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Virtual photons and causality in the dynamics of a pair of two-level atoms
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The dynamics of an initially bare pair of two-level atoms at distance R is investigated. The pair is

coupled to the vacuum radiation field in the multipolar scheme and in the dipole approximation.
The Heisenberg equations of motion for various atomic operators are obtained neglecting terms
O(e') and for t smaller than the spontaneous relaxation time. A rigorous proof of causality in the
atom-atom interaction is given. Interatomic correlations, however, are shown to develop for
t & R /c. This early development is shown to be compatible with the principle of relativistic causali-

ty, and to be related to the peculiar form of the vacuum zero-point fluctuations. The techniques
adopted are applied to study dynamics and correlations of a superradiant state.

I. INTRODUCTION

This paper is concerned with the canonical problem of
the dynamics of two atoms at distance R coupled to the
electromagnetic radiation field. If one of the two atoms is
excited and the other is in its ground state at t=O, it is
often stated that the latter has a nonvanishing probability
of being excited only after time R /c, ' and this statement
is reckoned to descend from the general principle of
causal propagation of light signals being exchanged be-
tween two sources. Another, and perhaps more precise,
statement has been proposed according to which the two
atoms evolve independently and their mutual influence
plays a role only for t )R /c. A third statement is that
before t (R /c there can be no change in directly observ-
able quantities related to the initially unexcited atom.
These three statements are, albeit subtly, different from
each other. Moreover, the possibility that QED might
exhibit noncausal behavior in the two-atom problem has
been considered previously up to very recently. Since
this problem is vital for the interpretation of quantum
theory, and in particular for the theory of measurement,
it seems worthwhile to reconsider it in as rigorous terms
as possible within the boundaries of nonrelativistic QED.
It is appropriate to mention here that the problem of
causality in a fully relativistic context is beset with
dif5culties connected with the definition of particle posi-
tion and with the process of localization of states. We
bypass these diSculties here, since we treat the atomic

part of the system in a nonrelativistic fashion.
A preliminary question which arises is that of choosing

a model for the bare atoms. A variety of these models
has been used in the literature in connection with investi-
gation on causality. In recent years the choice has fallen
mainly on harmonic oscillators, multilevel atoms, and
two-level systems. ' Here we discard harmonic oscilla-
tors in order to eliminate possible spurious effects due to
the homologous structure of the eigenvalues of the bare
source with those of any of the field modes. We also dis-
card multilevel atoms in order to keep the mathematics
as simple as possible and we choose two-level atoms,
which have been widely and successfully adopted in the
past.

Another question which we need to consider right at
the outset is the meaning to be attributed to bare atomic
states, since strictly speaking bare atomic states in QED
do not exist. We shall take the point of view that a bare
atomic state actually represents a partially dressed atom-
ic state" consisting of an atom surrounded by an incom-
plete cloud of virtual photons. The cloud is incomplete
in the sense that it extends only out to a few atomic radii.
Even such a radically incomplete cloud, however, is re-
sponsible for endowing the atomic electron with most of
the physical mass experimentally observed and for
preventing the atom from falling apart because of lack of
Coulomb forces. ' We shall not dwell on this question
any more here, but we anticipate that the legitimacy of
such a point of view is supported by recent results on
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spontaneous decay, based on a relativistic quantum-field
theoretical approach. '

The aim of this paper is to present a set of rigorous re-
sults on the dynamics of a pair of initially bare two-level
atoms which we hope should illustrate satisfactorily the
problems associated with causality and atom-atom corre-
lations.

II. ATOMIC DYNAMICS

We take two identical atoms 1 and 2, localized at
points 0 and R, respectively. Clearly R is well defined as
an atomic space coordinate because we are treating atoms
in a nonrelativistic context. The Dicke Hamiltonian for
the system is

H=ficoo(S,'"+S,' ')+ gfico&ak&akim+ g [eklakl(S+'+e'"' S'+ )+eklakl(S'''+e '"' S' )]

k, J

(2.1)

where co0 is the bare natural frequency of the atoms, ~k is
the frequency of field mode of wave vector k and polar-
ization index j, e is the atom-photon coupling constant,
and A, is a parameter which we introduce for diagnostic
purposes [A, =O in the rotating-wave approxiination
(RWA) and A, = 1 otherwise]. We adopt the multipolar
coupling scheme in the dipolar approximation, within the
Coulomb gauge. Thus'

pole operator, which we take as real, between the atomic
ground and excited states. Moreover, the S's in (2.1) are
the usual pseudospin atomic operators (i = 1,2) and a is a
Bose annihilation operator for photons. Obviously (2.1)
is nonrelativistic in the atomic part, so that R appears as
a three-vector in the exponentials.

