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We examine resonance fluorescence of a two-level atom in a squeezed vacuum, under the condi-
tion that the squeezing bandwidth is much narrower than the Rabi splitting of the Mollow triplet.
For a suitable choice of the relative phase between the squeezed vacuum and coherent driving field,
we find significant narrowing of the Rabi peaks and inhibited population decay. These results are in

marked contrast to previous broadband squeezing analyses, which predict strong broadening of the
Rabi peaks and enhanced population decay. We explore the connection between our work and that
on the dynamical suppression of spontaneous emission via strongly driven resonance fluorescence in
a cavity [Lewenstein, Mossberg, and Glauber, Phys. Rev. Lett. 59, 775 (1987)]. By modifying this
work to incorporate squeezing of the cavity modes, we are able to combine the features of both sys-

tems, and thereby predict strong inhibition of the decay of all three components of the Bloch vector
in a possible experimental configuration.

I. INTRODUCTION

In the field of atomic spectroscopy, the introduction of
squeezed light to a number of classic problems has led to
predictions of novel and interesting phenomena. ' The
most dramatic of these has been the prediction of line
narrowing in the fluorescence spectrum of a two-level
atom, This was first expounded in the context of spon-
taneous emission in a broadband squeezed vacuum, '

where it was shown that the two quadratures of the atom-
ic polarization are damped at different rates, one at an
enhanced rate and the other at a reduced rate compared
to the normal radiative decay of the atom.

With the addition of a coherent driving field, the famil-
iar Mollow triplet was found to exhibit a striking depen-
dence on the relative phases of the squeezed vacuum and
the coherent driving field. In particular, the central
peak of the triplet could display a subnatural or super-
natural linewidth depending on the phase of the driving
field. However, the Rabi sidebands could only be
broadened relative to their normal vacuum width. These
results were again computed in the broadband limit, that
is, the bandwidth of squeezed light was assumed to be
sufficiently large so as to allow a squeezed white-noise for-
mulation of the problem. This requires the squeezing
bandwidth to extend well beyond the Rabi splitting in the
fluorescence spectrum (so that the squeezed vacuum ap-
pears 5 correlated even on the time scale of the Rabi os-
cillations).

Squeezed white noise is, of course, an idealization.
Indeed, present squeezed-light sources (most notably the
degenerate parametric amplifier ) exhibit bandwidths
only of the order of typical atomic linewidths. The effect
of finite bandwidth squeezing on spontaneous emission
and atomic absorption spectra has been analyzed in de-
tail, ' with the overall conclusion that line-narrowing
effects are degraded, and eventually cease to occur, as the
squeezing bandwidth is reduced.

The spectrum of resonance fluorescence under finite-
bandwidth conditions has not, to our knowledge, been in-
vestigated in such detail. Here we shall demonstrate that
a finite squeezing bandwidth is not necessarily a disad-
vantage. After formulating our model in Sec. II, we show
in Sec. III that interesting new features are revealed in
the fluorescence spectrum in the case where the squeezing
bandwidth, though possibly broad compared to the natu-
ral atomic linewidths, falls well within the Rabi splitting
of the Mollow triplet. In particular, the Rabi sidebands
may now be significantly narrowed, and the population
decay inhibited, depending on the phase of the driving
field. These effects result from a driving-field-induced
decoupling that occurs between the narrow bandwidth
component of the noisy input field quadrature and the
atomic system operators.

Our results can be related to recent work on dynamical
modifications of spontaneous emission via strongly driven
resonance fluorescence in a cavity. " In this case, the cav-
ity spectral density facilitates a vacuum reservoir with
finite bandwidth noise properties. In Sec. IV, we modify
this earlier work to incorporate squeezing, yielding a
model that closely parallels that of Sec. II. In doing so,
we find it possible to enhance some of the effects seen in
the previous work, while demonstrating our own findings
in a possible experimental configuration.

II. MODEL

A. Quantum Langevin equations and the adjoint equation

The approach we shall adopt in treating this problem
has been described in some detail in Ref. 9, so for further
details the reader is referred to that work. The dynamics
of our two-level atom are completely described by the
equations of motion for the atomic "spin" operators S+,
S,S, (which can be represented as combinations of the
2X2 Pauli matrices). The quantum Langevin equations
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E;„(t)=E& (t)cos(coot )+E2(t)sin(coot ), (2.2)

where coo is the frequency of the coherent driving field.
We move to a frame rotating at frequency coo, and

define polarization quadratures that are in phase and out
of phase with the coherent driving field,
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X

(representing the incoherent portion of the field) is evalu-
ated at the position of the atom, and may be expressed in
terms of quadrature phase operators as

where co, is the atomic transition frequency, y, is the
natural linewidth of the transition, and Qo and Po are the
Rabi frequency and phase, respectively, of the coherent
driving field. The incoming electric field operator E;„(t)

