
PHYSICAL REVIEW A VOLUME 42, NUMBER 7 1 OCTOBER 1990

Characteristics of Rabi oscillations in the two-mode squeezed state of the field
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The phenomenon of collapses and revivals of Rabi oscillations is studied for a two-level atom un-

dergoing either one- or two-photon transitions in the two-mode squeezed state field inside a lossless

cavity. The qualitative behavior of this phenomenon is found to be different as compared with cor-
responding coherent-state fields. Analytic expressions for excitation probabilities are obtained.

Also, the statistical aspect of the field in terms of intensity-intensity correlations is discussed.

I. INTRODUCTION

The Jaynes-Cummings model' of a two-level atom in-

teracting with a single mode of a radiation field provides
a useful means of studying nonclassical effects in the in-
teraction between the electromagnetic field and matter.
Recent experimental advances have made it possible to
realize such a model. The prominent nonclassical effect
in this model is the phenomenon of collapses and re-
vivals of the Rabi oscillations in a field that is not in a
pure number state. This phenomenon, which is due to
the granular nature of the field, is absent if the field is
considered classically. The nature of these oscillations
depends on the statistical properties of the field. For ex-
ample, in the single-photon transition, the revivals are
regular but overlapping in a coherent-state field, but are
all irregular in a chaotic field. For the two-photon transi-
tion, the revivals are regular and compact. Extensive
study of this phenomenon has also been carried out for
the field in a single-mode binomial state, negative bino-
mial state, two-photon coherent state, ' and mixed
coherent-chaotic case for a Rydberg atom undergoing
one- as well as two-photon transitions. Also, some very
interesting features, such as doublets of revivals, etc. have
been brought out when the atom is initially in a coherent
superposition of its states. '

In this work we investigate the phenomenon of col-
lapses and revivals in a field having two correlated
modes. In particular, we consider the two modes in a
pair-coherent state, " i.e., the eigenstate of the product of
annihilation operators for the two modes, or two-mode
squeezed state. This pair-coherent state is different from
other coherent states, such as the two-photon coherent
state, the atomic coherent state. " Such a state can be
produced, for example, in the interaction of a classically
driven two-level atom undergoing two-phonon transi-
tions, in which suppression of amplified spontaneous
emission (ASE) takes place due to a four-wave-mixing
(FWM) process, where photons are either created in pairs
or destroyed in pairs (see Ref. 12 for experimental de-
tails). A detailed description of the pair-coherent state

has been given elsewhere. '

The organization of the paper is as follows. In Sec. II
we give some properties of the pair-coherent-state field,
and in Sec. III we present the complete dynamics of a
two-level atom undergoing either one-photon or two-
photon transitions in the pair-coherent field. Some con-
cluding remarks are given in Sec. IV.

II. SOME FEATURES OF FIELD
IN PAIR COHERENT STATE

We consider a two-mode field and associate with the
modes annihilation operators 8& and &2. The product
operator &,&2, acting on a Fock state, simultaneously an-
nihilates photons of modes && and 8'2. Thus 8,&2 is the
pair-annihilation operator for the two modes. A pair
coherent state ~g) is then defined as"'

where g is a complex number and q is the degeneracy pa-
rameter,

~2ap )lg, q & =q lg, q &

implying that, whenever photons are either created in
pairs or destroyed in pairs, the difference in the number
of photons remains constant. The parameter will be zero
when pair creation starts from vacuum. Without loss of
generality, q can be assumed to be positive. It can be
shown that

oc n

~g, q ) =N g, ~n+q, n ),
[n!(n +q )!]'

where ~m, n ) is such that &,a, ~m, n ) =m ~m, n ) and
8 2a 2 ~

m, n ) = n
~
m, n ), and the normalization constant

Xq is determined by the condition (g, q ~g, q ) = 1. We ob-
tain
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N =
oo IgI2n

o n!(n+q)!