The equation of motion for the population operator of
atom 1 at the origin is

k

' 1/2
277i6COk

V
ek d (2.2)

S("=——[S,"),H]= ——y ek, (ak, +a„,)S'+" +H. c.
k,j

where V is the quantization volume, e is the polarization
vector, and d is the matrix element of the electronic di- Moreover

(2.3)

(akJS'+')=i(coo co&)aklS—'+' ——eke(S,
"' + ,'+S+—S' e '" )+—AeklS'+'S'+2 e

l——g 2ek l (a k J akim
—

«(,ak.l ak, )S,
'«

(1) (1) (2) ik R l
(ak S'+" ) =i(cuo+cok )a iSk' ++ ekJS ~S+—'e'" + )) eke(S, "—,

' S'+ S'—e—'—" )' (2.4)

(1)——g 2ek J ( a kl a k l Aa kl a k, )S—,
k««

Equations (2.4) can be integrated formally, yielding
«r~())»i & ) «~ i 1 e &k'R ( o ~~l) ( o ) (S(1)S(2) )

kJ + t g kj 0

l{ig)Q cl)k )t t l((L)Q cok )t
( 1 ) (2) ( 1 )

l( 6)p cok )t
+ Ae e —'" e ' ' e ' ' (S+S+ ), dt'+(ak S+ )Oet J

2i + ' "Q "k Q k ~ g )gk« ~ «e
.« 0

«J

2l l(ctjp Qlk )t t l(cop cok )l
( 1 )+—

«(, g ek, e e (a„,a„,S, ), dt',
0

«J

« ' «

(1) g + Q & p k rg(])( t) 1 ld t+ lk'R p & r o & (g(1)g(2) )
0 ~0

(2.5)

e (k.R ' o l ' o k (S(1)S(2)) d ~+( t S(1)) ''o k

0

2l l (cdo+ cok ) « «i ( 63o+ (rl) )«

k.j ee' e (a„,ak,'S, ),.dt'
0

«J

2l l (cup+ CO/ )t t l ( cOQ+ CtJ/ )t t ( 1 )+—X y e„*.,'e e (a k.ak. S, )t.dt
k« ~, 0

«J
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The procedure is exact up to this point. We now evaluate (2.5) for small times such that the various operators ap-
pearing in the integrals on the rhs of (2.5) can be approximated by their free-field expressions. This means that time t
must be so small that the changes in atomic as well as in field populations due to the atom-photon coupling are negligi-
ble. Thus t y, where y is the single atom spontaneous emission time. This is equivalent to the first Born approx-
imation, which is obtained by neglecting terms O(e ) in (2.5) since these would contribute terms O(e ) in (2.3). In this
way we obtain

e
—&k R(S(1)S(2)) '~oFe(k +k )+( 't S(]) )

i~~o k)

g eg) ( atj, akJS,"')oe ' ' F'(ko —k')+ —A. p ez' (az az S,")oe ' " F'(ko+k')
k', g' k', j'

(a|JS'+'), = ——Aefj [S,"'(0)—
2 ]F(ko+k )+—eq

e'"' (S'+"S'+I )oe 'F'(ko —k)
(2.6)

where

g eg) (akia&i S,"')oe " ' F*(ko—k')+ —
A, P eke (aziag) S )pe F'(kp+k )

k', j' k, 'j'

1 —exp[i(co„+co~ )t]
kp=coplc, F(k, +kb)= i f ex—p[i(col, +col, )t')dt'=

0 a b col +cok
a b

Substitution of (2.6) in (2.3) yields

(2.7)

