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%'e examine coherent sum and difference-frequency generation in dilute suspensions of metallic
or n-type semiconductor microspheres embedded in a passive linear dielectric host using quasihy-
drodynamic theory within the quasistatic and single-scattering approximations. If one or both of
the incident laser-beam frequencies are near the surface dipole resonance, the medium exhibits an
enhanced response. Enhancement of the sum-frequency wave is also possible if this frequency coin-
cides with the surface quadrupole resonance of the microsphere. It is shown that a coherent
second-order response is possible only if the symmetry of the system is reduced. Detailed calcula-
tions are presented for the dynamic response of the individual particles as well as the macroscopic
electrodynamics of the composite as a whole. Numerical results for the perturbed electron density
and drift velocity as well as the laser-induced, microparticle quadrupole moment of a single micro-
sphere are displayed. Numerical results for the coherent and incoherent intensities are calculated
for a 1-mm-thick slab of microparticles embedded in an artificial glass host. The microparticles are

0
silver spheres of 100 A radius with 10 volume fraction. The coherent intensity for a mm-thick
microparticle composite is nonvanishing only for a noncollinear configuration under perfect phase
matching. If both of the incident laser-beam frequencies are near the surface dipole resonances, the
conversion efficiencies of the coherent (incoherent) radiation at the sum and difference frequencies
are 10 (10 ') and 10 " (10 ' ), respectively. The conversion efficiencies for the sum-frequency
generation at the surface quadrupole resonance are 10 ' and 10 ' for the coherent and incoherent
intensities.

I. INTRODUCTION

There has been considerable interest in the nonlinear
electrodynamical characteristics of microparticle compos-
ites. ' Of particular interest are situations in which one or
more of the microparticle s Frohlich modes has been res-
onantly excited by incident laser light. For such situa-
tions excitation of this surface mode amplifies the in-
cident laser intensity, which gives rise to enhanced non-
linear optical coefFicients.

Here, the coherent generation of sum- and difference-
frequency radiation from a microparticle composite is ex-
amined using quasihydrodynamic theory. There are a
number of motivations for focusing on this problem.
Hua and Gersten examined incoherent second-harmonic
generation from composites of microparticles, and it is
natural to extend their calculations to a more general sit-
uation. Furthermore, because of symmetry, a coherent
response is not possible at the second harmonic if the
medium is irradiated by a single laser beam. Thus the
only nonlinear response to a single laser in second order
of perturbation theory is incoherent scattering at the
second-harmonic frequency. Since the efficiency for this
process is low, it is difficult to perform an experiment to
validate the theory, whereas the more efficient coherent
sum-frequency generation may be observable. In addi-
tion, beam combination via nondegenerate two-wave mix-
ing (NDTWMi involves the nonlinear response of the
composite to two laser beams operating at different wave-
lengths. Hence sum- and difference-frequency wave gen-
eration are intermediate processes to NDTWM and serve

as a useful step for understanding beam combination in a
microparticle composite.

This paper is divided into four parts, of which this, the
introductory part, is the first. In the Sec. II, the problem
is formulated in terms of the perturbative response of a
particle, which consists of a degenerate electron gas mov-
ing in a positive uniform jellium background, to two laser
beams within the quasihydrodynamic approximation.
We extract the second-order dynamic response of the
particle to laser light. Specifically, we determine the per-
turbed electron density and drift velocity as well as the
laser-induced quadrupole moment associated with the
sum- and difference-frequency waves. The electrodynam-
ic properties of the local fields in the vicinity of the mi-
croparticles are also resolved. Section III is concerned
with the macroscopic electrodynamic response of the
medium, as a whole, and results are presented for the in-
tensity, polarization, and angular dependence of the
coherent sum- and difference-frequency waves emitted by
the composite in the presence of two noncollinear laser
beams. In the collinear limit, no coherent sum- or
difference-frequency wave is emitted by the composite as
in second-harmonic generation. We evaluate the
surface-enhanced, second-order optical susceptibilities as-
sociated with sum- and difference-frequency wave genera-
tion in the noncollinear configuration. The composite al-
ways produces sum- and difference-frequency radiation
via incoherent, nonlinear scattering processes, and the
physical characteristics of this radiation are examined.
In Sec. IV, we present numerical results for a silver mi-
crosphere composite and discuss our findings.
Mathematical details are given in the appendixes.
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II. FORMULATION iiX

