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Photon operators that obey commutation relations form Lie algebras. By identifying the Hamil-

tonian of an interacting system of one electron and a multimode many-photon field in a momentum

representation as an element of a Cartan subalgebra, we are able to find the automorphism that

maps the Hamiltonian on to that of the noninteracting system. By this method we find the exact
solutions as new solutions of the Schrodinger equation for the case of one electron in a multimode

many-photon field. The solutions show the existence of both ponderomotive energy and momen-

tum, which obey the rules of linear superposition among the photon modes.

I. INTRODUCTION

The interaction between electrons and photons is one
of the most basic interactions in nature. Studying this in-
teraction by a method leading to exact solutions is of im-
portance for understanding many basic laws. In tradi-
tional quantum electrodynamics (QED) the electron-
photon interaction is treated by perturbation theory in
which the order of the expansion is equal to the number
of photons involved in the transition. Even though the
nonperturbative study of an electron interacting with an
electromagnetic wave has a long history since Gordon's'
and Volkov's pioneering work, it has gained renewed im-
portance with the development of modern laser tech-
niques for producing superintense light for experiments
on multiphoton ionization (MPI) and other electron-
phonon scattering processes. In MPI experiments there
are millions or billions of photons in the background,
while tens, hundreds, or thousands of photons are ab-
sorbed in ionizing the atom. It is formidable to calculate,
say, 20-photon ionization by evaluating Feynman's graph
of 20th order; even then the convergence of the perturba-
tive expansion remains uncertain. Keldysh applied the
nonrelativistic Volkov solution for an electron in an elec-
tromagnetic plane wave as a final state to construct a
transition-rate formula for MPI in a theory called the
Keldysh-Faisal-Reiss (KFR) model. ' Even though the
KFR model caused some controversy, ' it is attractive
due to the nice feature that it expresses the MPI rate to
any arbitrary order of photon numbers. The Volkov
solution is time dependent, since the electromagnetic
wave is treated as an external classical field. Thus„ in the
Volkov solution, the electrons is not a truly isolated sys-
tem; hence, formal scattering theory cannot be applied
directly. In our recent work"' we obtained a set of ex-
act solutions of the Dirac equation for a relativistic elec-
tron in a quantized, elliptically polarized monochromatic
electromagnetic field as energy eigenstates of the Hamil-
tonian. Using this set of exact solutions, we applied for-
mal scattering theory to treat MPI (Ref. 13) and found
that the final state in the large-photon-number and nonre-
lativistic limits vanishes when the ponderomotive energy
is not equal to the photon energy multiplied by an in-

( i V)—
2Pl ~

[( i V) A' '+—AI '
( iV)]-

2@i~

2( A(m))2 m

+ + g co;N, 0'(r)=64(r),
Pl

where

A' '=g A, ( —k, r)

I71 lk .r —lk .r
g, (e, e '

a, +e,*e '
a, ),

i=1

g, =(2V,, co, )

N, = —,'(a, a, +a, a, ) (i =1,2, . . . , m)
I

(2)

for a nonrelativistic electron interacting with a mul-
timode photon field. The solutions are applicable to
small-cavity and few-photon cases with strong coupling
as well as to cases with large normalization volume and

teger; this result is due to balancing the four-momentum
of the interacting system. It indicates that the single-
mode interaction may not be sufficient for describing an
MPI process even when the incident laser beam is in sin-

gle mode. Strong scattering effects due to the pondero-
motive energy and momentum have to be considered to-
gether with multiphoton Compton scattering, where the
extra modes with different light-cone directions are in-

volved. On the other hand, performing experiments to
study the interaction between an electron and a mul-
timode radiation field is possible. Thus, exact solutions of
the Dirac and Schrodinger equations for an electron in
multimode photon fields would have immediate applica-
tion.

In a recent work' we have solved the Schrodinger
equation for a nonrelativistic electron interacting with a
single-mode photon field, with solutions that can be con-
sidered exact. We considered the ponderomotive
momentum as well as ponderomotive energy. In the
present paper we developed a Lie-algebra method to ob-
tain exact solutions of the Schrodinger equation:
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large photon number in a strong radiation field.
In Volkov s pioneering work, relativistic classical

time-dependent wave functions were obtained for an elec-
tron in a multimode electromagnetic field in which all
modes propagate in the same direction and exhibit the
same linear polarization. The present solutions differ
from earlier work in four respects: (1) The modes can
propagate in arbitrarily difFerent directions. (2) All
modes can have arbitrarily different elliptical polariza-
tions. (3) The present solutions are quantum-field solu-
tions for the electromagnetic field, thus making it possi-
ble to describe absorption and emission processes with
definite transferred-photon numbers. They also enable us
to treat the electron and photons as an isolated system, so
that the wave functions for the electron and photons are
energy eigenfunctions of the Hamiltonian with a definite
energy. (4) The present solutions are nonrelativistic for
the electron, but relativistic for the photons. This feature
is particularly advantageous for treating strong radiation
fields, in contrast to earlier nonrelativistic semiclassical
approaches that are mostly in dipole approximation or in
long-wave approximation where the light-cone direc-
tions are deformed, limiting them to the cases where the
radiation fields are not highly intense.