' —1/2 tern of a two-level atom of transition frequency coo in-

teracting resonantly with a monochromatic electromag-
netic field is given by (Pi= 1) (Refs. 5 and 7)

(4)

where J (x ) is Bessel's function. The probability of
finding n photons in mode &2 and n +q photons in mode

&i 1S

i =[Hp],. Bp
at

(8)

where H is the Jaynes-Cummings Hamiltonian' in the
rotating-wave approximation (RWA):

2 II

p„= I (n+q, n Ig, q &
I'=N' (5)

H =ci)oS +culpa ja ] +g (a ]S +S+a
&

)

Here,
which is sub-Poissonian. The mean numbers of photons
(n, ) and (n2 ) in modes &, and ttz are given by

(& ta, ) =(fi, ) =q+(fi', ),
Nq&a'a &=(e &=N'y

n!(n +q )! N2+,

and

S+=Ie& &gl,

S =,'g& &el,

S, =-,'(le & &el —
Ig & &gl),

and thus for q=0, (n, ) =(n2) and P„=NO (I l(n!) .
Many other features of lg, q ), including the possibility of
its generation, are investigated in Ref. 13.

III. ATOMIC DYNAMICS AND FIELD STATISTICS

A. An atom undergoing a one-photon transition

We consider a two-level atom having ground state Ig )
and excited state Ie) interacting resonantly with the
mode & i of the field which is in the pair-coherent state

l(,0) (where for simplicity we have q =0) of the modes

8, and &z. The evolution of the density matrix of the sys-

where Ig ) ( e ) ) is the ground (excited) state of the atom
and g is the coupling between the atom and the field. The
Hamiltonian of the Eq. (2) refers to a nondecaying atom
in a lossless cavity (cavity Q= ~). The cavity losses can
be accounted for as in Refs. 5 and 6.

To solve Eq. (8), we consider an atom initially to be ei-
ther in an excited state or a ground state, and the field
state given by

' I/2

lg&=N, y, In, n & .
n!

Also, at t =0, the atom and the field are decoupled. The
solution of Eq. (8) in this case is given by

p( t ) = g [cos(gt v'm + 1 )cos(gt v n + 1 )
I m, —,

' ) ( m
Ipf (0)

I
n ) ( n, —,

'
I

n, m

+sin(gtv'm +1)sin(gtv'n +1)lm +1,——,
' ) (m lpf(0)ln ) (n+1, —

—,
'

I

+i cos(gtv'm +1)sin(gtv n +1)lm, —,
' ) (m lpf(0)ln ) &n+1, —

—,
'

I

i cos(gt&—m +1)sin(gtv'n +1)lm +1,——,
' ) (m Ipf(»ln & & n, —,

' I] (10)

where pf(0) is the initial density matrix operator of the
field, which for the state

I
5 ) is

pf(0)=lg& &pl= & P. In & &nlm & &ml
n, m

= +P„„In&&nl,

P, (t)=-,'+&S, ),
where

(S, ) =
—,
' QP„cos(2gtv n +1) .

(13)

(14)

n, m

with

nn 0
( !)2

(12)

Pn =Pnn is the photon-number distribution function.
The probability P, (t) of finding the atom in an excited

state is defined as

This expression is the key result which describes the col-
lapse and revival phenomenon in the population inver-
sion. Here P„ is the sub-Poissonian distribution for the
pair-coherent-state field with mean photon number
( n ) —

I pl (for
I gl » 1). Also, for ( n ) » 1, the distribu-

tion is localized around ( n ), and has a width (An ) much
narrower than that of (n)'~. The revivals in P, (t)
occur when the oscillator r with n near (n ) becomes in

phase. The period of revivals T„can be estimated as the
time when the two neighboring oscillators with n = ( n )
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and n = ( n ) + 1 acquires a 2ir phase difference

2g((n )+ I)' T„—2g((n ) )'/ T„=-2m,

which for ( n ) » 1 leads to

T„=2ir((n ) )' /g=2~(lgl) /g

We have carried out a more sophisticated analysis in
which the collapse-revival phenomenon is self-
explanatory, exactly in the same manner as that de-
scribed in Ref. 4 for the ordinary coherent state. The
asymptotic expression for P, (t ) (in the limit ( n ) »1) so
obtained is found to be in good agreement with the nu-
merical summation of Eq. (13). With this analysis we
have found the period of revival T„ to be