We consider a metallic or n-type semiconductor micro-
0

particle composite whose particle size is less than 100 A.
This is small compared to any of the radiation wave-
lengths so that the Rayleigh limit is valid. Also, the qua-
sistatic approximation is used where the Maxwell equa-
tions are reduced to the electrostatic equation. We note
that Fuchs and Kliewer have shown that the hydro-
dynamic and self-consistent field approximations yield
the same results at all experimentally accessible frequen-
cies. Thus Landau damping can be accounted for with a
simple dissipation model characterized by a frequency-
independent damping constant v. We also assume that
microparticle size exceeds 20 A so that the quantum-size
effect is not important. If the incident and nonlinear-
generated frequencies are all sufficiently high, the ionic
(or phonon) contribution inside the microparticles will be
negligible. We can assume that each of the microparti-
cles in the composite consists of a rigid, positive jellium
background with charge density eno accompanied by a
degenerate electron gas. Charge neutrality demands that
the unperturbed electron density be no, and in the pres-
ence of laser radiation the perturbed electron density is
denoted by n(r, t). The hydrodynamic equations, which
are the Euler equation and the equation of continuity,
govern the response of the electron gas to incident laser
radiation. Here, we examine the second-order response
of a single sphere, which consists of a degenerate electron
gas, confined to a microsphere of radius a, embedded in a
passive linear dielectric and irradiated by two laser
beams, operating at frequencies cu] and co~. The unper-
turbed electron profile is taken to be a step function. Al-
though a step function does poorly for a flat metal sur-
face, we adopt it here for several reasons. (1) It is the
standard model used for modeling the nonlinear optics
due to the resonant plasmon responses of metallic micro-
spheres and, using more complex spatial profiles, is com-
putationally prohibitive. (2) The nonlinear plasmon
response appears to involve the electron fluid deep within
the microsphere, not just at the surface. Thus, on physi-
cal grounds, the frequency-mixing properties of these res-
onances should not be overly sensitive to the details of
the electron profile near the surface. Mathematically,
this is reflected in the fact that the quadrupole moment
requires an integration of various moments of the density
over the entire volume of the microsphere. (3) Although
other profiles will give different results, these differences
are masked by the fact that numerous suspension param-
eters (geometric shape, particle size distribution, and me-
tallic purity) will vary significantly from the model and
from sample to sample.

The physical situation is depicted in Fig. 1. The co,
beam is incident normal to the surface of microparticle
composite, is linearly polarized in the z direction, and has
propagation vector k, =k, x within the medium. The
second laser beam is oriented at an angle Oz with respect
to the first beam, and has a unit polarization vector
ez=(x cosO~+z sinO~) and a propagation vector
kz=kz(x sinO~ —z cosOz) within the medium. Here,
k =[et, (co, )]' co /c, with et, (co, ) the dielectric constant

—n/2

I I

0

L/2

= Z

—I./2

(k2, co2)

FIG. 1. System to be considered.

of the host at the frequency co .
Within each microparticle, laser radiation induces an

electron drift velocity v(r, t ) whose dynamics is governed
by the Euler equation

n(r, t) —+v+v(r, t) V v(r, t)a
at

2/3
3

p(r, t)=
8m 5m

n(r, t)'" . (2.2)

The third term on the left-hand side (lhs) of the Euler
equation is the convective current, which arises from the
fact that the conduction electrons are a continuous medi-
um in this model. The first term on the right-hand side
(rhs) of Eq. (2.1) is the Lorentz force, the magnetic term
having been dropped within the electrostatic approxima-
tion. The last term is due to quantum pressure, which
gives rise to a spatial variation (i.e., a screening) in the
electron density near the microparticle surface in the
presence of radiation. Thus the response of the electron
gas is nonlocal. The perturbed electron charge density
n (r, t ) obeys the equation of continuity:

dn(r, t ) +V [n(r, t)v(r, t)]=0 .
at

(2.3)