This paper deals with both fundamental theory and
practical calculation. Readers who only care about prac-
tical calculation can skip the descriptions of Lie algebra
and directly follow the solving steps which are usually
the calculations in linear algebra. In the description of
Lie algebra, we try to include necessary basic definitions
and concepts in the context so that readers unfamiliar
with Lie algebra can follow without much dilculty.

II. LIE ALGEBRA STRUCTURE
FOR PHOTON OPERATORS

e, =a, (7)

e+& =a

They form a Lie algebra go with commutation relations
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[e i,e+) ]=ho

We write

go= lho, e „e+,j, (9)

which means that the Lie algebra po is made up of
ho, e ],e+] and their linear combinations.

The algebra go has few direct extensions. The most
immediate one is to include the number operator X„
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We introduce the following notation that expresses
general properties of a Lie algebra:

o=i

Photon operators form a Lie algebra known as Heisen-
berg algebra. Generally, a Lie algebra p is a finite-
dimensional linear space, which satisfies' '

Thus we see that

A'= [ho, h, j (13)
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for any x;,xj,xk Ep. Alternatively, it can be defined by
using structure constants C;",

is a subalgebra of p, , i.e., it is a subset of the Lie algebra

p, and a Lie algebra itself.
A Cartan subalgebra A of the Lie algebra p is a

subalgebra of p, whose element h in the eigenvalue equa-
tion
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and
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where a sum is implied by the repeated indices.
It is easy to verify that in the single-mode-photon case,

the creation operator a, the annihilation operator a, and
the identity operator I, which satisfies

e+2=a f2 (15)

has a maximum number of different eigenelements x. As
an example, we see that A= [ho, h, j is a Cartan subalge-
bra of p, .

The next extension is Lie algebra p&, which includes all
quadratic photon operators. We define

e 2=a 2

[a,a]=[a,a ]=[I,a]=[I,a ]=0,
form a Lie algebra.

p2 lho h] e ~, e+&, e 2, e+2j

The additional commutation relations are

(16)
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[h0, e z]=[h0,e+z]=[e, , e 2]=[e+,, e+z]=0, the number of the modes, then we have
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The commutation relations for the elements are

(22)
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Here we can see that A is still a Cartan subalgebra of yz.
We say that yo is an ideal of gz, which means that go is

a subalgebra of yz, such that
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According to this relation, we can define a quotient alge-
bra of yz by go,

Wz=s ~W . (19)

The ~~ppi~g x (Cgz)~x (Eyz), where x denotes the
residue class, modpo, is a mapping of yz onto yz, a natu-
ral homomorphism. The set yz is also a Lie algebra, and
the homomorphic image of gz under the natural
homomorphism. The kernel of this homomorphism is

yo. Thus, we have

(i j =1,2, . . . , m) .

h", = —,'(a;a, +a, a;) (i =1,2, . . . , m) (25)

and

p)=[ho, h), e (,e+1; i =1,2, . . . , m} (26)

The algebra yo can be extended to Lie algebra y, by in-

cluding the number operators N, , i =1,2, . . . , m. We
I

define

pz= [h, , e z, e+z }, (20) The additional nonvanishing commutation relations are

where the notation used for the elements corresponds to
the elements under the natural homomorphism. The ele-
ments of yz satisfy the following commutation relations:

[h (r) (i)
]

(I)

[h 1',e'+1]=e'+1 (i =1,2, . . . , m) .
(27)
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[h( e+z]=2e+2
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A further extension can be made by including all the
quadratic operators. By defining

(I)e z=aa, ,

(I)e+z=a, Q,

which show that the subalgebra A' =
[ h, } is also a Cartan

subalgebra of yz
Now gz is a simple Lie algebra, which means that there

is no ideal in gz other than [0}and pz itself.
All the above Lie algebra properties can be easily gen-

eralized into multimode photon field cases. If, on the
Lie-algebra notation, we use the superscripts (i), (j) to
denote the photons in different modes, and m to denote

I
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The additional commutation relations can easily be determined by those for y, , so we do not write them out here.
A trivial Cartan subalgebra for both y] and yz is

A=[h0, h(", i =1,2, . . . , m} .
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III. ELECTRON INTERACTING
WITH A SINGLE-MODE PHOTON FIELD

e A( —kr)
(34)

where

A( —k r) =g (ee'"'"a +e*e '"'a ),
g

—(2y ~)—1/2
y

(35)

Here V is the normalization volume for the photon field,
and N, is the same with the operator defined in Eq. (10).
We use natural units throughout, where A=c= 1.

The polarization vectors for the photon fields are

e=[e„cos(g/2)+ie sin(g/2)]e'

e'=[e, cos(g/2) —ie sin(g/2)]e'

they satisfy

E'E' = 1

e.e=
cosine

'

e* e*=cosine.

