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We evaluate the ionization rate from a recent (adiabatic) theory of multiphoton ionization for the
case of a recent experiment: a circularly polarized CO, laser at an intensity of about 10" W/cm?.
For S states we obtain a rate 10*-10° times larger than the Keldysh-Faisal-Reiss theory. For P
states we obtain a rate about 10° times larger. We also make a prediction about the angular distri-

bution from S states.

I. INTRODUCTION

The most commonly referenced S-matrix theory of
multiphonon ionization is the Keldysh-Faisal-Reiss
(KFR) theory.'™3 It has some formal difficulties that
were pointed out in a recent Brief Report* by one of us
(M.H.M.), and another theory was presented that
remedied these difficulties. In this “adiabatic” theory an
approximation was made on the exact wave function that
evolves from the initial bound state in the distant past.
The approximation improves as the laser frequency de-
creases relative to the energy of the initial state (=1).

In a recent Letter’ an experiment on ionization by an
intense (I ~10' W/cm?) CO, laser was reported. These
conditions are ideal for the applicability of this new
theory. Moreover, the rather unpleasant integral that re-
sults for the T matrix becomes analytically tractable for
the parameters of the experiment for the case of circular
polarization. We report on these results here and present
a comparison with the KFR theory for the same parame-
ters.

In the presentation of the adiabatic theory* it was stat-
ed that the numerical results were similar to those of the
older theory in most cases, but not all. This is a case in
which the new theory gives much larger results than the
KFR theory (factors of 10° or larger occur) which
remedies one of the difficulties in the comparison of the
KFR theory with numerical experiments.

In Sec. II we present an evaluation of the T matrix and
transition rate for the experimental conditions of Ref. 5
for circular polarization and for a 1S-like state. A com-
parison with the KFR theory for the same case is also
given. The new ionization rate is about a factor of
10*~10° larger than that given in the KFR theory. A
new prediction concerning angular distribution is given.

In Sec. III we outline a similar calculation for a simple
P state. The ionization rate is about a factor of 10° larger
than the previous theory. We also investigate a more
general S state, given by a sum of Slater orbitals and give
its T matrix. It is not significantly different from the 1S-
like result of Sec. II.

The results lead one to suspect the stability of these
theories. That is, the adiabatic theory presented in Ref. 4
remedies some of the difficulties of the KFR theory but it
is not expected to be a really significant improvement
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without the inclusion of intermediate resonances, which
are now known to be important. Yet under the (admit-
tedly extreme) conditions of the experiment® discussed
here the results are strikingly different. One wonders
what the next “slight improvement” of the theory will
produce.

It would of course be useful to compare the different
results with reliable calculations or experiments under
similar conditions. The experiment® does not provide ab-
solute reaction rates so, as pointed out in Sec. II, it is not
capable of differentiating among the theories. Relevant
calculations on model systems also are not yet available.
The Bersons® model is the only three-dimensional calcu-
lation of which we are aware. It is pathological in that it
is a zero-range model that is outside the domain of non-
singular quantum mechanics. Its zero-range feature
makes the adiabatic-theory results essentially the same as
the previous theories.

There are now several one-dimensional model calcula-
tions in the literature, but it is clear from our results stat-
ed above that angular momentum plays a critical role in
the theory, and this is a concept alien to one-dimensional
calculations. It would therefore seem that there are as
yet no reliable results available for differentiation among
the theories discussed here.