The incident electric component of the laser radiation
field Eo(r, t) is given by

en(r, t)E—(r, t)/m —Vp(r, t) . (2. 1)

Here, v is the electron collision frequency and p(r, t) is
the quantum pressure of the degenerate electron gas,
which within the Thomas-Fermi approximation is given
by
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Eo(r, t ) =ei 3 i exp[i(ki. r —coit )]

+e, A zexp[i(k, .r —co,t )]+C.C. , (2.4)

where e, A, k, and co (j= 1,2) are the incident unit po-
larization vector, electric field amplitude, wave vector,
and frequency of the jth laser beam. The total electric
field amplitude E(r, t) in Eq. (2.1) is driven by the per-
turbed charge density inside the microparticle. Within
the quasistatic approximation, we have E(r, t)
= —V4(r, t ), where 4(r, t ) is the electrostatic potential.
Outside the microparticle, the Laplace equation holds:

V 4(r, t)=0 . (2.5a)

Inside the microsphere, the electrostatic potential obeys
Poisson's equation:

V 4(r, t)=4tren(r, t)/eb, (2.5b)

where the electrostatic potential is coupled to Eqs. (2.1)
and (2.3) via n(r, t), and eb is the dielectric constant of
the rigid jellium background. Equations (2.5) must be
supplemented with the usual electrostatic boundary con-
ditions, namely, that 4(r, t) and ed@(r, t)/dr are con-
tinuous at the surface. Since the Euler equation and the
equation of continuity are coupled together, we require
only one additional boundary condition ( ABC), which is
usually chosen to be the acoustic condition to ensure no
electrons flow across the boundary; viz. , the radial com-
ponent of the electron drift velocity will vanish at the sur-
face. These boundary conditions can be followed without
any difficulties in determining the linear response of the
microparticle to laser light. However, in the next order
of perturbation theory, difficulties can arise in the pres-
ence of the monopole response. Specifically, if one
demands that the second-order radial velocity vanish at
the microparticle's surface, then the integral of the
second-order perturbed electron density over the volume
of the microparticle will deviate from zero. In turn, this
implies that the calculation does not conserve charge and
reflects the fact that there are basic inconsistencies in
describing the microparticle response by means of a re-
laxation model. Here, we use a different additional
boundary condition for monopole responses, namely, that
the charge is conserved in every order of perturbation
theory. If this is done, then the second-order radial ve-
locity will deviate from zero at the microparticle s sur-
face. Calculations in Sec. IV will show that within a
screening length of the surface, the ratio of the radial ve-
locity at the surface to the maximum velocity is of order
v/co, where co+ is the frequency of the radiation gen-
erated by the microparticle via nonlinear mixing process-
es. Thus, so long as v/co+ &&1, this inconsistency is not
significant.

An examination of Eqs. (2. 1) and (2.2) reveals that
there are four nonlinear terms in the Euler equation for
the electron drift velocity: (1) the electron current, (2) the

I

+a, (r, co, )exp( ico—zt )+az(r, co )exp( i co—t )

+az(r, co+)exp( ico—+t )+c.c. , (2.6)

where ao is the equilibrium value. In Eq. (2.6), we need
to include only the sum- (co+ =co, +coz) and difference-
(co =co, —coz) frequency terms for the second-order
response. In the limit that co]~co2, the difference-
frequency term becomes a rectified correction and the
sum-frequency term contributes to the second-harmonic
response.

A. Linear response

Inserting the perturbative expansion, i.e., Eq. (2.6), into
Eqs. (2. 1)—(2.5), we find that the induced linear density
satisfies the following equation:

[V —
q (co)]n, (r, co)=0 . (2.7a)

In Eq. (2.7a), q(co) is the self-consistent, frequency-
dependent screening wave vector, which is given by

q (co ) = [copz co( co+i v—) ]
' Ip, (2.7b)

where co =(4vrnoe /meb)'~ is the plasma frequency and

p =0.6vF, with vF the Fermi velocity. In the low-

frequency limit, the screening wave vector becomes real
and reduces to the Thomas-Fermi value qT„=co l/3. In
this limit, the field barely penetrates into the particle and
the electron density is uniform everywhere, except in the
immediate vicinity of the particle s surface. In the high-
frequency limit, i.e., co co, q(co) has an imaginary part
and the electron density is oscillatory. Explicit expres-
sions for the first-order electron density and electric field,
as well as the drift velocity are given in Appendix A.