(36)

In this paper we consider only a nonrelativistic elec-
tron moving in a multimode radiation field. The simplest
case is that of an electron in a single-mode photon field.
The general features of the Lie-algebra structure of pho-
ton operators in the single-mode case and in multimode
case are not qualitatively different. By taking advantage
of this fact, the Lie-algebra method that works for solv-
ing the Schrodinger equation in the single-mode case can
be generalized directly for multimode cases. In this sec-
tion, our intention is to show the details of the Lie-
algebra method to reobtain the exact solution for nonre-
lativistic electron in a single-mode radiation field, which
has been obtained elsewhere' by using a more intuitive
method. " In the following sections we apply directly the
method developed in this section to obtain multimode
solutions without too much further analysis.

The key idea of the Lie-algebra method for solving the
Schrodinger equation is based on the fact that the Hamil-
tonian H' of the interacting system of an electron with
photons in a momentum representation is an element of
the photon Lie algebra. In the noninteracting system H'
is an element of the Cartan subalgebra 8= [N„I), since
H' only contains free energies and zero-point energies of
photons and the electron. If we can find an automor-
phism, such that H' can be identified as an element of a
Cartan subalgebra A'= [N„I], then we can solve the
Schrodinger equation just as in the noninteracting case.

The Hamiltonian for a system consisting of a nonrela-
tivistic electron and many photons in an elliptically po-
larized single-mode field interacting with one another can
be written as

H= ( i V)—
2me

e
[( i V) A( —k r)+ A—(

—k r) ( iV)]—
2m,

We intend to find eigenvalues and the corresponding
eigenfunctions of the Hamiltonian, i.e., to solve the equa-
tion

HO(r) = v%(r) . (38)

By making a transformation

(
—kX

V(r) =e (39)

we obtain a coordinate-independent equation,

(p kN—, ) — [(p —kN, ) A+ A (p —kN, ) ]
2me 2me

e A+ +coN, P = O'P, (40)
2me

where

A=g(ea+e*a ) . (41)

p=P+]ck . (42)

In this notation the Schrodinger equation is simply re-
duced to

p2

2me

2 A2
+ +coN,

me 2me
(43)

If we define

p2H'=
2me

eP A e'A'
m, 2m,

(44)

which can be regarded as the Hamiltonian in a momen-
tum representation, Eq. (43) becomes

H'/=6'P . (45)

Our task is finding all the eigenstates of H'.
By noticing that H' is an element of the Lie algebra g2,

we may want to use Lie-algebraic relations in searching
for the eigenstates of H'. Instead of solving the eigen-
state equation (45) in an infinite-dimensional linear space,
we may just solve a Lie-algebraic eigenelement equation
in a finite-dimensional linear space,

[H', e'] =pe', (46)

and solve for only one state ~0)' with the lowest energy

The diSculty in solving this equation is due to the
square term X„which places the Hamiltonian out of the
Lie algebra discussed in Sec. II. If we define that a solu-
tion of a relativistic equation should be an equivalent
class, up to any higher-order relativistic effect, then we
can make the following ansatz to simplify the equation,
but after we solve the equation, we must check to see if
the ansatz is really valid.

Ansatz There i.s a real number a, such that (vk —N, k)
belongs to higher-order relativistic effects in the
Schrodinger equation. This ansatz allows us to replace
the operator kX, in the equation by ~k. The ~k will be
determined later.

We introduce a vector P, such that
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H'lo&'=e, lo& . (47) By choosing proper normalization constants, the three
corresponding eigenvectors are

Subsequently, the ~hole sequence of eigenstates can be
generated by e' with positive eigenvalue p from the "vac-
uum" state lo)'. H' can be recognized as an element of
the Cartan subalgebra A' =

I h o, h '1 ] after solving Eq. (46).
The component form of Eq. (46) is just an eigenvector
equation in the linear space of the Lie algebra y2„

g H (l)ck
peak e 1J)—0 (48)

J

where e '~' are the components for e'. We may just con-
sider e' in the ideal gp first, by setting j =0, —1, +1 in

Eq. (48).
Equations (48) or (46) can be solved by the following

steps: First, we write H' in the form of an element of the
Lie algebra g, ,

H = Apkp+ A ie i+ A greg~ +2A &h,

hp=hp,

e', = [(sinhy)e ' B,+(cosh')B+, ]ho

+(cosh')e
1

—(sinhg)e ' e+1,
e'+, = [(sinhy)e' B+, +(cosh')B 1]ho

—
( sinhy )e ' e, +(cosh' )e+1,

where

B

B~]=

and

(54)

(55)

where

+ A 2e 2+ A ~2e~2, (49) 2A]
cosh2g =

(56)
P2

Ap=
2me

A )= — Pe,eg

me

+1
me

2A ze
sinh2g =—

p+]

The normalization constants are chosen such that

[e' i, e'+1]=ho =ho,
I I

g] =e
(57)

Ai= —+co eg
2 2me

2 2

A 2
= cosine'

2me

(50) So far, we have obtained three eigenelements of H' in
The others can be found by a constructive method

without solving Eqs. (46) and (48) directly. We construct

h
1 ~(e —le+1+ +1 —1) ~

2 2

A+2 =
cosine

2me

Second, we calculate the commutators of H' with

Ap, e,ey,

I I I—2

I I I

+2 +1 +]