2 ' 0

1 ~ 5

0.5
r

0 ' 0
20 ' 0

V

40 ' 0 60 ~ 0 80 ~ 0
I

100.0

(16)

and the width of the Gaussian envelope of the kth re-
vival, or, equivalently, the time of collapse T, of the kth
revival to be

FIG. 2. Excitation probability P, (t ) as a function of time for
an atom undergoing a one-photon transition with ~g~ =40.
Curve A [P,{t)+1] is for the pair-coherent state, curve B
[P,{t ) ] is for the corresponding coherent state.

For the sake of comparison we note that the period of re-
vival T,' and the period of time T,' for an ordinary
coherent state" is given by

(18)

(19)

We also observe that the period of Rabi oscillation within
a revival increases for the pair-coherent field, in compar-
ison with the coherent field. Thus the effect of sub-
Poissonian statistics' on a pair-coherent-state field is
clearly visible in P, (t ).

The intensity-intensity correlation function g' '(t),
defined as

In Fig. 1 we have plotted P, (t) using Eq. (13) for two
different values of ~g~ for a pair-coherent-state field.
Clearly, the predictions of revival time and collapse time
are in good agreement with the numerical results. In Fig.
2 we have given a comparison of P, (t) between a pair-
coherent field and an ordinary coherent field for

~ g~ =40.

(a ta )' (20)

( a a ) =
—,'+ g nP„——,

' g P„cos(2gt &n + 1), (21)

determines the fluctuation in photon-number distribu-
tion. From Eq. (10) it follows that

2 ~ 0 ((a ) a ) = g n P„—g nP„cos(2gt&n + 1), (22)

1 ~ 0

and g' '(t ) (0 implies antibunching. We evaluate g' '(t)
using Eqs. (21) and (22). In Fig. 3 we have plotted g' '(t)
as a function of time for a pair-coherent field as well as
for an ordinary coherent field. Note that the extent of
antibunching is greater in the pair-coherent field than in
the coherent field due to the intrinsic sub-Poissonian na-
ture of the pair-coherent field. Since for the same ~g~ the
mean photon number of the pair-coherent field is smaller
than that of the coherent field, we find an increased over-
lap of revivals in the former, along with a larger period of
Rabi oscillation within a revival.

0-0
B. An atom undergoing a t~o-photon transition

FIG. 1. Excitation probability P, (t) as a function of scaled
time T=t/T„{T„=2m&+g g)/for an atom undergoing a one-
photon transition in initial pair-coherent states. Curve
[P, t) {1+]is for ~g~'=50, curve B [P, t)]{isfor ~g~'=100.

In the case of a two-photon process in infinitely high-Q
cavities, the collapses and revivals of Rabi oscillations are
both compact and regular in a coherent field, in compar-
ison with the single-photon transition in which the re-
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- 0 ~ 02.

-0 06.

S = lg & &el, and S, = —,'(le & &el —
lg & &gl), and a, (a; )

is the cavity-field annihilation (creation) operator of the
cavity-field modes (i =1,2) in the pair-coherent-state
field. In the above Hamiltonian we have ignored the
Stark shift of two levels arising from virtual transitions to
the intermediate states, but this can be accounted for
easily.

The evolution of the density matrix of the system is de-
scribed by the equation

-0 ~ 08. i =[H p].. Bp
(24)

-0 ~ 1

0 ' 0 20 ' 0
l

40 ~ 0 60 ~ 0 80-0 100.0

FIC. 3. Intensity intensity correlation function g'-'(t) as a
function of time for an atom undergoing a one-photon transi-
tion with lgl'=40. Curve A [g~"(t)—0.03] is for the initial
coherent-state field and curve B (g"') is for the pair-coherent-
state field.

+„&=(—1/ 2)(ln„nz, e &+ln, +l, nz+ 1,g &), (25)

(26)

We solve Eq. (24) by evaluating the eigenvalues E„*„
and the eigenfunction lg„—„& of the Hamiltonian H.