B. Quadratic response

To determine the quadratic response of the electron
gas to two nondegenerate laser beams oscillating at ~,
and co2, we insert the expressions for the linear electron
density, drift velocity, and electric field into Eqs. (2. 1) and
(2.3), and extract out those terms that are oscillating at
co+ for sum- (co+ ) and difference- (co ) frequency genera-
tion. This leads to the following equation for the
second-order electron density response oscillating at co+ ..

[V' q'(co )]nz(r,—co~)= —P 'V S(r;co, , coz),

where the drive terms S(r;co&, +coz) are defined by

(2.8)

convective current, (3) the Lorentz force, and (4) the
quantum pressure.

The electron density, drift velocity, quantum pressure,
and the electrostatic potential can be decomposed into
the different possible frequency components. Thus, if
a(r, t ) is any of these quantities, we have

a(r, t )=ao+a, (r, co, )exp( —ico, t)

S(r;co, , +coz) =ico,n, (r, co, )v, (r, +coz)+i cozn, (r, co, )v, (r, +coz)+ no[v, (r, co, ).V]v, (r, +coz)+ no[v, (r, +coz).V]v, (r, co, )

+e/m [n, (r, co, )E,(r, +coz)+n, (r, +coz)E, (r, co, )]+(2P l3no)V[n, (r, co, )n, (r, +coz)] . (2.9)
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The linear response n &(r, co), v~(r, co), and E,(r, co) are all

enhanced at the surface-mode frequencies co+. The drive
term S(r;co„+coz}may be doubly enhanced for co, and coz

near cos, since S(r;co„+coz) is a bilinear product of linear
responses at co, and co2. For compact notation, we shall
denote S(r;co, , +coz) as S+(r). The first two terms in

S+(r) arise from the second-order electron current, the
next two are from the second-order convective current,
the fifth and sixth terms arise from the second-order
Lorentz force, while the last term arises from the
second-order quantum pressure. The explicit expression
for the drive terms are given by

A. Scattering amplitude and the radiation field in the far zone

In this section, we determine the second-order elec-
tromagnetic fields in the radiation zone, which are gen-
erated by a single microsphere. A microsphere at point
r'=(x', y', z') scatters the two incident beams, to generate
a second-order field E,(r, co+ ) at the sum (co+ ) or
difference (co ) frequency at point r=(x,y, z), where
r )&a in the radiation zone. The electromagnetic field as-
sociated with an oscillating quadrupole of the micro-
sphere located at r' is given by

E, (r, r', co+) =exp[i/(r, r')]f+(O', P')/~r —r'~, (3.1)

S+(r)=
2

[rS„—(r)+8S& (r)+/So (r)],
q+a

where the phase P(r, r' } is given by
2.10

P(r, r')=k+~r —r'~+(k, +kz) r', (3.2)

with

S„+—(r) =(4m/9)'~ S„+—(r)sin8z Yoo(8)

+(16m/45)' S„—(r)sin8z Yzo(8)

—(2n/15)' S„—+ (r)

and k+=[ez(co )]' co+/c the integration is over the
volume V'=(4n/3)a of the sphere at r'. In the quasi-
static limit where the radiation wavelength A. ))a, the
phase factors in Eq. (3.2) remain nearly constant within a
given sphere. Hence the scattering amplitude in Eq. (3.1)
is given by

Xcos8z[ Yz, (8,$)—Yz, (8,$)],
Se (r) = —

—,'Se (r)sin8z sin28

+ [Sec(r,coi, +coz)cos 8

(2.11a) f+( O', P') = i ( k+—/2) [n X Q(n ) /3] Xn,
where the vector Q(n) is defined by

Q„(n,, )= QQ„„n,

(3.3)

(3.4)

Se~(r, co, , +coz—)sin 8]cos8z cosP,

S& = —S& (r)cos8zcos8sing,

(2.11b)

(2.11c)

III. MACROSCOPIC ELECTRODYNAMIC RESPONSE

where the different components S„— (r) are given in Eqs.)"lm

(B1). Explicit expressions for the second-order electric
field as well as the electron density and velocity are con-
tained in Appendix B.