One can see by the definitions in Eq. (58) that

(58)

[H', ho]=0,
[H', e 1]=—A+, ho —2A, e, —2A+2e+, ,

[H', e+, ]=A,ho+2A, e 1+2A, e+, .
(51)

—
p

—Aii A

0 -2Ai-p 2A

0 —2Aig 2A, —p

' e'(p)

e'( —1) 0 (52)

Three eigenvalues obtained from the equation are

Third, we transpose the coefficient matrix of equation set
(51) and use the transposed matrix to form an eigenvector
equation,

[H', h', ]=0,
[H e -2] 2p

[H, e 2]=2ppiepp

Thus, we have Lie algebra p2,
I I I

P2 Iho 1 —1 +1 —2 e+2]

(59)

(60)

which is an automorphic image of p2. All the corre-
sponding commutation relations of p& shown in Eqs. (12)
and (17) can easily be verifie for p&.

In p~, H' is an element of a Cartan subalgebra A',

which can be seen from Eqs. (59). Thus we can express
H' as

' 1/2

p 1=-2 Ai —lA~, l2
4

' 1/2
p+i=2 Af —IAigl'

H'=2 A ih i + A oho,

where the coefficient A ', is determined by
(53)

[hi, e' i]= —e' i,
[h i, e'~ i ]=e+ i,

(61)

(62)
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and Eq. (59), while the coeScient A o is determined by
substituting Eq. (54) into (61) and comparing with (49).
Thus we have

or
~n

y=D'in &, =D' '
iO&, ,&n!

(72)

p+i
1

(63)
Ho=do —~(sinhy)e ' B,+(cosh')B+i p+i .

which is a coherent state.
The energy eigenvalues can be evaluated by using Eqs.

(61) and (63),

Now we return to the real physical system by introduc-
ing the following notation, which reflects the physical
meaning better:

p26= +
2m

where

C(n+ —,') e'g (P.e, )(P e,*)

m, C
(73)

I=ho,

Ni, =h', = ,'(bb +—b b),
b=e' ),
b =e'+),

(64)

and

C =[(m,ai+e g )
—e g"cos g]'~

e, =(cosh')e+(sinhy)e' e*,
e,' =(cosh')e*+(sinhy)e ' e .

(74)

(75)

b2=e' 2,
gf2

bio&, =o. (65)

From the expression for the operator b, Eq. (54), we see
that it is not easy to express ~0)i, in terms of a-photon-
number states, since (m ~0) i, is coupled with ( m —1!0)b
and (m +1~0)„. A more convenient way is to decom-

pose the transformation (54) into two steps. We define
the following displacement operator;

D =exp( ob +5*b)—, (66)

The vacuum state for the b-photon system ~0)b is

defined by the equation

%(r)= V,
' 'exp[i( kN, +P—+ak) r]D !n ), , (76)

where V, is the normalization constant for this wave
function and K is a constant determined as follows.

We can define an energy term for the nonrelativistic
electron,

p2

2m
(77)

which makes the four-momentum (E+m„P) on the
electron-mass shell. By this definition, the energy eigen-
value shown in Eq. (73) can be written as

Finally, we have the wave function iP(r) as an eigenfunc-
tion of the original Hamiltonian H,

by choosing

8= —[(sinhy)e ' B,+(cosh')B+, ],
6+m, =(E +m,, )+a'ai,

(67) where the constant a' is defined by

(78)

which is unitary and shifts b and b to c and c, respec-
tively:

K—
C(n + —,') e'g (P.e, )(P e,')

m, cu Cm, co
(79)

c =DbD =b+oI =(cosh')a —(sinhy)e ' a

c =Db D =b +5*I=(cosh')a —(sinhy)e' a,
(68)

Comparing Eq. (78) with Eq. (42), the four-coordinate co-
variance and the light-cone invariance requires

which is a type of transformation of squeezed light. '

The vacuum state for the c-photon system ~0 ), can be
solved easily from the equation

c0),= [(cosh')a —(sinhy)e ' a ]~0), =0 .

It turns out that
' 1/2

s~0), =(cosh') '~ g (tanhy)'
(2s)!!

(69)

Xe " ~2s), (70)

with definition (
—1)!!= 1, where the notation ~n ) means

a number state in the a-photon representation. Thus, the
eigenstate P of H' is found to be

b foal

(71)
&n!

K —K—
C(n+ —,') e g (P e, )(P e,')

Cp/~ com, co
(80)

Here we can see that the nonrelativistic property of an
electron only means U ((c, but we still can keep the pho-
ton relativistic. This is a great advantage for the quan-
tum nonrelativistic solution compared with the solution
in classical fields, where one does not know clearly which
part of the wave function belongs to the photon field, on
which one should not make an approximation in the non-
relativistic version of the solution in cases where photon
fields are strong.

A very important parameter Z„can be defined as

Z„=v—(n + —,
' ), (81)

with the interpretation that Z„co is the ponderomotive
potential energy.