S,"'=—
~ g lel,) l I [S,"'(0)+—,']F(ko —k )+A. [S,"(0)——,')F(ko+k ) I

+(SI+'S"I) g le„, l'[e-'""F(k,—k) —X"'""F(k,+k)]
k,j

—~(S+'S'+')oe ' g lek, l'[e '"'F*(k,+k) —e'""F*(k,—k)]
k,j

( ] ) l(CL)Q ClJ/, jl y ( }) L(CtPQ+Cu/. )l—
~ y k[( kS, )oe —X(ak, + )oe ]

k, j
2l l {COQ Ct)/& jE y f I (COQ+63/ )t

( i )+
p X ekj ek'j'[ [(ak'j'akj )oe ~(ak'j'akj )oe ]S, (0)F (kp k )

k, k', J,j'

[A (agjag &
)pe A, (a gialci )pe ]S (0)F (kp +k ) ] +H. C.

where e = —lel has been used.
We now take quantum averages of (2.8) on the set of states

ly(S(1) S(2))
I O l )

(2.8)

(2.9)

These states are factorizable in an atomic and a field part which is taken to be the vacuum. The atomic part is quite
general and no assumption is made at this point about its structure. Clearly only the terms within the first pair of curly
brackets on the rhs of (2.8) contribute to

& s,"'),—= (y(S'",S"I),
l o„, l ls,"'(r ) ly(s" I, S"'),[o„,} )

and one gets

y le„, l'[((S,"')p+ —,')F(ko —k)+&'((S,"')o—
—,')F(ko+k)]

+(S "S ' ) y le„, l'[e-'" F(k, —k) —
A, 'e'""F(ko+k)]

k,j
—g(S'''S' ') e ' y le l [e ' ' F*(kp+k) —e'" F*(ko —k)] +c c

k, g

(2.10)
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The sums on the rhs of (2.10) can be readily transformed into integrals with the following results:

I

2 g~e„, ~
F(ko —k)+c.c. = — D', [Si(koct)+Si[(kM —ko)ct]I +D2 —[coskoct —cos(k~ —ko}ct]mk' et

I
2 g ~ez, ~

F(ko+k)+c.c. =
3

D', [Si[(k~+ko)ct]—Si(koct}] D2 — [c—oskoct —cos(k~+ko}ct]y, , 1

i(ko —k)ct

g ~el, ~ [e '" F(ko —k) Ae—'" .F(k +k)]= d d D" k~ J
k,j 00 0

sinkR dk
(2.11)

~2[
—ik RFe(k +k )

ik RF (k k )]-
k,j

i(ko —k )ct

~o ko —k

'(ko k)ct

dmdnDmn f

sinkR dk

sinkR dk,

where 2~, 4ldl'~o
e

~
5(to co )=kj 0 k

3g 3
k, g

C

is the single-atom spontaneous relaxation rate,

ko 82
2 1 B~

D] =ko —3
2 2, Dz =3ko

c Bt c dt

a2D"„=—(5 „—R R„)
R

(2.12) +i( k —k )ct0 +tkoR
sinkR dk = —me ' 0(ct —R )

(2.13)

spurious nonexponential corrections to this exponential
decay, as we shall discuss later on in the course of this pa-
per, and they are related to the non-Markovian nature of
our treatment. In any case, all the terms in the first sum
are the same as in absence of atom 2. On the contrary,
the second and third sums in (2.10) represent the effect of
atom 2. Since

+(5 „—3R R„) R2 RM

and kM is a cutoff wave vector typical of nonrelativistic
QED which we take here to be of the same order of mag-
nitude as the inverse Bohr radius I/ao.

It is easy to see that the first sum in (2. 10) yields—y((S,"')o+—,'), which represents the effect of exponen-
tial decay of atom 1, plus nonphysical terms oscillating at
the very high frequency AM. The latter terms represent

for A, =1 these two sums do not contribute to the time
evolution of (S,' ) until t=R/c. For X=O, however,
causality in interatomic forces is obviously lost. We re-
mark that in previous treatments' causality in the two-
level atom pair was obtained as an approximation, which
is clearly unsatisfactory. The present treatment shows
that causality can be obtained exactly at order e .

