(1+i)

Xio+(1+Xi) 1+l
1+Xi
1+i

=7
8

(4.7)

for i =i o large.

Intensity fluctuations in the output 6eld

We may also calculate the spectrum of fluctuations in
the output field. The value of the normally ordered spec-
trum at ~=0 is, for the fundamental,

tion [Eq. (3.11) with cu =0], with a minimum when
2iX=1 with i )&1. It has a small value when Xi is large
since the width of the spectrum is =~;(1+2Xi) in this
limit. Thus the reduction in number fluctuations in the
internal fundamental mode [Eq. (4.6)] is not achieved in
the external field due to a power broadening.

At the second-harmonic frequency

.SoUt (0 ).

Iout
1

2(1+iX) iX(1+i)—(1+i
i (1+X+2Xi)

(4.8)
:S~~'(0): 2Xi:S'"'(0).

Iout IQUt
2 1

This again has the same form as for two-photon absorp-
1

2
(4.9)
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when i and Xi are large. The intensity fluctuations are

.gout(0).
gout (0) Iout

22 2 y OUt

l yOUt2'2 (4.10)

V. CONCLUSIONS

We have considered intracavity nonlinear elements as

ways of reducing the amplitude fluctuations in a laser.

In this case a reduction of fluctuations 50%%u~ below the
shot-noise limit is achieved.

Two points may be made about this result. First, the
reduction in output fluctuations is much greater than
that in the internal variance: in the region in which the
conditions i,Xi ))1 are satisfied, V(nz) has a minimum

value of —'„and may be only slightly less than 1. This re-

sults from the fact that the nonlinearity produces narrow-
ing of the second-harmonic fluctuation spectrum. It is
the opposite effect from that seen in the fundamental
mode and in the two-photon absorber, where a broaden-
ing of the spectrum meant that appreciable reduction in
the internal variance could give negligible reduction in

output fluctuations. Physically, the narrow spectrum
means that the full improvement in photon statistics is

only seen over a 1ong counting time.
Second, it is possible to give a very simple explanation

of the origin of the 50% noise reduction, in terms of the
rates of photon production and conversion. The condi-
tion that i is large implies that the laser is generating pho-
tons with Poisson statistics: if the rate of production is
It", then V(It"')= (It" ). The condition that Xi is large
implies that nearly all of these photons are converted to
the second harmonic, i.e.,

IOUt ((ItOt IOUt 1 I tOt
1 1 ~ 2 2 1

So now the variance in the second-harmonic output is

V(Iout ) (
t )2V(Itot )

t (Iout )2 1

Exactly the same effect can be seen in a passive second-
harmonic generator operated at the point of 100% con-
version efficiency (in the notation of Ref. 7, this is when

~ez~ =y, ); that is, over a sufficientl long time, the output
intensity fluctuations are 50% of Poisson, regardless of
the internal statistics. We note that 50% amplitude
squeezing is predicted in the signal and idler modes of a
nondegenerate parametric oscillator operating well above
threshold. "'

We have analyzed the cases of intracavity two-photon ab-
sorption and intracavity second-harmonic generation.
For the two-photon absorber while 25%%uo reduction in am-
plitude fluctuations may be achieved for the intracavity
field, this occurs under different conditions from those
necessary to maximize the noise reduction in the external
field. To achieve maximum squeezing of the intracavity
field requires the nonlinearity of the two-photon absorber
to be large compared to the cavity loss. However, a large
internal loss is deleterious to squeezing in the output
field. Under optimum conditions the best amplitude
noise reduction in the output field that may be achieved is—12.5%.

The situation is little better for intracavity second-
harmonic generation. While a noise reduction of -37%
may be achieved in the internal lasing (fundamental)
mode, power broadening of the output spectrum reduces
the squeezing to a negligible value in the output field.

In the second-harmonic mode, however, the spectrum
is narrowed rather than broadened, so a maximum inter-
nal squeezing of 12.5% translates to a 50% noise reduc-
tion in the amplitude of the output field. This may have
some important consequences since experiments demon-
strating squeezing in a parametric oscillation have used
intracavity second-harmonic generation to pump the os-
cillator. '

Note added. After this manuscript was submitted, we
received copies of unpublished work by V. N. Gorbachev
and E. S. Polzik, H. Ritsch, P. Garcia Fernandez, L. A.
Lugiato, F. J. Bermejo, and P. Galatola on a similar to-
pic. V. N. Gorbachev and E. S. Polzik have considered
nth-harmonic generation inside a laser cavity and find
that the nth harmonic is squeezed by a factor of n, as
would be expected by the arguments given in Sec. IV.
The results in our paper pertain to an incoherently
pumped laser. Clearly, better amplitude noise reduction
will result if a regularly pumped laser' ' is considered.
However, this is largely independent of the effects of the
nonlinearity since 100% amplitude squeezing is in princi-
ple attainable from a regularly pumped laser without any
intracavity nonlinear element.
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