The validity of the ansatz can be checked in the version
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of the wave function in the a-photon representation,

4(r)= V,
' g e " ~n+j)PJ'(n)

j (~ —n)

—ig($ +6/2)
Xe

where

Qt*(n)e r =&n+j ~D ~n), .

From Eqs. (42) and (81), we have

p=P+(n + —,
' )k+Z„k .

(82)

(83)

(84)

This solution agrees with the nonrelativistic limit of
our relativistic solution"' and also can be obtained by
other methods with the same ansatz. ' Since the other
methods are more specific for the single-mode case and so
far we have no way to generalize them for multimode
cases, we are forced to try the Lie-algebra method, which
may not be the simplest one in the single-mode case, but
has the generality allowing it to be applied readily to rnul-
timode cases. In large-photon-number limit the single-
mode solution agrees with earlier results. '

It is easy to see that the operators c and c satisfy the
equations

By comparing Eqs. (76) and (82), we know that when N, k
acts on n +j ), it produces (n +j+—,')k in each term of
the sum. Thus we have

[H', c]=—
p „c,

[H', c ]=p+,c', (87)

p —N, k=P+(Z„—j)k . (85)

Z„ is a small number compared with the background
photon number n, and j is the transferred-photon num-
ber. The terms contributing significantly in transitions
are only those with j &(n. The main part of N, k, nk,
has been taken care of by the ansatz; the remaining part
of N, k contributes insignificantly, which can be seen by
noticing the inequality

~(Z„—j)co~ &&m, . (86)

If we simply replace p
—N, k by p in Eq. (40), there will

be no difference between the total momentum p and the
on-mass-shell momentum P, and the ponderomotive en-

ergy and momentum will not show up in the solution.
This can be true only in a weak radiation field.

where H ' is the truncated form of H' obtained by keep-
ing only quadratic terms of a and a, which means that to
solve c-photon operators just in gz is much simpler than
that in g2. In the next section we shall solve for c-photon
operators first, then carry out the displacement operation
to get the more complicated solutions for the two-mode
case.

IV. ELECTRON INTERACTING
WITH A TWO-MODE PHOTON FIELD

The case which we consider in this section is of one
electron moving in a two-mode photon field. The Hamil-
tonian for an electron and a two-mode photon field with
arbitrary and different polarizations and propagating
directions is

( iV)—
2me

[( iV) [—A, (
—k, r)+ Az( —k, r)]+[A, (

—k, r)+ A, (
—kz r)] (

—iV)]
2me

2

+ [A, (
—k, r)+ A~( —kz r)]'+co,N, +co,N,

2m 1

e

(88)

where

ikl r +
—ikl r

A, (
—k, r)=g, (e,e ' a, +e*, e ' a, ),

ik~ r —I k~.r
Az( —k, .r)=gz(eze ' a&+efe

g, =(2V~co, )

gz =(2V,, mz)

t
N, =

—,'(Q&a &+a &a&),
1

tX, =
—,'(a2a2+a2a2) .

2

(89)

the eigenstate equation (90) becomes

(p —k, N„—k~N, )
1 2

2me

[ (p —k,N„—k~N ) ( A, + A~)
e

+( A, + A, ) (p —k, N, —k~N, )]

e2+ ( A, + A~) +~,N, +co~N,

where

(92)

H+(r)=6%(r) . (90)

We will solve the Schrodinger equation with the Hamil-
tonian (88), A) =g) (e)Q) +e) Q t )

A, =g, (e,a, +e,*a, ) .
(93)

After applying the transformation

i (p —kiN —k~5' )-r

4(r) =e

To simplify this equation, we need the following ansatz:
Ansatz. There are two real numbers ~& and ~2, such

that
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+Q)tf+&p1tp +g kp)

P=P+~]k]+~2k2 .

By this definition and the ansatz, Eq. (92) reduces to

(94)

belongs to a higher-order relativistic eA'ect in the
Schrodinger equation.

We define a vector P such that

We define 0 ' as an element of yz,

H'= 2A h ''+A e"' +A*e'"
1 1 le —2 1 +2

+2.82h'] '+A2e' 2+Aze'+z

+2C e''i ', +2C *e'+'i '+)+22)e "i +(+2B*e'+') '

(99)

2 2

P' — P ( A, + A~}+ A', + A~
2m, m, 2m, 2m,

(95)

iB)
e, e, =(cosg))e

2

+ A, A&+co)X, +co~N,
e

The polarization vectors of each photon mode have the
same form as that shown in Eq. (36), but are indexed by
subscripts 1 or 2 to distinguish the modes. They satisfy

Following the idea shown in Sec. III, we will find the c-
photon solution directly. The commutators we need are

[H e(i) 1 2g e(l ) ~we(2) 2A ee( 1 ) 2@me(2)1e+1 e+1

[H', e' ', ]=—ZSe ", —2%~e' I 2—C*e+', —2Aze'+),
(100)

[H ', e+', ]=2A,e", +2Ce', +2%)e+)) +2Xle+)),

[H ', e'", ] =2Ce'", +2A~e' I +ZB*e+) +2%ze'+I .