Q„„ is the second-order quadrupole moment tensor in-

duced by the laser light in a microparticle located at the
origin, cos8' = (z —z') /r and tang' = (y —y ') /(x —x ').
Note that the quadrupole moment tensor Q can be ex-
tracted from the electrostatic field in the near zone for a
small scatter. For a microsphere irradiated by two laser
beams oriented at an angle of 02 with respect to each oth-
er, the radiation-induced quadrupole moment tensor is
given by

In this section, we determine the macroscopic second-
order electromagnetic response of a very dilute micropar-
ticle composite to two different lasers operating at fre-
quencies co, and co2 within the single scattering approxi-
mation. The first step is to determine the radiation field
in the far zone due to a single microparticle using the re-
sults obtained in Sec. II. The total field, which is generat-
ed by the entire composite, can be obtained by summing
up the contribution of each particle.

0 0 Q„,
Q= 0 0 0

Q,. o Q„
(3.5)

where Q„,. =Q,„. Explicit formulas for Q„, are given in

Eqs. (B17}. Finally, the scattering amplitude f+(O', P'),
for the electric field in the radiation zone, arising from a
single micropartiele is

f+(8', P') =ik+a I 2meI +/[3el, (co+)+2eb] I [8[—sin8zsin28'Uzo/2+cos8z cos28'cosPUz, ]

—P cos8z cos8'sing' Uz~, ) . (3.6)

Note that in collinear limit (02=~/2), the scattering am-
plitude has a component only in the 0 direction. The
functions U&- are dimensionless, are related to weighed
averages of the various components of the charge density
over the sphere, and are defined in Appendix B.

The magnetic field components B,(r, r', co+) are then

given by

B,( r, r', co ) =n X E, ( r, r', co+ ), (3.7)

so that the total intensity I, (r, r', co+), for a single micro-
particle at r' is
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(3.8)

where f+ is defined in Eq. (3.3).

B. Macroscopic electromagnetic Selds and intensities

In this section, we examine the total electromagnetic
fields and intensities arising from a tenuous collection of
microparticles randomly distributed in a passive linear
dielectric host. In general, a collection of microparticles
will scatter radiation with random phase with respect to
one another. The resultant total electromagnetic field
from a microparticle composite will be the sum of the
coherent (or average) field and the incoherent (fluctuat-
ing) field. The phase of the field will fluctuate randomly
for arbitrary directions, so that the volume-averaged (or
ensemble-averaged) incoherent field is zero. However,
along a particular phase-matched (or coherent) direction,

the different particles all scatter in phase with one anoth-
er and the resultant average field is coherent. This
coherent field will be discussed in Sec. III B 1. The aver-
age intensity for a microparticle composite is the sum of
the coherent and incoherent intensities, and will be exam-
ined in Sec. III B2. %e will consider a tenuous micro-
sphere composite with the particles sufmiciently far apart
so that they do affect each other. Then, the far-field and
single scattering approximations are valid, and the total
field at a point r is the sum of the far field from each mi-
crosphere located at point r', as depicted in Fig. 1.