I

V

(2.3)

With rapidly rotating terms removed (rotating wave ap-
proximation), the equations of motion become
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where 6, =co, —coo. Following Ref. 9, we develop from
these equations an adjoint equation for a quantity p(t)
which is 2 X 2 matrix functional of the incoming electric
field operator E;„(t). Defining

The point in making these definitions is that we now have
a commuting form of quantum noise, that is, the opera-
tors Px(t) and Pr(t) satisfy

S,(t) =Tr,„,[S,p(t)] (2.5) [px(t), p&(t')] = [p&(t),p&(t')]

as the atomic average of the spin operators, we derive the
following equations: =[p (t),p (t')]=0 (2.8)

S, = —b,,Sy P~(t)S, ,—

S =b,,S„—QP, Pr(t)S, ,
—

S,= —y, +OP +P~(t)S„+Pr(t)Sy

where px(t) and p„(t) are defined by
1/2

(2.6)
for a11 t, t '. This implies that the equations can be treated
as classical c-number equations, amenable to solution by
ordinary stochastic methods. Hence, we need only speci-
fy the statistics of p~(t) and pr(t), as determined by the
initial quantum state of the incoming electric field (the
bath).

1 'Va
px(t)p=—

2 i6cOa
[
—sin(Po) [E,(t),p]+

+ (cPos)[Eo(t),2p] I+
B. Statistics of the squeezed-light source

pr(t)p=—1 'Va

2 %Cuba
[ co(esp)[E~(t} p]+

+sin(go)[E2(t), p]+ )

—= [cos(po)p, (t)+ sin(pp}p2(t)]p

:—[—sin(po}p&( t)+ cos(po)p2(t)]p,
1/2 (2.7)

The degenerate parametric amplifier will serve as our
source of squeezed light. In practice this has proved to
be the most successful source of squeezed light, yielding
results in reasonable agreement with theoretical predic-
tions. ' With the assumption that the amplifier is operat-
ing below threshold in a single-ended cavity (around the
frequency co&&}, theoretical analyses yield for the correla-
tion functions of the output light
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where y, is the cavity damping, e, is the amplifier driv-
ing strength (e, )0), and

+6, p ——p E

& p, (t)pi(t') ) =y, (2N 2M+1)5(t —t'—),

& p2(t)p2(t') ) =y, (2N+2M+1)5(t —t'),
(2.10)

The exponential terms in the expressions give the effect of
squeezing, while the 5-correlated terms represent vacuum
fluctuations. Strong squeezing is achieved in one quadra-
ture as we approach threshold, i.e., as e, ~—,'y, . In this
limit, fluctuations in the unsqueezed quadrature become
very large, and the correlation time of these fluctuation
p

' approaches infinity. This effect has been shown to
eventually cause a cessation of line narrowing in spon-
taneous emission and atomic absorption spectra in a
squeezed vacuum of the form specified by the correlation
functions (2.9). ' However, we shall not be interested in
this particular aspect of the squeezed-vacuum-atom in-
teraction.

The white-noise limit, in which most previous work
has been carried out, corresponds to the situation in
which both A, and p are much larger than any decay rates
or rates of oscillation occurring in the atomic dynamics.
In this case, we approximate the exponentials by 5-
functions, giving

'
sin(2yo)(N+M)p

Finally, we note that in specifying the correlations (2.9)
and (2.12), we have made a particular choice of phase for
the squeezed vacuum. This does not lead to a loss of gen-
erality, as the dynamics are sensitive only to the relative
phase between the coherent driving field and the squeezed
vacuum. This relative phase can be controlled through
the phase of the coherent field $0. In an experimental sit-
uation, we would envisage a single laser providing the
pump for both the atoms and the parametric amplifier.

III. SOLUTIONS TO THE EQUATIONS OF MOTION

Before commencing our analysis of the equations of
motion, we find it convenient to average firstly over the
white-noise portions of p~(t) and p„(t). We do this by
writing pz(t) as a sum of independent colored and
white-noise sources:

p, (t )=p;(t )+p,"(t),
with

& p&(t)p&(t') ) =y, 5(t —t'),
&P~(t)Pz(t') ) =y, sin (Po)(N M)Ae-

+y, cos ($0)(N+M)pe

(3.1)

(3.2)

S =—
x x a y XS„b,,S Px(t)S, ,

——

and similarly for pr(t). The Equations (2.6) are in the
form of Stratonovich stochastic differential equations.
For the purpose of averaging over the white noises px(t)
and pr(t), we convert to the Ito form of the stochastic
equations' (with respect to the white noises). Averaging
is then straightforward and results in the equations

where we have introduced the "standard'* parameters N
and M, defined by S» = — S +6,S„—QOS, pr(t)S, ,

— (3.3)

N —M=—,N+M=
2k2 21M

(2.11) S,= —y, —y, S,+QOS +PJt(t)S„+P'r(t)S»,

with M=[N(N+1)]' (i.e., we assume a minimum un-
certainty state).