After transposing the coefficient matrix of the above
equation set, we have the matrix that we are going to
solve for its eigenvalues and eigenvectors,

iB~
ez ez=(cosgz)e

I (1/2)(8 ~+ B&)
e, ez=cos[((g, +g, )]e

l (1/2)(e] —ep )

e( ef =cos[ —,'(g( —gz)]e

(96) 1

) Ilc

—A'
1

—XI

—82

—C'

A,
C A,

+2

(101}

Now we switch to the notation of Lie algebra and write
the Hamiltonian in Eq. (95), H', as

H'= 2%)h', "+A,e"~+A;e+~+2%~h, '+A~e
The four eigenvalues are

+Aie ).~+2Ce "( ', +2C'e'+', '+,

+22)e ' ', '+, +KB*e '+', ', + 9'h
() + 9)e ",

+9*,e'+", +&2e' ', +92e+', .

The coefficients denoted by the script letters are
2

2me

2

g~ ——COp+ g q

2m

(97)

s'+I =2[-(&I'+&')+ IC'I' —I&' '+ ]'"

where

(+~2 cg&2
)

(102)

e ie,A, = g') cosg)e
2m

iB~A, = g~cosg~e
2me

e
C — g[g2E]

2m

e
g ig2&1 ~Z

2m

p2v=
2m

(98)

—(8,' 8', )'I&'I'+ (%', +8,')'I—c'I'

X', =X,cosh(2+1)+A]sinh(2g[)e

1
[(m, co)+-e g, )

—e gicos g)]'
e

%~ =%~cosh(2yz)+Azsinh(2yz)e

1
[(m, coz+e gz) —e g&cos gz]'

' 1/2

(103)

eg, P.e
me

eg2
P-e2 .

m
and

C ' =C cosh(g) +g~)+I) sinh(g) +gz)e

2)' =C sinh(y, +gz)e '+2) cosh(g) +gz),
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tanh(2y)) =—
I

tanh(2y2) =—

e g, cosgl
2 2m, m1+e g1

e gzcos)2

m, co2+e g2
2 2

(104)

In ordinary cases the following inequalities always hold:
2 2m, co]&&e g1,

(105)
m, m2&&e g2 .

Hence, we can see- that y1 and y2 are small numbers, and
~SI~ and ~%2~ are much larger than ~C ~

and (X)~. These
conditions lead to )S'I( and (Sg being much larger than
[
C'( and (X)'(. Thus, all four roots are real numbers.

The four corresponding vectors in photon-operator no-
tation expressed in determinant form are

where

&, =
—,(c,c, +c,c, ),

A; —
—,(C,C, +C,C, ) .1

(110)

For convenience we write the transformation (1()6) as

Cl =Alla(+R(2Q2+pl lg I +p12g 2

P21 +P22Q2+IX21Q I +C922Q 2

c I =p) Ia I +p(2Q2+et(IQ i +{2(2Q2,

C2 P21QI +P22 2+et2( I +{222Q2

The term of linear operators in Eq. (97) can be written in
terms of c-photon operators,

QIQI +9;a, + 92Q2+ 92Q 2"

el =r)
1

—2C'
—2A*

2

Q1 Q2

~a 2g + {I)

2+ I +p+ I

2n

Q2

282+p'+,

Thus,

= O'Ic
I + O'I*c, + Q2C2+ Q2"c2, (112)

a1

2+
1
+p+ I

a 1

glg
2 2

2 2

(L
—!)T

1 1

(113)

C2=t —2A'
1

—2C*

Cl I 2g + (ll
P+1

2A*
1

C2 2 2g + (2)
1 P+1

—2c* 2@(+p{+2)1

Q2

a2 a
1

—2A I

2~2+ p".),

2%2+p'+'I

Q2

+p{1)

Q2

(2)

(106)

where

+ I I +(2 P( I P12

+21 +22 P21 P22

P)2 &II

P21 P22 +21 +22

(114)

The inverse of I. can be obtained by evaluating the mixed
commutators between c-photon operators and Q-photon
operators. Thus, we have

28282+ p+ I
CL 12

—
P12

—
P22

where the normalization constants t, and t2 are chosen
such that —

P22 &12 &22

[c,, c, ]=[e,e ]=I,
(e, )"=c', ,

(c2) =c2 .

The other commutators are zero:

[c,, c2]=[c,,c2]=[c,, c2]=[c2,c, ]=0,

(107)

(108)

Thus, the Hamiltonian H' is expressed in terms of c-
photon operators as

0' = P'~"]X +P'+', 1V + g]c1+g]*c1

(1)~ + (2) ~ (109)

which can be proven by Lie-algebraic relations, such as
Eqs. (3) and (14), and also can be verified by direct com-
putation. By the automorphism from a-photon algebra
to the c-photon algebra we have

+52c2+92 c&+9I . (116)

Now we can introduce the displacement operator D to
eliminate the linear terms of the annihilation and creation
operators,
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D =exp( —5,C, +6, c&
—52C2+&2c2 } .

It is easy to verify that

Dc, D =c, +5,I,
Dc1D =c1+5*,I,
Dc2D =c2+52I,

Dc2D =cz+5zI .