1. Coherent field

The coherent field at to+ is given by the integral (or
summation) of the far field of each sphere, which is given
in Eq. (3.1), over the entire composite, i.e.,

E,(r,oi+)= f dr'E, (r, r', to+),
V

/2L& 1 /2Lz
=N f dx' f ' dy' f dz'exp[i/(r, r')]f+(O', P')/lr —r

z

(3.9a)

(3.9b)

where the composite is assumed to reside within a slab
of dimensions L XLy XLz, where L &(L,L, and
L L,~ ~, but L remains finite and N is the microsphere
number density. The prefactors, which include the
scattering amplitude f+ and the propagator 1/lr —r'l,
vary slowly with r' in comparison to the rapidly varying
exponential factor exp[i/(r, r')]. We are concerned with
the limiting case in which r &&L. To evaluate the in-
tegral for the y' and z' coordinate first for the slab, we
will use the method of steepest descents. The stationary
phase point for the microsphere is located at
r+ =(r+,8+,P+), which are

r+ = lx &
l /sin8+,

+=0,
cosj9+ =+k2 cosH2/k+

(3.10a)

(3.10b)

(3.10c)

and H+ are the coherent angles at co+. An examination of
Eq. (3.10c) reveals that there is always a stationary phase
point for the sum-frequency (co+ ) wave or the difference-
frequency (co ) wave, if kz)kicos8z. Thereby it re-

stricts the range of angles in which the second laser can
be aligned for coherent sum- or difference-frequency
wave generation.

The last integral over the x' coordinate in Eq. (3.8b) is
over a finite region and will give rise to the phase-
matching term. Then, the coherent field in Eq. (3.8) is
given by

E,(r, to+) =r+pLj p(5+L /2) f+(8il8+ 0)

X . exp[i A+L /2+i/+(r)],27Tl

k+ sinH+

(3.11)

where unit polarization vector of the coherent electric
field at point r far outside the slab is r+ =I cosH+
—z sin8+, jp(z) =sinz/z is the usual Phase-matching
term, and p =N4ma /3 is the volume fraction of micro-
spheres. In Eq. (3.11), the scattering amplitude per unit
volume f+ is evaluated at the stationary phase point and
is given by

f+(8218+,0)=i ', e&+k~a [cos82—cos28+U2 , +—', sin zs8i n2+—8U]2p[ /p3( ~o)+2eb] (3.12)

while the phase of the wave P+(r) is

P+(r) =k~[sin8+x+cos8+z] . (3.13)

The phase factor 5+2 /2 arises from phase mismatch be-
tween the polarization driven by incident waves and non-
linear wave, which is given by

6+=k, +k2» H2 k+ (3.14)

An examination of the scattering amplitude evaluated at
the stationary phase point reveals that there is no
coherent response if the lasers are collinear, viz. ,
H2=~/2= H+.
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2. Total intensity

The total intensity for the sum- and difference-
frequency generation from a slab of microparticle com-
posite of thickness L is given by

I(r, co+)=N f dx' f dy' f dx'I, (r, r', co+),

(3.15)

where N is the microparticle number density and I, is
given in Eq. (3.8). The total intensity can be decomposed
into two parts, viz. , the coherent and incoherent intensi-
ties. The coherent part is given by

tensity. The 0.3787-pm laser light can excite the surface
dipole mode of the aforementioned silver sphere. Indeed,
as shown in Fig. 2(b), the electric field inside the sphere is
enhanced by the surface dipole resonant denominator
D(co+), whose magnitude is about 10, and is nearly m. /2
out of the phase with respect to the incident electric field.
Figure 2(c) depicts the radial velocity throughout the mi-

crosphere,

Re

I, (r, ~+)= E,(r, co+) XB,(r, ~+) r,
Sa

(3.16a)

—2.0—
01 —30—
np —4.0—

, , 9~c 1k+I'~'e'll+ '
.=p L i,+(8z)—

~ 3eb (co+ ) + 2eb
~

—5.0—
—6.0

0
I I I I

0.2 0.4 0.6 0.8 1.0
„/

where

X jIo(h+L /2)
I

z

i, (8z) = ~cos8zcos28+Uz~ + —,
' sin8zsin28+Uzo ~

(3.16b)

(3.16c)

o.5—
o.4-(b)
03—

ReE1 p 2—
Ep 0.1—

where the x', y', and z' integrations can be easily evalu-
ated, and the incoherent intensity is given by

3~zc lk+ I
& e+ ll +I

I;(r,co+) =pL i+(8z),
3Eb (co+ ) + 2Kb

where

i+(8z) =cos'8zUzi'+ Ssin'8zUz

(3.17b)