Returning to the non-white-noise description, but re-
taining the N, M notation, we can now define the correla-
tion properties of p~(t) and pr(t}. These take the form

where the bar is now understood to incorporate the
white-noise average. It remains therefore to perform the
average over px(t) and pr(t) to obtain &S;(t) ), where & )
denotes the total average.

Considerable insight into the nature of our problem
can be gained from a simple qualitative inspection of the



42 RABI SIDEBAND NARROWING VIA STRONGLY DRIVEN ~ . . 4355

equations (3.3). In the lowest order (neglecting noise
terms}, and for zero detuning, (S,(t) ) displays a simple
exponential decay, while (S,(t)) and (S,(t)) undergo
Rabi oscillations at frequency Qo (in the rotating frame)
and also decay exponentially. The contribution to the
time development of (S (t)) from the additional noise
terms is proportional to the time average of pz(t)S, (t)
Since S,(t) undergoes Rabi oscillations, it follows that
this contribution will be significant only if px(t) contains
Fourier components at the frequencies +00. Clearly, if
p~(t) is a narrow-bandwidth noise source, with

significant spectral components only at frequencies much
smaller than Q0, then this term will play little part in the
time evolution of (S„(t)). A similar argument can be
applied to (S~(t) ) and (S,(t) ). The time development
of both (S,(t) ) and (S,(t ) ) will be sensitive to the spec-
tral components of p'~(t) around zero frequency, while in

the equation of motion for S,(t), the term px(t)S„(t) will

be significant only if, once again, pz(t) has non-negligible
frequency components at +Qo. Hence, (S (t)) and

(S,(t)) will be sensitive to spectral components of the
noise sources at both zero frequency and at the frequen-
cies +00.

The above argument raises the interesting possibility of
effectively decoupling the noise source p'x(t) from the dy-
namics of the atom. This possibility takes on special
significance in the case of a squeezed vacuum input when,
through an appropriate choice of phase $0, the

unsqueezed (noisy) quadrature can be made to corre-
spond to p~(t). We shall now investigate this possibility,
firstly by using an approximate analytical method, and
then by direct numerical simulation of the equations
(3.3).

A. Decorrelation approximation

The basic features of our problem can be illustrated us-

ing a straightforward decorrelation-approximation ap-
proach, whereby the noise sources and system variables
are assumed to decorrelate under averaging. Briefly, we
solve for two of the system variables and substitute the
results into the equation of motion for the third variable,
after which averaging is performed in the decorrelation
approximation Two distinct limiting cases characterize
our problem, corresponding to the choices of phase $0=0
and Po=n/2. For simplicity, we shall consider only
these two cases, and therefore we have

(px(t)ppt') ) =y, (N+M )b+e

(Pr(t)Pr(t')) =y, (N+M)b+e +

(P'x(t)Pr(t') ) =0,
(3.4)

where b + =p and b =A, . With the further assumption
of a strong driving field (Qo» y, /4), we find, after some
work,

0

y, (¹M)b—+ f dt'e ' -+ cos[QO(t t')](S,(t')), —
0

(S~(t)) = — (S (t))+y, (N+M)b+ f dt'e ' sin[QO(t t')](S (t'))—
0 400

(3.5a)

y, (N+M)b+—f dt'e ' + cos[QO(t —t'))(S (t'))
0

Q,(S,(t)—)+y, (N+M}b+ f dt'e ' sin[Q, (t —t')](S,(t'}),
0

(S,(t)&= y. y. &S—,(t))—y.(¹M—)b f dt'e ' —+
&S,(t'}&

0

y, (N+M)b+ f—dt'e ' + sin[QO(t t')](S,(t'))—
0

y, (N+M)b+ f—d-t'e ' + cos[Q,(t —t')](S,(t'))

+Q,(S,(t)) y. (N+M)b f—dt'e ' —+ sin[Q, (t —t')](S,(t')) .
0

(3.5b)

(3.5c)

In the white-noise limit, one has b+ ))Q0, and to a
good approximation (S,(t')) can be replaced in the in-

tegrals by (S,(t ) ). However, we are interested in the op-
posite limit, 00))b+. Provided b+ and b are larger
than the decay rates of the various spin components then
the appropriate substitutions in this limit are

& S„(t')& = & S (t) ) ,

(S,(t') ) =cos[Q,(t t')](S,(t))—
+sin[Qo(t —t')](S,(t) ), (3.6)

(S,(t')) =cos[Q,(t —t')]&S,(t))—»n[QO(t —t')]&S,(t)).
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&s, ) = —y, (s, &
—n, (s, &,

(s, & = —y. —y, (s, &+n, (s, ),
where

(3.7)

The integrals that remain can then be evaluated. The
time-dependent terms that result from the integrals are
assumed to give only small transient CS'ects, and so we
neglect them. Hence, we establish the modified Bloch
equations

&s, & = —y„(s„),

Q, =Q =GO . (3.11)

These permit the following observations:
(i} The component (S„(t)) is damped at its normal

vacuum rate independent of the choice of phase. This is
to be expected, as the spectral distribution of the noises
P~(t} and P'„(t) does not extend to the frequencies +Qo.
In the fluorescence spectrum, we can therefore expect the
central peak of the Mollow triplet to remain unchanged.