By choosing

(117)

(118)

2

+p'+I(n, + —,
' )+p+', (n2+ —,

'
)

C

/g~ /2

(1)
P+1

/g~/2

(2)
P+1

(127)

p2

2me
(128)

Analogous to the single-mode case, we define an energy E
as

1

(1)
P+1

pig2
(2)

P+1

(119)

by which the nonrelativistic electron four-momentum
(E+m„P) is on the electron mass shell. The total ener-

gy, i.e., the energy eigenvalue of the system, is related to
E in the form

the Hamiltonian H' in Eq. (116) becomes

H'=p+ Pl +p+ ~N +7'I,

where

(120)
8+m, , =(E+m, )+~Ice, +~2co2,

where

(129}

p2

2m,

gr 2
1

(1)
P+1

(2)
P+1

(121) „(ni+-, )
(1) 1

K)=
Q)1 (1)

P+1~1
Now H' is in a solvable form. The remaining task is to
solve for the vacuum state ~0, 0)„which satisfies the
equations

p+, (n2+ —, )
(2) 1

K2= (2)
P+ 1Ct)2

(130)

c, io, o&, =0,
c, io, o&, =0. (122)

By a comparison and arguments similar to that carried
out in the single-mode case, we identify

(Ct) 1 (Ct)"2
!,n„n2 &, = ' '

~0, 0&,
Qn, ! Qn2!

(123)

and satisfy

The explicit expression for ~0,0), and its derivation are
presented in the Appendix. The number states of the c-
photon system are defined as p+I( n ( + T~)

K1 —K) =

P+)("2+ p
}

K2 —K2
C02

gi ~2

(1)P+11

(2)P+12

(131)

N, ~!n&,n2), =(n~+ —,')~n~, n ),2,

N, !n &, n2 ),=(n2+ —,
'

) ~n &, n2 &, .
(124}

A pair of important parameters Z„and Z„can be
1

defined as

The eigenstate of H' is

(125)

Z =a (n +-')—
ni 1

Z„=a2—(n2+ —,
' ), (132)

We finally have the solutions as an eigenstate of the Ham-
iltonian H,

'p(r)= V, ' exp[i( —k~N, ir. N, +P—

+~)1)+~21 2) r)D'ln), n2 &, . (126)

The corresponding energy is

with the interpretation that Z„co, and Z„co2 are the pon-
1 2

deromotive potential energies for each mode, while
Z„co1+Z„m2 is the total ponderomotive potential. The

1 2

additivity of the ponderomotive potentials in multimode
cases is a reasonable conclusion, which can be realized in
a classical picture. Since the ponderomotive energies
originate from the square term in the field's vector poten-
tial A, the nonexistence of cross terms in the ponderomo-
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tive potential is due to the fact that time averages of the
cross terms of the field A, ~ A, among different photon
modes are zero. ' The same kind of additive property ex-
ists among ponderomotive momenta of the modes, which
will be seen more clearly in the next section.

The validity of the ansatz can be checked by noticing
that K,k, +~2k2 will take care of the major contributions
of X k1 +X k2 in the first term of the Harniltonian in

1 2

Eq. (92), while the remaining contributions belong to rel-
ativistic higher-order effects.

and the number states are

(cl )
nm c=

Qn, !

(c )
'"

IO, . . . , 0&, .
nm

(136)

where the displacernent operator D is

D =exp( —5,c, +5*,c, + —5 c +5*c ) (135)

V. DISCUSSION

A. Generalization

The result obtained for the two-mode case can be for-
mally generalized into cases with arbitrary numbers, even
an infinite number, of modes. For m-mode cases, the
wave function for the system of one electron and many
photons should be

'P(r)= V,
' exp[i( —k,N, + —k N, +P+a, k&

m

The 5's are

(137)

and 0, and 9; (i =1,2, . . . , m) are the coeScients of the
linear terms of c, and c, in 0'. The vacuum state is sub-

ject to the equation set

+ +x k )r]D In„. . . , n ), ,
c, IO, . . . , O), =0 (i =1, . . . , m), (138)

with the energy eigenvalue

(133)
which is solvable in principle. Thus we have exact solu-
tions as shown by Eq. (133) for the general cases of an ar-
bitrary number of modes.

2

+p',",(n, +-')+ +p', ,~(n. +-')
e

—
I 8 I'/p'+ I+ —

I

~' I'/p'+ ) (134}

B. Physical interpretation

The solution (133) can be written in the a-photon rep-
resentation,

e(r)=V, '
exp[i [ P+(Z„—j, )k, +

+(z„—j )k ] r]In, +j, , . . . , n +j }
&J(4 +el /2+ . . +g~ +e /2)

&&dj J (n„. . . , n )e (139)

where

tJ($ +el/2+
, (n, , . . . , n )e

+&( +em/2)
m

and the states without subscript c are in a-photon repre-
sentation. The function 9 (n &, . . . , n } can be

called a discrete generalized Bessel function, which ap-
proaches an ordinary Bessel function in the circularly po-
larized single-mode case in the large-photon-number lim-

=(n, +j, , . . . , n +j ID In, , . . . , n ), ,
(140)

Pr =tan '[(P /P, )tan(g, /2)],

l

11,13

From Eq. (139) we can see that there are two types of
photons involved in the wave function in the a-photon
representation. The photons enumerated by
n, , n2, . . . , n do not carry the momentum phase factor
in the wave function in the current Schrodinger picture.
We call this type of photon the background photons. If
there is no interaction between electron and photons, the
wave function for those free photons will be

I
n ~, n~, . . . , n ), without any momentum phase factor.