II. ADIABATIC THEORY

The derivation of the T matrix for the adiabatic theory
has been presented* so we merely note an intermediate re-
sult for circular polarization. From Ref. 4, Eq. (3.21), we
can write

7 d . .
T;=f7#?§—expl(NB—aoqlsmB)
X fd"re_iQ"V(r)uo(r) R (2.1)

where N is the number of photons absorbed, u,(r) is the
initial single-particle bound state which is bound by the
potential ¥V, and

2=¢2—V2mwayg, cosf+LHmoa,) . (2.2)

Here q is the momentum of the outgoing electron whose
magnitude is determined by the energy conservation con-
dition to be
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2 2
49N N, y,—W=w(N-N,),

2.3
2m 2m @.3)

where W is the dressed energy of the bound state and N,,,
the minimum “number” of photons required for ioniza-
tion is defined by this equation. Here a, has its usual
definition ay=eE /m®?, Up is the ponderomotive poten-
tial, and g, =sin@ is the component of g perpendicular to
Z, the laser propagation direction. The performance of
the spatial integral for the 1S state of hydrogen allows
(2.1) to be written as

2V re? |AW|
TH=— — I,, 2.4
N ma)aé/2 () ! @4
where we define
- i(NB—x sinf)
= [ 4B et 23
-7 27 (1—mncosB)"
and where
-1/2 Up 172 |
x =2 ayq (N)=2|—(N—N,,) sind , (2.6)
o

-1

n= |N— x=N lx<1. (2.7)

AW‘

Here AW is the shift of the bound state energy W, due to
the field, given in this model by

AW =—laE?, 2.8)

where a; is the static polarizability of the state. For the
experimental condition of a CO, laser at I ~10'* W/cm?
the relevant numbers are

AW
o

Wl

ﬁzo.sx 10%, ~ 107, ~1, (2.9
1)

so that the last part of (2.7) is a good approximation since

N2ZN, =1X 10*. We therefore adopt this approxima-

tion.

We shall see that the part of the (N, 6) space that gives
the dominant contribution is N =2N,,, 6~m/2 as has
been shown previously.” This brings 7 to a value just
below 1. The essential difference between this theory and
the KFR result is that I, in (2.4) is replaced by I, to get
the KFR result. But in I, the denominator is almost
singular so we can expect I, >>1, as is indeed the case.
This is the reason that | T{| > > | TXFR|,

We evaluate I, by treating x and 7 as independent pa-
rameters and finding a differential equation for 7, that is

d? _
dxz—q2 I(x)=n"2I,—2I_))
=_q2 1+—’7xﬁ Jy(x), .10
where
g=n""1—nH'? . (2.10")
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The equation is solved subject to boundary conditions
11(0):( 1 _,’72)‘1/22N ,

. (2.11)
1'1(0): (1__772)—1/2(21\/-#1_2‘\/—]) ,

1
2
where z =1/7—¢q. The result is

1+ 1+

Il=%nvzq71f0wdx’exp—q|x —x'| Jy(x') .

(2.12)

We use known asymptotic forms for Jy(x’) when N and
x' are both large and positive.® For x'>N

2 1/2
Jy(x)= | = | (x?=N%H"'/4
T
Xcos |(x'2—N?)1/2
12 Ar2©\1/2
—Ntan™! (—"——NM’———%H (2.13)

and for x' <N

JN(xl)z(zﬂ_)‘—I/Z(NZ_XIZ)—1/4

Xexp [ (N2—x'?)!/2
2 _n2y1/2
— i | MV =) . 19
N__(NZ__le)l/Z

These are both weakly singular as x’— N so we introduce
a factor which will ensure that

21/3
T S
3*71(2)
1/3
+0O(N~273) .

lim Jy (x")=Jy(N) -1

2.15
N ( )

It will prove to be of no importance here. We simply re-
place the singular denominators by

(le__NZ)—l/4_’[x12_N2(I_Bl)]~l/4 ,

(2.16)
B, =(mN) [Jp(N)]*
in (2.13) and
(NZ—X'Z)_1/4—>[N2( 1 +BZ)_x12]—1/4 ,
(2.17)

B,=(27N) 2[Jy(N)]~*

in (2.14).