Starting from the Heisenberg equation for S+ and fol-
lowing the same procedure above leads to

(S'+'), =i (tSoo'+'), + (S'+I)oe ' g ~ez, ~
[F*(ko—k)+A. F*(ko+k)]

+A, (S'" )oe ' g ~el„~ [F(ko —k )+F(k„+k )]
k,j

—2(S,"'S' ') e ' g ~e ~

[e'" F*(k —k) —'A, e '" F*(k +k)]'
k, j

+2k. (S,"'S ) e ' g ~e„~ [e'"' F(k +k) —e '" F(k —k)]
k,j

(2.14)

within the same approximations as in (2.10). Altogether for yt « 1 and A. = 1 one obtains from (2.10) and (2. 14)

(S',''), =(S,"'),(3, )+ ——d d„D"„[((S'"S'') e ' +(SI"S' ') e 'e ' )B(ct—R)]+c.c. (2. 15a)

(S'+'), =(S'+'), (3&)— dd„D"„[((S,"'S'+—')oe e ' +(S.''S' ')oe 'e ' )0(ct —R)], (2.15b)
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where A& refers to atom 1 in the absence of atom 2.
From Eqs. (2.15) it is evident that an observer watching
atom 1 has no way of detecting the existence of atom 2
until t =R /c. The conclusion would have been different
for A, =0 in the RWA, since in that case the inAuence of
atom 2 would have changed the equations of motion of
atom 1 immediately after t =0.

III. CAUSALITY AND CORRELATIONS

It has been suggested that correlations in the two-
atom system under scrutiny should display noncausal be-
havior, even when the counterrotating terms are taken
into account. In particular, apparently noncausal behav-
ior has been obtained in the transition amplitude for the
exchange of one atomic excitation between atoms 1 and

2. Here we shall take a more general point of view and
we shall show that this apparently noncausal behavior is
related to the properties of the interatomic correlation
function. As discussed by Barnett and Phoenix, ' two
systems 1 and 2 are correlated if the measurement of an
observable of 1 projects 2 into a new state. In fact, if A is
an operator pertaining to 1 and 8 is an operator pertain-
ing to 2, it is well known that the two systems are un-
correlated if ( AB ) = ( A ) (B ), and ( AB ) —( A ) (B )
may be taken as a criterion for the degree of correlations
between the two systems induced by the structure of the
state on which the quantum averages are taken.

Here we consider in particular the time development of
(S,"'S,' ') —(S,"') (S,' ') where the operators are in the
Heisenberg representation and the quantum averages are
taken on a state for the form (2.9). One obtains first

(S(I )s(2)) 1 [S(1)S(2)H]
1 ~ [ (S(1)s(2)+ ik Rs(1)s(2) ) g t (S(l )s(2)+ —ik Rs(1)s(2) )]+H+, e, + akj +, e, +

k, j
(3.1)

A long and tedious but straightforward procedure, analogous to that developed in Sec. II, leads to the following expres-
sion, valid up to terms of order e and for t ((y

——„g~kj &ukJS'+'S,"'),= ', (&S,"'—S," ),+(S,")),/2) g ~~k, ~2F(k, —k)

+ —(S'+'S' ') g ~e'k
~

e '" "F(k —k)
k,j

——Q cokie'" (ak, s,"'S'+''), = — ((S,"S ') + (S,'")()/2) g ~ek ~ F(k() —k)
k,j k,j

2

—'A, g ek, (a„,s(+)S(2'), = —', ((S,"'S(' ),—&S,'"),/2) g loki l F(k()+k )

g2) (S(1)s(2) ) y ~~ ~2elk RF(k +k )

k, j

+ ', X-,) (S(„"S"'),e '" y ~~ ~'e'" "F*(k,—k),
k,j

—A. ge '" (ak S,"'S' ') = ——A. ((S,"'S' ') —(S,")()/2)g ~ek ~
F(k()+k)

k,j k,j
+ X'-)&S("S"') y ~(~„~'e '" "F(k,+k)-

k,j
g ) (S(l)s(2) )

' o y ~

~2
—ik RFe(k.

k,j
(3.2)

Taking the quantum average of (3.1) on the state (2.9) and using the result (3.2) one obtains
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(S,"'S,' '), = ——2(S,"'S, ')() g ~ek ~ [F(k()—k)+A. F(k()+k)]+ —,'((S,"')()+(S,' ')()) g [F(k()—k) —
A. F(k()+k)]

k,j k,j
) (S(l)s(2) ) y ~e ~2[e

—rk RF(k k)+ eik. R()2F(k +k)]
k, g

—-'&s("s(") y ~~„,~'[e'""F(k,—k) —e-'" x'F(k, +k)]
k,j

—)t.(S'+'S+')oe ' g (ek, ~
cosk R[F'(ko —k)+F'(ko+k)] +c.c.