(3.17c)

IV. NUMERICAL RESULTS AND DISCUSSION

The microparticles to be considered in the numerical
0

calculation are silver spheres with radius a & 20 A, where
the quantum-size effect is not important. ' The back-
ground dielectric constant eb and the plasma frequency
co of the silver spheres are, respectively, 5.578 and 3.8
eV. The damping constant v inside the silver sphere is
modified by the free-path effect' and is given by

UF
V —Vg + (4.l)

B,=r XE„and E, is given in Eq. (3.11). The incoherent
part is given by

I; (r, co+)

i nL, ~ ~ I
f+(8'~

8n —inL — — /r —r'f

(3.17a)

—5.0—
ImE1

Ep —10.0—

—15,0—

-20.0
0

I I I

0.2 0.4 0.6
I

0.8 1.0 „/

1
0—

(c)—0.005—

Rey1
—0.010—

yo -o o15—

—0.020—

I gl
I

\

)

(I

—0.25—
—0.50—

y1 -O.75—
yo -1 oo—

—1.25—
—1.50—
—1.75 I

0.2
I I

0.4 0.6 0.8 1-0
r/a

p I
—0.1—

where vg =0.01')p is the bulk damping constant and U~

is the Fermi velocity of the electrons.
For comparison, we plot the linear responses in Fig. 2

for a single silver sphere with a=100 A in vacuum,
which is irradiated by 0.3787-pm laser light of 1 MW in-

FIG. 2. Linear responses of a single silver sphere vs r/a,
a =100 A. The incident laser light is 1 MW at 0.3787 pm. The
magnitude of incident electric field Eo =0.92X 10 statvolt/cm.
(a) Electron density profile (no=3.08X10' cm ), (b) radial
electric field, and (c) radial velocity ( Vo =0.84 X 10' cm/sec).
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In Figs. 3—5 are depicted the second-order responses
with products of linear denominators of the aforemen-
tioned silver sphere for difference- and sum-frequency
generation. To illustrate the surface-enhanced nature,
the frequency of the erst incident laser light is always
tuned to the surface dipole resonant frequency, viz. ,
co, =co&, in order to maximize the enhancement on the
drive terms for the second-order fields. The frequency of
the second laser light is tuned to the vicinity of co&, to op-
timize the second enhancement factor in the drive terms.
Also, the second laser may be tuned to the frequency
co2=-co& —co . The intensity of both incident light beams
are I MW/cm .

All the responses in Figs. 3—5 for the small difference
frequency and the sum frequency at the surface quadru-
pole resonance are well screened, since the frequencies
are below the plasma frequency. The responses in Figs.
3—5 for the sum-frequency generation near 2coz are high-

ly oscillatory.
For quadrupole (1=2) responses, the total charge is

zero and the acoustic condition can be imposed as an ad-
ditional boundary condition (ABC). However, for mono-
pole (1=0) responses, one must ensure the charge conser-
vation and the ABC is the charge neutrality instead of
the acoustic condition. Thus the acoustic condition may
be violated, which implies an electron flow across the
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FIG. 3. Second-order dimensionless electron density profile n2 I (r, co+) vs r/a, a = 100 A. co& =co+, l =0, m =0, for (a), (b), and
(c). l =2, m =0 for (d), (e), and (f). (a) and (d) for difference-frequency generation with co =0.01'~, (b) and (e) for sum-frequency
generation with co+=co =0.3642 pm, and (c) and (f) for sum-frequency generation co~=2co& —0.01'~=0.1904 pm. The units
I +D (co& )D ( co2) for n 2 I ( r, ~+ ) are 1.89 X 10' cm
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boundary of the sphere.
In Fig. 5, we observe that the acoustic condition is

indeed violated for l =0. For the difFerence-frequency
generation shown in Fig. 5(a), the radial velocity at the
surface is nearly equal to the maximum velocity inside
the sphere, where v/co —1. For the sum-frequency gen-

eration near 2coz shown in Fig. 5(c), the radial velocity at
the surface is nearly zero, where v/co+ -0.01. Therefore,
the ratio of the radial velocity at the surface to the max-
imum velocity inside the sphere is of the order of v/co+
for l =0. Also, the l =2 second-order responses in Figs.
3(e), 4(e), and 5(e) are indeed enhanced with respect to the
I =0 counterparts in Figs. 3(b), 4(b), and 5(b).