The integral in (2.12) is divided into three regions
0—x, x —N, and N — . In the first two regions (2.13)
and (2.16) are used. Then (2.14) and (2.17) are used in the
final one. In the first region (I|") we let x’=Nn' and use
x =N to obtain

72
Irl)_ew‘vq" N fﬂ dn'(1+n/1")  ~rop)
1T, ) ) 174 ¢ J
2n°q T 0 (1—n""+p,)

(2.18)
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where

)1/2

Sy )y=gn'+(1—7'

(2.19)

The large N in the exponent in the integrand ensures that
the main contribution comes from the region of max-

imum f(n’) which is at n' =7, where
) 1+\1_7’2)1/2
— (1 —m2)172_ _
f(n)=2(1—n7) 1In (1=} (2.20)

The rest of the integrand is evaluated at ' =7 and the in-
tegration is easily performed with the result

IV =@8aN) 21— " (1—n*+B,)
Xe Nem(]—e ~2Nma) (2.21)
where
24172
e(n)=gn—f(n)=1ln iiii_;;u ]
— (=) (2.22)

The largest contribution to (2.21) comes from the small-
est €(n) because of the large factor N in the first ex-
ponent. e(n) is monotonically decreasing, so the largest
contribution comes from the region near n=1. The last
form of (2.7) shows that 7 maximizes at sind=1 and
N =2N, =2(Up+|W,|)/w, where

—1/2

LA Lo W,
T,max: 1 e =I1= =1=
Up 2U, 2wN,,
(2.23)
From (2.9) we see that this is slightly less than 1. The ex-

ponent in the last factor of (2.21) is then of the order
AN(1—9)2=2(2N,, | W, /0|)"?=2X10° so the ex-
ponential can be dropped. The factor (1—n>+j3,) /4
can be evaluated at this value of 7, but

(1= 7% min Wl
-——g—-—z(4rrC%)2—;o*N,;”3 1, (2.24)
2
so 3, can be dropped yielding
I(l) ~(87N)~ 1/2(1_772)*5/4ef1\'6(7]) . (2.25)

The contribution of the second region of the integral in
(2.12) can be written in a similar way to

1/2

I(Z): 2 2 \—1 Nng | LY

i =02n7q) e oy

Vdy (40 /7) o)
xf et g s, (2.26)
where
’y — _ _1203\172 1+(1—”,2)1/2
g(n')=gn’'—(1—n'*)""+1iln 1= (1=

(2.27)
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The dominant region of the 1’ integral is near the lower
limit ' =7 where g is minimum. It is stationary at that
point, so the Taylor series yields

gn)=g(m+Lim—n')g",
_ (1 172
glm=sin 1—(—1—_;%)72_ ’ (2.28)

gn:n (1_772)—1/2 .

When this is substituted into the integrand of (2.26) and
the slowly varying terms are evaluated at n'=m, the
remaining integration can be performed with the result

11 :%(1_ )‘I/Ze—}\"e(n)
N ]/2(1— 2)374
Xerf| |~ | —11 1|, (2.29)
2 n(l1+n)

where erf is the error function.?

The third region of the integral of (2.12) is evaluated
with the use of (2.13) and (2.16) and the substitution
x'=Nmn'. It can then be written

I(J)Ze‘vqm l fx dn'(1+n/7')
1 7]2q 2 1 "7'2_1"‘31 yL/4
Xe ~NaW NN (2.30)
where
(' )=(n?—1)""2—tan (52— 1)1"% . (2.31)

The point 7' =1 is a stationary phase as well as the dom-
inant region of contribution due to the factor e ~ 7. We
therefore substitute 7' =1+t /gN and expand about t =0
where possible. The result is

1/4

2

1(13):77_4\/28*:\@\\“77)
Ng*

dt .
(t +B,gN/2)"*

3N

(2.32)

—t+iat

X Ree '””’fx
0

where a=3"%2/¢)3/>N ~/2. The parameters in the in-
tegrand are neither large nor small, so it is left in this
form.