k, j
It is also easy to show that for t «y ' and neglecting O(e )

(S (1)) (S(2) ) + (S(1)) (S (2))

(3.3)

2(S,'")()(S,' ')() g irk i [F(k()—k)+A, F(k()+k)]

+ —,'((S,"')()+(S,' ')()) g ~ek, ~ [F(k()—k) —
A. F(k()+k)]

k, g

+ (S ) (S S(2) ) g g 2[e
—ik RF(k —k )

—elk Rg2F(k +k )]
k,j

+ &S,'"),&S'"S("
& g ~ek ~'[e'"' F(k —k) —e '"'

A, F(ko+k)]
k, g

g(s(1)s(2) )
' 0 y ~& ~2[((s(1)) ik R+(S(2)) —ik R)Fe(k

k, g

—((S(") e '" R+(S' )) e'" )F*'(k —k)] +c.c. (3.4)

From (3.3) and (3.4) one obtains

—((s,"'s,(')), —(s,")),(s,"),)

((S,"'S,' ')()—(S,'")()(S,' ) )()) g ~ek, ~ [F(k()—k )+A. F(k()+k )]

+, &s"'s'"
& y ~~ ~'[(-'+(s"'),)e-'"'F*(k,—k)+x'(-' —(s"') )e'""F(k,+k)]

k,j
+(S'"S' ') g ~ek ~ [(—'+(S,"') )e'" F(k —k)+k ( —' —(S,") )e '" F(k +k)]

k, j
+A.(s"S") )Oe

' g ek, ~'[(cosk R+(S"')Oe '""+(S' ')Oe'"")F*(k —k)
k,j

+(cosk R —(S ')oe '" —(S,'")Oe'" )F*(ko+k)] +c.c. (3.5)

The first term on the rhs of (3.5) does not depend on R
and consequently it corresponds to a local effect of the in-
teraction with the field, which induces spontaneous decay
of each atom independently of the other and which tends
to decrease the degree of correlation initially present in
the system. The other term is R dependent, and it is easy
to convince oneself that it cannot be expressed entirely in
terms of 6 functions like in (2.15). Indeed, one has to face
the fact that atomic correlations develop "noncausally"
due to this term. In particular, if the initial (I)(s''), S' )

state is taken to be completely uncorrelated, some corre-
lations develop before t =R /c. This, however, is not by

itself in contradiction with the principle of relativistic
causality. In fact, in order to measure these correlations
one needs two observers who take simultaneous measure-
ments on atoms 1 and 2 separately. The existence of
these correlations can be established only after compar-
ison of the results obtained by the two observers, which
implies some form of communicating information be-
tween them; it is this necessity of transmitting informa-
tion which ensures overall causality in any process of
measurement of interatomic correlations. Consequently
the real question here is not that the presence of these
early correlations itself is paradoxical, but rather what is
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their physical origin.
In order to investigate this origin we consider as an ex-

ample two initially completely uncorrelated atoms, with

( s(1) ) —( s(2) ) —( s(1)s(2) ) —0

(S(1)S(2) ) (S(1)S(2))

ly(s'", s"')
& =-,'(I l, &+

I 1, &)(I 1,&+ I1,& )

in such a way that

(3.6)
Thus the decorrelation due to local effects of the vacuum
fluctuation vanishes, and for A. =1 one obtains after some
algebra

—((s"'s")& —(s(')& (s(2)) = d d"
dt

i(ko —k )t-g
2 ()) 2( Cc

o k —k
sinkR dk

i(ko+ k )ct

+ f sinkR dk
p ko+k

(3.7)

which is clearly "noncausal. " For R )&ct one can approximate

f „1 exp[i—( k p+k )ct ] , exp(ikpct ) ) exp(ikpct )
sinkR dk = —— dt'+ dt

0 kp+k 2 o R+ct' o R —ct' [exP(i P2pt)
—1] .2

p

(3.8)

Substituting (3.8) into (3.7), performing the t integration
and the R derivatives one gets

( S(1)S(2)) ( S(1)) ( S(2) )

S,")S,' )
&,

= F(t )(E (0)E„(
16')p

2dm dt's(a „=,R ))ct) (3.11)
f1COp

=(S,"'S,("),= — F(t), (5 „2R R„), —
Mk,

where a is the ground-state polarizability of the (identi-
cal) two-level atoms.