1 2

Since the atom absorbs and emits one pair of photons in
an ideal cavity, the basis vectors in the dressed-state rep-
resentation are ln, , nz, e & and ln, + l, nz+ l,g &, so that

vivals are only partial. Here we consider an atom making
two-photon transitions between the ground state lg & (en-

ergy E ) and the excited state le & (energy E, ) while in-

teracting with two cavity fields with frequencies ~, and
co2. The transition between the two states is mediated by
an intermediate state li & (energy E;) such that
E; —Ed=rut —6, E, E; =cuz+b—. If we assume lhl is
much larger than the one-photon Rabi frequency of the
oscillations between li & and lg & and between li & and
e &, then intermediate state li & can be eliminated adia-

batically. Now the transition between le & and lg & can be
described by an effective Hamiltonian H, given by '

H=2coS, +(ru+E)a, a, +(cu —e)azaz

E„+„= (n—,
—+nz+ I)+s(nl nz)+k„„— (27)

where

1,„+-„=+g[(n 1
+ 1)(n z+ 1)]'~ (28)

p(0)= g C „„lm, mze& &n, nzel,
ml, nl
m 2, 1l

2

(29)

where

To obtain an expression for P, (t ), let the atom and the
field be decoupled at t =0. If initially the atom is in the
excited state e &, and the field is in the superposition of
number state n &, then

+g(a lazS +S+alaz), (23) C „„=&m, m ezlp(0)ln ntz&e. (30)

where re=(co, +coz)/2, e=(co, —coz)/2, S+ = le & &gl, In terms of the eigenstate of H,

m l, nl

m2, n2

(31)

so that'"

ml, nl
m 2, tl

2

X( A„* „&n,n, el+8„*„&nt+ l, nz+ l, gl), (32)
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in which 2 ~ 0

A =i sin(A, t ),
B =cos(I(, t) .

(33)

Using Eq. (32) we can determine all th de ynamic and sta-
is ical properties of the atom and the field f

field state.
n e e or any initial

For the field in' '
d initially in the pair-coherent state defined

by Eq. (3), we have

(34)
2 "1"2 +

[ )( + )1 $( + )(]i IZ

The probability P, (t ) of finding an t
'

hn ing an atom in the excited
a e Ie ) can be evaluated using Eq. (32) and

' f
be given b

, an is ound to

1 ~ 0

0. 5

0 ~ 0
2 ' 0

I

4 ' 0
gt

6-0 8 ' 0
I

10 ' 0

P, (t)=(n, n2elpln, n2e)
'g. u or an atom undergoing a two-FIG. 4. Same as Fi . 2 but f

p oton transition.

where

=—'+ ~~C««cos(2A, « t ),
n

(35)

[(n, +1)(n2+1)]' =—n+1+q/2
and consequently the expression for P (t ) ise

P, (t)=N2Re[e ' 'J (2ilgle' ')]

(37)

(38)

howev
The asymptotic form of J (z) is a corn 1' t dcomp icated series;

owever, a simplified expression for P (t ) can
'

n or, t canbe obtained
w en q= wit t e substitution

(36)II
~

II i, II
~

II i Ii

The expression of P (t ) isis a series which can be summed
up numerically for any parameter values. However, we
can obtain an analytic expression for it b no

'

in E.
&&, t e maximum contribution t th

q. (35) comes from n near
l pl, so that for

'
n o esum

ni n2 l(l »1 wehave(q 0)

coherent field (curve A) and a coherent field with q =0.

re ular and
Interestingly, as in the coherent-state field ra e e, revivals are
regu ar and compact in the pair-coherent field. The se
ration of revivvivals in both cases is equal to ir/ and h

n e . e sepa-

envelo e of the r
m g, an te

with the a
p e revivals is Gaussian and match 11

e approximate results mentioned above. However,
the widths of the revivals in th

' - he pair-co erent state is
greater than those in the coherent t t b
sub-Po'

s a e ecause of the

we find ver ood m
su - oissonian nature of the former. Afterer veri cation

suits with the
we n very good matching of analytical approxim t

i the exact numerical summation of the series.
To see the effect of parameter q on P (t ) 1, we p ot P, (t ) in

ig. 5 for various values of q and kee
l

h
a as q increases, revivals no longer remain regular

and compact.
Next, we study the statistical properties of the photon-

Jo(z ) =&2/irz cos(z vr/4), —

and we obtain, after simplification

(39)
2 ~ 25.

e
—2I (I

P, (t)=- cos[2 I &I »n(gt ) +2gt ]
1.5

X cosh[2l(leos(gt)] . (40) 0 ~ T5.