We can compare the three contributions to I, by focus-
ing on the exponents Ng(1—n) in the last and Ne(7n),
(2.22), in the first two. These are both large but the first
is always larger so the contribution I{*’ can be neglected.
The remaining terms are

~1/2 —N
~_l(1_n2) l/_e Neln)

(27N) V(1 —n?) 34

N 1/2(1~ 2)3/4
+erf | | = ——n’ . (2.33)
2 n(1+7)

The contribution of the two terms can be compared in
the dominant region N =2N,,, n=1—|W,|/2wN,,. The
argument of the error function is  about
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L(|W,l)/w**N,,'/*~1.88, at which point erf~0.99.
The first term is (47) " 2N /4| Wyl /0)~3/#=0.075. So
the second term of (2.31) is the dominant one.

I =1i(1—n?) "2 Nemw (2.34)

We now turn to a comparison with the KFR theory for
the same experiment. The only difference from T,(,‘, (2.1,
is that the vector Q, (2.2), is replaced by q in the KFR
theory. Then in (2.4) the factor (N —|AW /w|)"'I,
~N "I, is replaced by (N —U,/w) I, in the KFR
theory. We then use I, =Jy(x) and (2.14) to get instead
of N I, the factor

(N —=Up) '2aN) V21 —n?) " 1/4e ~Netw (2.35)

for the KFR theory. Notice that the exponential factor
here and in the adiabatic theory is the same, but the mul-
tiplicative factors are different. If we form the ratio of
the T matrices we obtain

J

3
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1/2
T4/TXR~ % ‘1————5” (1—n?)~ /4
w
7 W, T
=~ N, =170,

where (2.23) has been used. Then the ionization rate
from the adiabatic theory is a factor of (170)2~=~3X 10*
times larger than the KFR theory, which improves the
comparison with numerical experiments that have been
done.’

The total ionization rate is obtained from

g°—q*N)
2m

ITH1?, (2.36)

_ d’q
W % J (2m)} ® )
where the sum runs from the integer greater than N, to
infinity and ¢ () is given by (2.3). The sum can be con-
verted to an integral with negligible error. Then the az-
imuthal and the radial integrations can be simply per-
formed. We drop the first term of (2.32), replace the er-
ror function by unity, and make the substitution
N =N, u to obtain

_ 20 W, ™ « du ¢ Nmuetm
=l fo smadaf] Faoq(Nmu)(l_—nz) , (2.37)
[
3/2
where ayq (N, u)=[(oN,, /|W,|)(u —1)]'"? is expanded Elus)= 2 |2 4UPS2(u_ ) (2.39)
about its point of maximum contribution since N,, >>1 ’ 3u? N, '
and the remaining part of the integrand can be evaluated L
at that point. We define s = sinf and The derivatives, evaluated at u =2, s =1, are
s =;83/2, GS — _‘481/2, Gus — _681/2 ,
g(u,s)=2ue(n)z—231<1—7,2>3/2+0((1—n2)5/2), “3 (2.40)

(2.38)

the last step coming from the fact that (1—n?) will be
small. More explicitly,

Glu,s)= |6(2,1)— —

26,, T (6,—62/6,,)

6L (6,6,6,/6,) ]

+16,,u =24+ 6. [6,(s —D+E, ]} 2+

uu

This form indicates that the point of maximum contribu-
tion is not N =N, u =2N,, but is slightly shifted by an
amount that depends upon s =sin6.