Thus we see that in the interacting system, the back-
ground photons more or less look like free photons. The
photons enumerated by j„j2, . . . ,j,which are dummy
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variables, carry momentum phase factors in the wave
function and will be called the transferred photons.
Those momentum phase factors originate from the in-
teraction part of the Hamiltonian where each creation
and annihilation operator is accompanied by a momen-
tum phase factor. In summary we can say that the back-
ground photons are those originally there around the
electron while the transferred photons are those emitted
or absorbed by the electron.

In a strong radiation field, the ponderomotive potential
energy plays an important role. Our solutions (139) show
the existence of ponderomotive energies in their energy

eigenvalue, and ponderomotive momenta Z„k,-

l

(i =1, . . . , m) in their momentum phase factor. The to-
tal ponderomotive four-vector, the energy and the
momentum, is equal to the linear superposition (in an ex-
act mathematical sense) of the ponderomotive four-
vectors of the present modes. This conclusion is far from
the knowledge of the linear superposition property of the
vector-potential A fields.

If there are no background photons, the ponderomo-
tive energy and momentum parts of the wave function
might be neglected. The wave function in this case is

q(r)=V
jl &0, . . . , j ~0

expli(P+j iki+ +j k ) rI lji, . . . ,j

—ij(P( +el /2+ . + tti( +6 /2)
XcF~ ~

(0, . . . , 0)e (141)

which is the wave function for a free electron with its
photon cloud where the photons around the electron are
emitted by the electron itself and are of squeezed light in
multimode cases. The expression cf,*,(0, . . . , 0) is

defined as the same in Eq. (140) by setting
n = =n =0

] m

There are many remaining interesting questions to be
examined, such as conversions between different photon
modes. The multimode solutions should offer strong
means to treat photon-mode conversions in photon-
electron scattering processes.

In the single-mode case there is a quite simple expres-
sion for the solution in the large-photon-number limit. It
is desirable to find out a simpler approach to get mul-
timode solutions in large-photon-number limit directly,
so that the solutions can be easily applied to the cases
when radiation fields are intense.
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equivalent to

a
1 ia 1 lO, 0 &, +a, 2a, IO, O &,

a»a 1 lo, o &, +a22a2 lo, o &,

I llai lO 0& i 12a2lO 0&
(A 1)

= —P»a', lO, O&, —P22a2 10,0&, ,

which we can rewrite in matrix form,

a, lo, o&, a', lo, o&,—1

a2l0, 0&,
(A2)

where the states with negative occupation numbers mean
zero, and the 2 X 2 matrix F (m, n) is defined as

F(m, n)=
(m +1)-'"

1/2

0 —
1

+ 1)
—1/2

where a and P are 2 X 2 matrices formed from the
coefficients in (Al).

By multiplying the number state of a photons, ( m, nl,
from the left on both sides of (A2), we obtain a recursion
relation,

(m+ 1,nlo, o&, (m, n —llo, o&,

(m, n+llo, o&, ' (m —l, nlo, o&,

X
n

(A4)

APPENDIX

We want to express the c-photon vacuum state lo, o&,
in terms of number states of a photons. Equation (122) is

By setting m=0 and n =0 in (A3), we are able to prove
that (1,0, lo, o&, and (0, 1 lo, o&, are zero. By further us-

ing (A3), we find that all (m, nlo, o&, with m +n=odd
are zero. Thus, lo, o&, should be of the form
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io, o&, =
m, n;m +n =even

~m, n ) (m, n~0, 0),

I e ~.q-o
(i2p +1,2q —1), i2p, 2q ) )

(2p+1, 2q —1~0,0),
&2p, 2q~o, o&,

( ~2p + 1,2q —1),~2p, 2q ) )F(2p, 2q —1)F(2p —1,2q —2)
p. e's. e —o

X '

0
'('P -'q+"

&2p —2p, o~o, o),

& o, 2p —2q~o, o &,
F(0,2p —2q —1)

(for p ~ q)

(for p (q) .

(AS)

The coefficients (2m, o, 0,0) and (0,2n~o, o) obtained by using (2m —1,0~ to multiply both sides of Eqs. (Al) from the
left are

(2m, O(0,0),= +1/21 +2zi 1 I

11 22 21+12

(2m —1)!!
(2m )!!

' 1/2

&o, ohio, o&, ,

&0,2ni0, 0&, =
'n

&zPiz —&iAz

11 22 21 12

(2n —1)!!
(2n )!!

' 1/2

&o, ohio, o&, ,

(A6)

where (0,0~0,0), can be determined by the normalization condition

&o,oi, io,o), =i . (A7)
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