(ii) The components (S (t)) and (S,(t)) are damped
at the rate

b~(b~+y, /2)
1+2(N+M)

2 (bi+3y, /4) +Qo

b~
y = 1+2(N+M)

2 + yQ

y, b~ /2—(N+M)
(b ~ +3y, /4) +4QO

b~
y, =y, 1+(N+M)

b~ +3y, /4

b~y, /4
+(N+M)

(b~+3y, /4) +4QO

b~(bi+y, /2)
+(N+M)

(b~ +y, /2) +Qo

(3.8)

—,'(yy+y, )= +y, (N+M)
+ ya

(3.12)

which, if we consider the optimum case, b+ ))y„can be
further simplified to

—,'(y +y, )=y, ( —,'+N+M} .

For large squeezing (N ))1), we have

N —M= ——'+ 1

SN
'

N+M =2N+ —,',

(3.13)

(3.14)

1 1

,'(ry+—r.)=r. +
4 8N

(3.15)

and hence the two choices of phase lead to widely
difFerent behavior. For the case go=0,

and

b~
Q, =no 1 —(N+M}

8n', b-+3y. 4

r + +b —(b —+3 /4)

8Q02 (b ~+ 3y, /4)'+4 Qo

b~
Q =Qo 1+(N+M)

8Q', b+ +3y, /4

y, b ~ (b ~ +3y, /4)—(N+M)
8no (b —+~3y, /4) +4QO

+(¹M)
(b~+y, /2) +Qo

(3.9)

and the decay of (S (t)) and (S,(t)) is found to be in
hibited from its normal vacuum rate by an amount which
could approach 66%. It follows that the Rabi sidebands
should be narrowed compared to their natural width. For
the case $0= m /2,

—,'(y +y, )=2Ny, , (3.16)

y„=y, N+M + —,
' =2Ny, ,

—,'(y +y, )=y, —,'N —
—,'M+ —,

' =Ny, ,

(3.17)

and the decay rate is greatly enhanced, leading to a
broadening of the Rabi peaks.

(iii) These results are in marked contrast to those found
in the white-noise limit, where b+ ))Qo. In particular,
one finds, for go=0 (and for N ))1),

In view of the limit wc arc considering {fLO ))b+ ), many
of the terms appearing in (3.8) and (3.9) are negligible.
Removing these terms, we arrive finally at the results

ya
yx 2

while for Po =m /2,

yy„—y. N —M+-'

(3.18}

and

b~
y = 1+2(N+M)

+ ya

b~
y, =y. 1+{N+M)

b~ +3y, /4

(3.10) —,'(y +y, )=y, —,'N+ —,'M+ —,
' =2Ny, .

Hence, for strong squeezing, the central peak can be nar-
rowed with an appropriate choice of phase ($0=m/2),
but the sidebands can only be broadened relative to their
natural width.
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8. Solution via stochastic simulation

In a previous study of the effect of finite-bandwidth
squeezing on atomic phase decays, the technique of sto-
chastic simulation was successfully employed to establish
solutions to the equations of motion, and to compute
two-time correlation functions (and hence spectra). We
shall now adopt this technique once more to provide
confirmation of the approximate analytical results found
in the previous section.

The equations (3.3) are simulated using a fully implicit
numerical integration scheme. ' This scheme approxi-
mates the equations with the form

ggn Sn+1 Sn

Jn

—y, /2

0 0 0
Jc= 0 0 —1

0 1 0

0 0 —1

J~= 0 0 0
1 0 0

—y, /2 —Ao

(3.24)

= A(S ')At+B(S ')P~"At

+C(S 2)Pc, tlA

where

S„
S

S,

S —A, S

A(S)= — S +A, S, —QP,
—y, —y, S, +QP

—Sz

B(S)= 0

S„

(3.19)

(3.20)

(3.21)

Substitution of (3.22) and (3.23) into (3.19) leads to the in-
tegration scheme

AS"= [1—O J"At —O,J"P'"At —O J"P'"At ]

X[A(S )At+B(S )pft At+C(S )p'r' At] . (3.25)

The choice 0, = Oz
=0 corresponds to the Euler method

of integration. This method, however, can suffer stability
problems, especially when large Rabi frequencies are in-
volved, and hence we have opted in general for the time-
centered choice 0, = 0~ =

—,'. This fully implicit method
has very good stability properties, and is appropriate for
the integration of the Stratonovich stochastic differential
equations we are dealing with here.