The u integration in (2.35) can then be done, and in the
limit N, — o it is an integral over a Gaussian in the
domain — to + o, for s >2. For s <2 the domain
shrinks to zero, which says that the angular distribution
is effectively confined to the region

GSS:A'S‘“\/Z, 6uu:51/2, 6(2,1):%63/2 ,

where 8=|W,|/wN,, and terms of relative order 8 have
been dropped. The factor in the exponent (2.37) can then
be written as

6,—6,6,/6,, |
+
6&? _6%45 /6uu

(2.41)

(2.42)

The u integration is then simply performed. The s in-
tegral, with this constraint is, of the form

1 sds 2
2wl s =1

~(2N,,6,) *T(L) . (2.43)
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Assembling all this we arrive at

11/8
—__@ L@ | Wl N5/8
- 7172 9574 © m
3/2
Wl
Xexp— [ZN, /2 — , (2.44)
. w

where the term in the set of large parentheses in (2.41)
has been expanded in powers of & and for simplicity only
the first term %83 /2 is retained. This is somewhat suspect
since it is then multiplied by the large N,, and exponen-
tiated.

The central result of this section is that the new form
of the T matrix, introduced to remedy the formal
difficulties of the KFR theory, can give much greater ion-
ization rates in some cases. The experiment that motivat-
ed this calculation provided only relative ionization rates,
and since the dominant exponents for I, and in the KFR
theory, are identical, the electron energy spectra in the
two theories are essentially the same. Therefore no ex-
perimental differentiation between the theories is now
available. There exists a numerical model calculation,’
which has been used to test the KFR theory, which
shows it to be many orders of magntiude too small. The
adiabatic theory then seems to be a correction in the

right direction. We hope to expand upon this in the fu-
ture.

Two subsidiary results of this calculation are not new.
The first is that the energy distribution of the emerging
electrons peaks at about N =2N,,. It is implicit in previ-
ous calculations,! ~*7 but it is difficult for us to interpret
in a manner other than that described above. The second
is the peaking of the angular distribution about the plane
of polarization. This is simply the statement that the
electron emerges preferentially in the direction of the
electric field (averaged over a period). The more quanti-
tative statement, Eq. (2.42), is, we believe, new.

III. INITIAL P STATE
AND MORE GENERAL S STATES

The simplest hydrogenlike bound P state has the form

up (r)=(ma®)"?r e, (3.1

n

where the binding energy is
[Wol=(2ma?) ", (3.2)

and we retain the estimates given in (2.9). For an unpo-
larized initial state, the squared T matrix must be aver-
aged over the initial magnetic sublevels. It is simpler to
do this first and then perform the spatial integral of (2.1).
We obtain

= 641e? dpdp . . . Q(B)-Q(B')
ITHP=1 3T pu) > = expi [N(B—B')—x (sinB—sinf’)
W= STt = =0 [ [ 25 expi (N (B =5 s g v a Pl E ) Ta T
(3.3)

where

Q(IB’)-Q(B’)=q2—\/§mwa0qi(cosﬁ+cosﬁ')+%(mwa0)2cos(/3—/3’) . (3.4)
We can use

f @ cosf3 - e IN(B—x smﬁ):n—l(Iz__Il) , (3.5)

27 (1—ncosP)

where I, is defined in (2.5), and by integration by parts

JEB S8 _iv—xsingmin=t |y~ X 1 40X g =i (o) (3.6)

27 (1—mncosf3) n n 7
(we have used N —x /7=0 in the limit AW —0). Then (3.3) can be rewritten as
3
_ (W, U U U UpN?
T =84 pag | 200 | s N =N, +—5 \B=2L1, |Ng+—5 |+ =513+ ——J3(x) | , (3.7)
1) on on on on
where (2.6) and (2.7) have been used. Then we use Up /w=N,,, =1, and anticipate that I, >>1, to obtain
3
— [W,l
\T,;?Pz%ie“a O | NTUNIZ 4N, NTA(x)] . (3.8)
)

The definitions (2.5) of I, immediately yield

Iz=i<n11) ; (3.9)

an
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when x and 7 are treated as independent parameters. We use (2.12) for I, and (2.10a) let x’=Nn’ to obtain
L= [ gy N e N | (e ey el |
2(1_7’2)1/2 0 2 772(1_7,2)1/2
(3.10)
1
This is evaluated by a technique similar to that used for | FKFR |2 64r 4 (W, e ~2Neln)
I, (2.12). Again the dominant contributions come from Ty 1= € © (N—=N.)
the first two regions of the integrand, 0 <%’'<% and "
1n <7’ <1. An intermediate result is written as X[2aN(1—nH)172] 71, (3.14)