Note that thethe asymptotic expression of P, (t ) in the case
of a coherent field with mean photo bn num er

~ g ~
is given

P(t)= epx[=2 $lslin (gt)]cos[lgl sin(2gt)+3gt] .

0 ~ 0
0 ~ 0

I

2 0
I

4. 0
gt

6 ' 0
I

8 ~ 0
I

10 ' 0

44Oa)

ln Fig. 4 we plot P, (t ) for lgl =40 for both a pair-

FIG. 5. Excitation probabilit Pi i y (t ) as a function of time for
a two-photon transition in a aa t — h

' ' '
a pair-coherent-state field with

=40. Curve A P t +=4 . e [,(t)+2] is for q =10, curve B [P,(t)+1]
is for q =5, and curve C [P, (t )] is for q =0.
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-0.02. or by the interbeam coherence function

-0.04.
(a,a, a,a, ) —(a,a, ) &ata, )

(at(a, & &a2ta, &

(43)

-0.06.

- 0 ~ 08.

For simplicity we assume that =0 fora q = or our analysis, and
us g, i =g22 =g =gI~' —1/(a, a, ), because the

modes are degenerate. We find'

a; a, =
—,'+ g n;P„——,

' g P„cos[2gt(n+1)],
n n

(44)

-0. ]

0 ' 0 2 ~ 0
I

4. 0
gt

I

6 ~ 0 8 ~ 0
I

]0 ~ 0

FIG. 6. Second-ord- rder coherence function g(2'(t) [defined h

Eq. (41)] as a function of time f
t e ned by

photon transition with ~g~ =40
ime or an atom under oin a

i = . Curve A [g" (t() —0.03' is

g ) o p

(, )
((a, )'a', ) —(a,a, )'

(a', a, )'

((a,')' ', ) —(a'a )'
g22 = 2 2

(aa )'

(41)

(42)

number distribution by evaluating th'ng e second-order
coherence function (Fig. 6), defined by' '

(( i')2 2) — n2P
i i ~ ni Pn g nPcos[2gt(n +1)], i =12

n

(45)

where P„ is the same as in Eq. (14) for =0.
The expression g

' '( t ) can be simplified for
~ ~

)) an
we can write

i e or ))1 and

&(a ) a ) ((a ) a )
&ata)' &

' )' ( )

(46)

~ ~

tain
Retammg the terms of leading order in E (46),in q. , we ob-

n 1 3
e ' 'sin[2~/ sm(g )+2g ]sin(g )cosh[2~g~cos(gt

&n')+ —1
&n)4

(47)

The envelo e fup nction of the dominating term (the term
in the second square brackets) ha
= „=irlg and extrema at t„+t„/rr(/2~(~, thus showing

"doublet" structure in the rev' 1 Th
fo

viva s. e expression of
g (t ) for an ordinary coherent state h b
Ref. 9. However

a e as een given in

minimum
e . . owever, in the case of the coherent t t h

in the revival occurs at t=t„, b extrema
occur at t = t„+t„/2~~((~(.

ut extrema

the observed colla ses anp and revivals phenomenon wi11

r
re ect the nature of the field. Thus we fi d th, d
emarkable quantum features of th

we n t at, dueto
es o e pair-coherent-state

se e.g., su - oissonian statistics co 1 t'

er uctuations, and violation of C h -S h
qua i ies), its signature is apparent in the collapses and re-
vivals phenomenon of Rabi o
d'ff fromi erent from

a i oscillations, making it vastl
from an ordinary coherent-state field.

aio, y
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