Noise sources with the correct statistics are construct-
ed using summations of suitably weighted Gaussian dis-
tributed random numbers. The negative correlations
which characterize squeezing require that these sources
be complex. This enables S„(t),S (t), and S,(t) to devel-

op imaginary parts, but in practice these average to zero
after a sufhcient number of trials, provided that the in-
tegration routine is stable.

I. Results for ( S, ( t ) )

C(S)= —5,
S

At is the time step, O„Oz E [0, 1], and

A(S ') = A(S")+J„"O, AS", ( J„" );, =

B(S ') =B(S")+JgOpb S",

aa,
as,

aB,

as,

(3.22)

(3.23)

C(S ')=C(S")+Jc-0~AS", (Jc ),, = ac,
as,

(i.e., we linearize about the point S ). It is straightfor-
ward to show that

The averages (S,(t)) (i =x,y, z) have typically been
computed from 5000 trajectories. Our first aim is to
confirm the basic predictions of Sec. IIIA, and so, for
Fig. 1, we have chosen parameters to roughly suit the as-
sumptions made in obtaining the approximate analytical
results (i.e., Qo»b+, b = »y, ). The decay of (S,(t) ) is

clearly inhibited or enhanced, depending on the choice of
phase. An approximate fit to the curves yields decay
rates of 0.32y, and 4.9y, for $„=0and Po= vr/2, respec-
tively. These can be compared with the approximate
theoretical result (3.12), which predicts decay rates of
0.35y, (N —M= —0.44) and 3.8y, (N+M=4).

In Fig. 2, we demonstrate that inhibition and enhance-
ment of the decay rate persists even when the bandwidth
of squeezed light is only marginally greater than y, ~ We
consider the case Ao =20y „with y, =3y„e,=0.75y,
(b+ =0.75y„b =2.25y, ), and find inhibited and
enhanced decay rates of 0.32y, and 3.2y„respectively.
The result (3.12) predicts, for these parameters, the rates
0.42y, and 2.8y„but it is likely that we are approaching
the limits of validity of this theory. Indeed, as we in-
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crease the parametric driving strength e, further, an op-
timum value is reached, e, =y, (at which inhibition is
maximized), after which the degree of inhibition is re-
duced.

lation functions, from which spectra are computed using
a fast Fourier-transform routine. There it is shown that
if the solutions of the equations of motion (3.3) are writ-
ten in the form

2. Correlation functions and spectra S,(t)=g f,,(t, t' )S,(t')+g, (t, t'),
J

(3.26)

The computation of correlation functions and spectra
is somewhat more diScult than the evaluation of the sim-
ple spin averages. In particular, the non-Markov nature
of the processes being studied means that the familiar
quantum regression theorem cannot be applied. In Ref.
9, methods are developed for the simulation of the corre-

(S;(t)Sk(t')) =(f 1, (t, t'))+(g;(t, t')g&'(t'))

+i+ eg, (f t(t, t')g" (t') ), (3.27)

then the stationary correlation functions are given by

1 0

(a)

1. 0

1

0. 5- 0. 5-

0. 0-

—0. 5-

0. 0

—0. 5-

)( 44444
( ( Il

—1. 0

0

1. 0

0. 5-

0. 0-

-0. 5-

—1.0-,

FIG. 1. Population inversion ($,(t)) computed by simulation for Qo=50y„y, =10y„with (a) e, =0 (no squeezing), (b)
E =2.5y, (89% squeezing), go=0, (c) e, =2.5y„go=n/2. The squeezing bandwidths in the two quadratures are b+ =2.5y„
b =7.5y, .
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where g, (t, t')~g;"(t) as t ~ ao.

To evaluate (3.27) from the stochastic simulation, we
first allow the equations to evolve to a stationary state,

inin ."(t'). A new trajectory is then initiat-
ed, wit our ih f different sets of initial conditions, so t at we

is thenmay identi y ~,-tif f (t, t"') and g, (t, t'). The procedure is en
repeate, an ad d fter approximately 10000 trials, t e aver-
a e is taken. We remove the coherent contribution o e
correlation functions, and samp le to a time at which the
correlation unc ionl

' f t'ons are small (so as to avoid aliasing in
the fast Fourier transform).

In our first series of graphs, in g .i s. 3—5, we return to
the squeezing parameters of Fig.