NJ/Ze*Ne("I])
(217.)1/2( 1 _n2)5/4

L=(1—9)"1+

1 1

+ ”(l_e*N/Zg"(l—n))
4n’q®  Ng

X (3.11)

where g" is given in (2.28). The exponential containing
g’ is set equal to zero, which is the same approximation
as replacing the error function in (2.34) by unity. The
second term in the last set of large parentheses (from re-
gion 2) dominates the first (from region 1), just as it did in
the evaluation of I,. Thus we obtain, using the limiting
form of (2.34),

The ratio of the two, evaluated N =2N,,, which is the ap-
proximate peak of the exponential, is

| T2 N

m
IT}](FR|2 (1_7]2)5/2

2

1+

172
s N_’" (1—m2p/
2 T

(3.15)

If this is evaluated at the approximate point of maximum
exponential, (2.23), then

Ty

~10°
W~IO . (3.16)

172 The transition rate, evaluated in a fashion similar to that
Iy=e N |(1—n?) 7324 py (1=, used for (2.44), is
T
3/8
_ 2P Ry s | Wl
(3.12) W= B/ I'4eo "W,“O w7
where the two terms are similar in magnitude. This is 3/412
substituted into the set of square brackets in (3.8) and X |14 g 172N =178 (W,
(2.14) is used for Jy. The I3 term is seen to dominate the 4 m )
J% term by a fac.tor of (1—7*)7!, so the J} term is W 3
dropped. We obtain X exp— %N,;'/z 0 ] . (3.17)
5 ©
_ |W,| —2Ne(n)
|TH|?= 6‘;77- e‘a 0 e3 3 Again the exponential factor of (3.17) is the same as for
@ N (1=77) the KFR result but the prefactors are very different.
12 2 We now turn to more general S state given by a linear
x |14+ |2 (1_772)3/4‘ . (3.13) combination of Slater orbitals
2T
u, =y Awr“exp—:zr— . (3.18)
At this point it is possible to compare this to the analo- m Y
gous result of the KFR theory: The last integral in (2.1) then becomes
J
4 2
[dre @V inun=3 A, |We—2— | 4T (u+ Dim(a ;' —iQ) 2, (3.19)
p 2m | Q
f
where we have used the fact that u (r) satisfies a single- 2 v
particle Schrodinger equation containing the potential V. 3 |W,— 1% 87 | ——— 4 w (@2 +a;2)7?
[Parenthetically, we note that the right side of (3.19) is v 2m v
unchanged when V is a nonlocal potential. In order to iy
demonstrate this, one must return to the derivation of +0(Q7°).

Ref. 4 and replace V with a nonlocal potential in its
gauge-invariant form.] The dominant contributions in
the integrals evaluated above come from large Q, so a
power series of Q ~!in (3.19) yields

The remaining integral over 8 produces I", where this is
the I, integral (2.5) that results when a is replaced by
a,. It is not difficult to see that the only change is to

v



4290

replace n, 2.7 by 1, such that

8,=~1—ni=(|W, |/®)1/N,, replaces 8, (2.38) where
|W,|=(2ma?)"".

The exponent in (2.37) is, however, unchanged. Then the

resultant change in I, is to replace the factor (1—n?)~ !/

with (1—7%)71/2 i.e., to multiply I, by (a,/a,). If we

assemble the steps in this argument, we see that the only

change in the S-state T matrix is to replace I, in T4 by

ay’? (Ay,—24,,a,)

|— == e*Ne('r))_
‘/ZN " (1_772)5/4

1
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This does not significantly alter the numerical con-
clusions reached in Sec. II.
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