1 —coscoot
F(t)=

coo

1 —cos2copt

4COp

(3.9)

It is interesting to compare (3.9) with the vacuum field
correlations at atomic location 0 and R. One obtains

IV. THE DICKE SUPERRADIANT STATE

As a further illustrative example we consider a strongly
correlated initial state. We choose the so-called Dicke
superradiant state, ' which is of interest on its own, apart
from being of the same form of the state normally used in
the discussion of the Einstein-Podolsky-Rosen (EPR)
paradox. This state is

(E (0)E„(R)) = — (6 „—2R R„) .
~R

(3.10)

lg(s"', s'") &= ~- (ll t &+It, 1,&)v'2 (4.1)

We consider the similarity between (3.9) and (3.10) as
strong evidence in support of the hypothesis that the ap-
parently noncausal atomic correlations are indeed in-
duced by the correlations existing in the vacuum elec-
tromagnetic field. ' In fact, it would be appropriate to
state that atom-atom correlations (3.9), if experimentally
confirmed, would provide evidence for correlations in the
vacuum fluctuations of the electromagnetic field of the
form (3.10). One can also express such a statement in the
form

For this state we have

(s(1)) —( s(2) ) —(} (s(1) ) —(s(1) ) —(}

( S(1)s)2)) ) (S(1)S(2)
& () ( S(1)S(2) )

Thus using (2.11) we obtain from (2.10)
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(S,"'),( A, ) = — D', I(1 —
A, )Si(kpct)+Si[(kl —kp)ct]+A, Si[(kM+kp)ct]I

2mk0

+D 2
—[( 1 A—. )cosk pet c—os( kl —k p )ct + i(, cos( k~ + kp )ct ]

(1—A
~ )Si(cppt ) +Si[(cpM cop—)t ]+A. Si[(cpM + cpp )t ]

2K

cpl cos( co~ —cd )t
2

cp~ cpM cos( cpiic + cpp) t2
COSCO0t

1+ + +A. 1 — + +(1—
A, )

0 02 ~0t COO Q)0 0 CO0t

2cpM sin(co~ —cop)t
+A. 1—

cpp (cppt )

2cpst sin(coM+cpp)t sinco0t
+(1—A. )

(cppt )' (capt )

COS(CPM Cpp)t COS(6jiic+Ci)p)t , COS~0t
'

+2 -2A2 —2(1 —
A, )

(cppt ) (cppt ) (capt )' (4 2)

The oscillations at frequency co0 are seen to disappear for
A. =1. A similar result was obtained for the isolated two-
level atom with (S, )p=0 using the minimal coupling
scheme. ' Using the RWA, however, these A@0 oscilla-
tions would inhuence the dynamics of the superradiant
state, by delaying superradiance. In fact, as we shall dis-
cuss below, one should have k0R «1 for superradiance;
hence at t =R/c one would have t «cop ' and the two
atoms could not cooperate efficiently until t &)cu0 '. The
fact that Arecchi and Courtens do not find such a delay
using the RWA is due to the approximations performed
in their calculations. From (4.2) with A, = 1 we see that
only oscillations around the unphysically high frequency

AM remain. These AM oscillations could not be detected
by any realistic photodetection process and moreover
they are strongly model dependent, in the sense that they
disappear when an atomic form factor is used rather than
introducing the dipole approximation and the cutoff at
frequency AM =ckM as we have done. Thus we feel enti-
tled to neglect these oscillations completely, and we ob-
tain from (4.2)

(S,"'),( 3 i ) = —y/2 (i(,=1) (4.3)

as a very good approximation for (S,"'), up to times
t &R/c. For t &R/c, the second term on the rhs of
(2.15a) takes the form

ikoR dm dn R+c.C. = D „sink pR
2A

d d„sink 0R cosk0R sink 0R

fi ' " " kRkp (5 „—R R„) +(5 „3R R„)— (4.4)