' . 1 and consider the vari-
the Auorescence spectrum with c g ghan in Q.ation in e

=20 Figs.For Qo =50y, [Figs. 3—5(c)] and Qo= y,
he Rabi sideband narrowing and/or broadening

we aveh described in previous sections is t e ominan
with the central peak essentially unchangfeature, wi e c

for Q =10 [Figs.t normal vacuum form. However, orits norma
3 —5(a)], we start to see features which characte

'
terize the

idth of s ueezedhite-noise results, since now the ban wi q
light is comparable to the Rabi splitting. e. The Rabi side-

1. 0- 1. 0-

(b)

0. 5- 0. 5-

0. 0- 0. 0

—0. 5- —0. 5-

—1. 0-,
0

-1.0~,
0

1. 0-

0. 5-

0. 0-

—0. 5-

—1. 0-,
0

(b)= 3 „with (a) e, =0 (no squeezing,corn uted by simulation for Qo =20@„, y, = y „wi
re b =0.75y„

FIG 2. Population inversion (S,(t) ) compu e yo, =, =0.75, ~+o= m/2. The squeezing an wib d idths in the two quadratures are + = . y„e, =0.75@, (89% squeezing), go=0, (c) e =0.7 7 „~O-
h =2.25y, .
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bands are, for the choice of phase Po =0, no longer
significantly narrowed compared to their natural width,
and the width of the central peak is now strongly phase
dependent, alternating between supernatural and sub-
natural values for Pa=0 and Pa=sr/2, respectively.

In Fig. 5, where we concentrate on the Rabi peaks of
Fig. 3, comparing them in each case with the normal
(unsqueezed) vacuum result, we also note a slight shift in
the position of the sidebands with the addition of squeez-
ing. The width of the peak for Qo =50@, agrees well
with the decay rate computed earlier from the behavior
of (S,(t) ).

Finally, in Fig. 6, we plot the spectra obtained with the
narrower-bandwidth squeezed light considered in Fig. 2,
and for t wo values of the Rabi frequency Qo = 1Oy, and

Oo =20@,. Again, the sideband narrowing is enhanced as

Oo is increased.

3. Rejections

Rejections of the input in the output field can play an
9, 15important role in the case of squeezed inputs, ' since the

squeezed vacuum possesses a nontrivial power spectrum.
As well as incorporating this into the total output-field

1 . 5-

(a) (b)

1 . 0- 1 ~
0-

0. 5-

—60 —40 —2 0

(~—~3/v.

I

2 0 40 60
0. 0-

-60 —4 0
I

—2 0

(~—4/'.
2 0

I ' ' ' I

40 60

i. o'

o. s)

0. 0-
I

—6 0
I

—4 0

(~—4/'.
2 '3 6 0

FIG. 3. Fluorescence spectrum, omitting reflections, computed by simulation for y, , —1 y„,= . y„~~o=f,= 10 e =2.5 ~~ =0 with (a) 0 = 10y,O yas
(b) Op =20y „(c)Oo =50y, .
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spectrum, one must also allow for correlations between
the reflected input field and the fluorescence from the
atom. These correlations can lead to significant
modifications of the total fluorescence spectrum.

The reflections could, in principle, be avoided with the
introduction of a small "window" of unsqueezed vacuum
modes through which to observe the fluorescence (small
because we are assuming that the atom sees only
squeezed vacuum modes). In any case, we have investi-

gated (by simulation) the effect of reflections on the total
fluorescence spectrum, and we find that, in our domain of
interest (Qo»b+), the Rabi peaks are unaffected, while
the central peak is dominated by the squeezed vacuum
spectrum, (i.e., by a Lorentzian of width b+ ——p). Hence,
the significant features of our work, Rabi sideband nar-
rowing and broadening, can still be seen in the fluores-
cence spectrum when reflections of the input are includ-
ed.
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FIG. 4. Fluorescence spectrum, omitting reflections, computed by simulation for y, = I O„y,a=2. 5„yg =0m/2, with (a)
0 =10y„(b)0 =20y„(c) 0 =50y, .
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IV. SQUEEZED-CAVITY DYNAMICS

The frequency-dependent spectral density exhibited by
an optical cavity offers interesting possibilities for the
strongly driven resonance fluorescence of a single,
cavity-confined, two-level atom. An analysis of the form
given at the beginning of Sec. III shows that the decay of
the S component of the Bloch vector is triggered by cav-
ity vacuum fluctuations at the frequencies cop+Op (we as-
sume resonance between the atom, cavity, and driving
field), while the decay of the S and S, components is in
response to fluctuations at the frequencies coo and No+GO.
As pointed out by Lewenstein et al. " if the Rabi fre-

quency Qo is much larger than the cavity linewidth I, the
cavity vacuum fluctuations that trigger the decay of the
S component will be negligible, and S can be expected
to remain virtually constant (as regards decay into the
cavity modes). However, the decay of the S and S, com-
ponents can still be driven by cavity vacuum fluctuations
at the frequency coo, where the cavity spectral density
reaches its peak. In terms of the spectrum of resonance
fluorescence, these effects produce a dramatic narrowing
of the central peak in the Mollow triplet, together with a
limited narrowing of the Rabi sidebands.

Our interest in this particular problem stems from the
fact that if we inject a broadband squeezed vacuum into
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FIG. 5. Rabi sidebands of Fig. 3 compared with normal vacuum results (dashed lines).
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the cavity, a cavity-confined atom can be made to experi-
ence squeezed vacuum fluctuations over a bandwidth I .
If we consider the strong driving field limit Qo&) I, then
we have a close parallel with the work of Secs. II and III,
except that now the vacuum fluctuations which could not
be eliminated for that system (and gave a limit to how
narrow we could make the peaks) are removed through
the action of the cavity (i.e., the cavity does not support
vacuum fluctuations at the frequencies coo+Au). Our pre-
vious results therefore lead us to postulate that the decay
of all three components of the Bloch vector may be
strongly inhibited through the combined action of the in-
jected squeezed vacuum and the cavity spectral density.

To confirm this prediction we shall closely follow the
working of Lewenstein et al. "

A. Cavity model

We consider a single two-level atom located in the
center of a cavity and driven by a laser field of frequency
coo=co, . The cavity spectral density is assumed to pos-
sess a peak centered on the frequency co, =coo. Adjacent
peaks in the spectral density are ignored. We must also
allow for coupling to those modes unassociated with the
cavity (i.e., modes out the side of the cavity), and hence
the reservoir is divided into two parts corresponding to
the cavity (c„)and background (b„) modes, respectively.
The Hatniltonian for this system is written (setting
g=c = 1), in the rotating wave approximation,

1. 5- H= S, + f dk kckcI, + f dk kbkbI,

1. 0-

(a) 00

+ fdk[g, (k)S+ck+H. c. ]

+ f dk[g (k)S+b„+H.c. ] . (4. 1)

0. 5-

The coupling to each reservoir is described through the
functions g, (k) and g&(k), which are proportional to the
respective mode densities. The background modes corre-
spond to a free-space reservoir and hence contribute
equally at all frequencies in the vicinity of coo. Therefore,
g&(k) can be regarded as constant, with

0. 0-
I

—30

1. 5-

1. 0-

I

—20 —10
I

10
I

20
I

30

(4.2)

where the frequency coo corresponds to k =0 in the rotat-
ing frame.

The function lg, (k)l, representing the cavity-mode
density, is modeled as a simple Lorentzian with a max-
imum value at the cavity resonance frequency. The
Lorentzian has a half width at half maximum of I, and
satisfies

f" dklg, (k)l e '"'= ' 1"e
oo

C (4.3)

0. 5-
More precisely, we choose

1/2

g, (k)= 2'
r

I —ik
(4.4)

0. 0-
I

—30 —20
I

—10
I

10
1

20
I

30

FIG. 6. Fluorescence spectrum, omitting reflections, comput-
ed by simulation for y, =3y„e,=0.75y„$0=0, with (a)
Ao= 10& (b) Do= 20y„compared with normal vacuum results
(dashed lines).

The coefficients yb and y, give the contributions from
the background and cavity modes to the overall (un-
driven) spontaneous emission rate of the atom. For
significant effects to be observable, we will require y, to
be at least comparable to yb. This should be achievable
in practice with, for instance, confocal optical resona-
tors. '
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B. Modified Bloch equations

Following Lewenstein et al. , we derive standard
Heisenberg equations of motion from the Hamiltonian
(4.1), and eliminate the cavity and background photon
operators through a first-order expansion in y, and yb
(Born approximation). In doing so, we require that I
and Qo be much larger than y, and yb, but we do not
perform a Markov approximation with respect to the
cavity modes, as the cavity-mode reservoir has a finite
bandwidth, 1, which may only be comparable with the
frequency scale Qo. The background-mode reservoir has
an infinite bandwidth, and can therefore be treated as
Markovian.

The difference between our work and that of Lewen-
stein et al. arises when we perform the quantum-
mechanical average. We allow for cavity-mode correla-

tion functions of the form

& t(0) „.(0) ) =N6(k —k'),
(ck(0)ck (0))=M5(k+k'),

(4.5)

where M=[N(N+1}]', and again we have made a
choice of phase for the injected squeezed vacuum which
corresponds to M real. The relative phase between the
coherent driving field and the squeezed vacuum can again
be controlled through the phase of the coherent field $0.
The expressions (4.5) will be a valid description of the
cavity-mode correlation functions provided the injected
squeezed field is broadband compared to the cavity
linewidth. '

With these modifications to the statistics of the cavity-
mode reservoir, we derive modified Bloch equations of
the form

(S„)= —f dt'e " ' '[(S,(t)S„(t'))—i(S,(t)S,(t'))+c.c. ]

y, [N——M cos(2$o)]I f dt' e " ' 'cos[QO(t t')](—S„(t'))

+y, M sin(2/0)I f dt'e " ' 'cos[QO(t —t')](S (t') )

y, M —sin(2$o)I f dt'e " ' 'sin[QO(t —t')](S,(t')) — (S„), (4.6a)

&S, ) = ' —"f dt'e " ''[i(S,(t)S„(t'))+(S,(t)S (t'))+c.c. ]

y, [N+M—cos(2/0)]l f dt'e " ' 'cos[QD(t —t')](S (t'))

+y, M sin(2/0)I f dt'e " ' 'cos[QO(t t')](S„(t')—)

+y[ N+Mc so( $2}0]I f dt'e " ' 'sin[QO(t t')](S,(t—')) —Qo(S, ) — (S ),
0

(4.6b)

&S, ) = — ' —f dt'e " ' '[(S„(t')S„(t)) i(S„(t—')S (t))+c c]..