For kpR « 1, (4.4) tends to

2 /d['cp'p = —y/2 (kpR «1)
Ac

which adds to the —y/2 obtained from (4.3) in order to
yield the superradiant result in (2.15a)

(4.5)

We emphasize that this causal result is strictly related to
use of X=1, and cannot be obtained in the RWA. For
k0R»1, {4.4) tends to'

d d„sink 0R
cop(5 „—R R„) (kpR »1)

which is too small to induce superradiant behavior.
We now turn to correlations in state (4.1), and from

(3.5) and (2.11) we have



42 VIRTUAL PHOTONS AND CAUSALITY IN THE DYNAMICS OF. . . 4299

( (g(1)g(2) ) (g() ) ) (g(2) ) )

O', I (1+)(, )Si(k()ct )+Si[(kM —
k() )ct ]—A, Si[(k~+k() )ct ])

2mko

+D ~
—[(1+A)c, osk()ct —cos(k~ —

k() )ct —)(. cos(kM + k() )ct ]

i[ko —k )ct

+ m "Im D~„e i(ko+ k )ct

sinkR 1k+Af sinkR dk
ko+k

(4.6)

4d d„—
( I+)(. ) sint))ot (5 „2R R„)—.

mAko R4 (4.7)

This nonlocal terms is of the same form as in the previ-
ously considered case of decorrelated atoms. Like in that
case it can be interpreted in terms of correlations induced
by correlated zero-point fluctuations of the field. The

The first term on the rhs represents the local effects of
spontaneous decay on interatomic correlations. It con-
tains oscillations at frequency ~o due to the dressing of
the atoms by virtual photons. ' These oscillations decay
for t))ot &)1, leaving for A, = 1 a positive asymptotic term
y/2. Since the initial correlation —

—,
' is negative and a

minimum of (S,")5,( ') —(S,"')(S,' '), this term de-
creases the correlations. The second nonlocal term looks
"noncausal" and it can be evaluated on the basis of (3.8)
for R ))ct. One easily obtains

form of this term, however, becomes complicated for
R =ct. It should be noted that in superradiant conditions
(koR « 1) for t =R /c one has coot « 1 and the first term
on the rhs of (4.6) has not yet settled to its asymptotic
value y/2. Thus the time dependence of the interatomic
correlations for t )R /c is rather complicated, since it re-
sults from interference of oscillations coming from both
terms on the rhs of (4.6). In summary, for t &R/c the
action of the vacuum field on the pair of atoms can be de-
scribed as twofold. On the one hand it tends to destroy
by spontaneous emission [first term on the rhs of (3.5)]
the correlations initially present in the pair, and on the
other it tries to impose its own correlations on the atoms
[second term on the rhs of (3.5)]. This point of view leads
us to ask what is the result of these conflicting actions at
relatively long time, that is for t & R /c and for
y ') t)~o ' in superradiant conditions kpR «1. The
nonlocal term on the rhs of (4.6) for t ))coo ' can be ex-
pressed as

" D"„Im f g(k —ko)sinkR dk+Afg(, k+ko)sinkR dk
0 0

dmdn 2 dmdn

3
D"„sinkoR = —— k05 „=—y/2 (coot )&1, R «ct, koR «1) (4.8)

where g(x) is the Heitler function. Contribution (4.8)
cancels the decorrelating contribution from the first term
on the rhs of (4.6). This is an interesting result, because it
shows that the effects coming from local and nonlocal in-
teractions of the superradiant atomic pair with the field
tend to cancel for X=1 and y'

' & t & coo '. It is this can-
cellation for A, = 1 which makes cooperative spontaneous
decay possible at least until t =y

We are induced to conclude that in a pair of initially
bare and correlated two-level atoms, and for koR ((1,
the superradiant decay rate sets in after t=R/c, while
correlations start changing immediately after t =0. For
t &&R /c the correlations tend to become stationary and
the super radiant decay rate can be maintained
throughout the complete dynamical evolution of the pair.
The virtual photons related to the presence of the coun-
terrotating terms in (2.1) are seen to be essential both in
turning on superradiance in a causal way and in ensuring

asymptotic cancellation of decorrelating local effects with
correlating nonlocal effects of the vacuum fluctuations.