—f dt'e " ' '[(S (t')S (t))+i(S (t')S„(t))+c.c. ]2 2 0

y, [N+M cos—(2/0)]I f dt'e " ' 'sin[QO(t t')](S (t—') )

y, NI f dt' e —" ' '[ I+cos[QO(t t')]I (S,(t') )—
+y, M cos(2/0)I f dt'e "" "I1 —cos[QO(t t')]

I (S,(t')—)

+y,M sin(2/0)I f dt'e " ' 'sin[QO(t t')](S„(t'))—+Qo(S ) —yb(1+(S, )),
0

(4.6c)

where S„and S are defined in (2.3}.
To be consistent with our first-order expansion in y, and yb, it is sufficient to calculate the correlation functions

occurring in (4.6) in zeroth order (i.e., neglecting all damping}. The correlation functions are thus replaced with linear
combinations of one-time averages of the spin operators (evaluated at the "initial' time t ). We are again interested in
the limit in which Qo)) I, and so we in turn replace the (S,(t ) ) appearing in the integrals with the expressions (3.6)
(which relate (S,.(t')) to (S,(t)) in zeroth order). We also require that I be larger than any other decay rates featuring
in the dynamics, which enables us to set the integrals equal to their stationary (t ~ oo ) values. The Bloch equations can
then be written in the approximate form

p2 7b(S„)= y, [N Mcos(2/0)+——,'] — (S, )+y,M sin(2/0)(S ) — (S„), (4.7a)
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r' nore yb(S ) = y—, [N+M cos(2$O)+ —,'](S )+y,M sin(2/0) (S )+y, —Ao(S, ) — (S ),' r'+n,' ' r'+n,' (4.7b)

p2
&S )=— ' 1+

I 2+@2
p2y—,[N+M cos(2$o)+ —,'](S, ) —y, [N —M cos(2$o)+ —,'] 2 (S, )' r'+n,'

rn, rn,
+y, [N —M cos(2$o)+ —,'] (S )+y,M sin(2$o) (S, )+Go(S ) —yb(1+(S, ) ) .' r'+n,' ' ' ' r'+n,' (4.7c)

With increasing Qo/I, many of the terms in (4.7) become
very small. Neglecting these terms, we can further ap-
proximate the equations to finally produce

(S, ) =y, M sin(2$o)( S ) — ( S, ),
2

(S ) = y, [N—+M cos(2tto)+ —,'](S )

—n, (S, ) — &S, ), (4.8)

(S, ) = — y, [N—+M cos(2$o)+ —,'](S, )

y, [N+M cos(2tt0)+ —,
' ]=y, (N —M+ —,

'
) = (4.9)

for large N [see (3.14)]. Hence, with the addition of
squeezing, the cavity-mode decay of all three components
of the Bloch vector can, in principle, be strongly inhibit-
ed. The cavity spectral density provides the mechanism
for the inhibition of the decay of (S„),and for the par-
tial (up to 33%) inhibition of the decay of (S ) and
(S, ), while the injected squeezed vacuum acts to remove

+n, (S, ) —y, (1+(S,)) .

The most interesting choice of the phase $0 is that which
gives cos(2$o) = —1, for in that case

I

the remaining decay channel for (S ) and (S, ).
In contrast, the choice of phase cos(2$&) =1 leads to a

dramatic enhancement of the decay of (S~ ) and (S, ).
If y, is much larger than y&, then significant effects

should be observable. The population decay is vitally
dependent on the phase of the coherent field, varying be-
tween strongly inhibited and strongly enhanced regimes.
If we assume that our observations of the behavior of the
Bloch vector components can be extended to the spec-
trum of resonance fluorescence out the side of the cavity
(Lewenstein et al. " have demonstrated that such an ex-
tension can be justified, and, indeed, our work in Sec. III
also supports this), then for the choice of phase
cos(2$o)= —1, we predict dramatic narrowing of all
three peaks in the Mollow triplet. The choice of phase
cos(2$o)=1 should result in strong broadening of the
Rabi sidebands. We note that by observing the fluores-
cence out the side of the cavity, we obviate any complica-
tion associated with reflections of the squeezed vacuum
input.
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