V. SUMMARY AND CONCLUSIONS

We have considered atomic dynamics of a pair of two-
level atoms coupled with the vacuum fluctuations of the
electromagnetic field, using the multipolar coupling
scheme in the dipole approximation. The two atoms are
taken to be initially bare. The Heisenberg equations of
motion have been solved neglecting terms O(e ) and for t
smaller than the spontaneous relaxation time y '. We
have shown that an observer performing measurements
locally on either of the two atoms cannot detect the pres-
ence of the other atom before t =R /c, quite independent-
ly of the initial correlations existing in the pair. We have
also confirmed that starting from (5,")o=0 (i =1,2), os-
cillations at frequency coo do not contribute for X=1 to
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the nonexponential decay of (s, ), for t &R/c, a result
which had been previously obtained using the minimal
coupling scheme. ' lt should be noted, however, that this
lack of coo oscillations may be due to the peculiarities of
the two-level model used for the atoms. After t=R/c
the dynamics of each atom is influenced by the presence
of the other in a way which is observable by local means.
This e6'ect of strictly causality in atomic dynamics has
been shown to exist only if one takes into account the vir-
tual photons coming from the counterrotating terms in
(2.1), and to be lost in the RWA. Previous calculations
yielding causality in a two-level atom pair' exploited de-
viation from the exact treatment.

We have also considered the dynamics of interatomic
correlations of the pair of atoms. We have been able to
separate two contributions to this dynamics. The first
comes from local effects of the vacuum fluctuations on
each atom of the pair, which tend to decrease the initial
correlations. The second contribution is R dependent,
and we have been able to attribute it to the field-field
correlations peculiar to the vacuum fluctuations. Both
contributions are active immediately after t =0 and well
before t =R /c. This however does not involve any viola-
tion of relativistic causality, since in order to measure
them one needs two observers, each performing local
measurements on atoms 1 and 2 separately, and subse-
quently transmitting the results to each other or to a
common "supervisor;" it is the last step which ensures
overall relativistic causality. The above results are relat-
ed to previously reported cases which one might be
tempted to interpret as violations of causality in the one-
photon exchange between two atoms of a pair.

Finally, we have concentrated on the dynamics of the
highly correlated Dicke superradiant state of the form
(4.1) for koR « 1. We have shown that superradiant dy-
namics of the atomic pair can only be obtained for
t &R /c and if the counterrotating terms are taken into
account. As for interatomic correlations in the superra-
diant state, they have been shown to change at frequency
coo for t &(R/c, to have a rather complicated behavior
for t=R/c and to settle down to a constant value for
t »R /c and root »1. This balance is possible only be-

cause of the presence of the virtual photons created by
the counterrotating terms, and it is essential in order to
ensure superradiant dynamics at times of the order of
y

'

In conclusion, we remark that none of the statements
referring to relativistic causality reported in the Intro-
duction is really adequate to cover all possible situations
in the two-atom system with one atom excited and the
other unexcited. In fact, it is not strictly true that the
ground state atom can be excited only after time R /c, if
one takes into account the counterrotating terms in the
Hamiltonian (2.1). Moreover, it is not strictly true that
the two atoms evolve independetly for t (R /c, because
interatomic correlations evolve for t &R/c even for an
initial completely uncorrelated atomic state: what is ac-
tually true is that these correlations do not show up in lo-
cal measurements performed on each atom. For the same
reasons, it is also not true that before t =R /c there can
be no change in directly observable quantities related to
the initially unexcited atom, both because this statement
does not account for excitation during emission of a vir-
tual photon and because the early interatomic correla-
tions at t & R /c, which are induced by the correlated vac-
uum field fluctuations, are observable. On the other
hand, as shown in this paper, one gets precise statements
in terms of two observers localized near atoms 1 and 2.
From this point of view one can say that the observer
near the initially unexcited atom will occasionally find
the atom excited before t =R /c, but there is no way for
him to tell by performing measurement on this atom
alone that there is another atom in the neighborhood. If
both observers, however, send information of their mea-
surements to a "supervisor, " he will be able to discover
interatomic correlations at t &R/c. This interpretation
seems to coincide qualitatively with the conclusions of
Valentini's analysis of correlations at t & R /c.
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