Finally, the coherent and incoherent intensities for a
slab of tenuous silver microsphere composite embedded
in a dispersive host will be calculated, The configuration
is shown in Fig. 1 ~ The dispersive host is chosen to be an
artificial glass. The first incident frequency cu& is chosen
to be the surface dipole frequency ~& of a silver sphere in

the glass host, viz. , co, =co& =0.4304 pm, with

e& (cps ) =2. 15. The second incident frequency co& is either
tuned to the vicinity of cuz, viz. , f02 =ct)g 0.05ct)p
=0.4608, pm, with ez(co2)=2. 14, or the frequency co&

may be the difference frequency between the surface di-

pole and quadrupole resonances, viz. , co2 =co —co&, with
=0.4 pm and cq(co2)=1.9.

The coherent intensity I, of the sum- (co+ ) or
difference- (co ) frequency generation peaks strongly
near the perfect phase matching, viz. , 6+L 1, where b +
is defined in Eq. (3.14) and L is the slab thickness. The
phase mismatch 5+ defines a coherent length

L„h = I /b, +. Only for L &L„h is the coherent intensity
significant, and it increases more or less quadratically
with L. For a few-mm-thick silver microsphere compos-
ite, a sufficiently long coherent length L„h is only achiev-
able under the perfect phase matching, viz. , 6+=0.

In order to have perfect phase matching, we need the
host dielectric constant e„at the sum (difference) fre-

quency to be less (greater) than E„(co,) and e" (co2). The
incident angle 82 is determined by e„(co+) via the perfect
phase-matching condition. The angle 82 will then set the
coherent angle 8+ through the stationary condition given
in Eq. (3.10c). It is no loss of generality to restrict the
values of Oz to be in the range between 0' and 90', since
the range 90' & Oz

~ 1 80' is just the mirror image of the
former range with respect to the x-y plane. The physical
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FIG. 4. Second-order dimensionless radial electric field X,—& ( r ) vs r /a, a = 100 A. Same configuration treated in Fig. 2. 1 =0,
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APPENDIX A

To solve Eq. (2.7a) for a sphere, we expand the electron
density in the following series:

n~(r, co )= g A& (q a)ii(q r)YI (8,$),
I, m

(A 1)

which is 10 dB above the corresponding incoherent inten-
sity for 1.2~ ez(co+) ~ 2. 1. The coherent intensity of the
sum-frequency generation at coq is 0.05 —0.2 W/cm,
which is 27 —30 dB above the incoherent intensity for
1.75 ~ ez(co ) ~ 2. 1. The coherent intensity at the
difference frequency at co =0.05m is only 1 —10
pW/cm, which is 40—50 dB above the incoherent coun-
terpart for ez(co ) ~ 2.4. For the sum-frequency genera-
tion, the incoherent intensity may still be detectable.
However, for the di6'erence-frequency generation, only
the coherent intensity can be observed with ease.

0

I-
0.8—

z
LLJ

0.6—
4
UJ
O

0.4—b
LLl
K

0.2—

I I

1.2 1.4
I

1.6 1.8 2.0 2.2

(b)

E'b

n, (r, co, )= N(r, co, )A, cos8/D, (co, ),
4mea

(A2a)

Eb
n](r, co~)= N(r, Q)~}A2(sin8pcos8

4vrea

where a is the radius of the sphere, i„(z) is the nth-order
modified spherical Bessel function of q~ =q(~ ), in spher-
ical coordinate r=(r, 8, $), and Y& (8,$) is the spherical
harmonic of order (l, m). Since the co~ laser beam is
linearly polarized in the z direction, n, (r, co, ) consists
only of the I =1, m =0 term. The co2 laser beam is linear-

ly polarized in the e2=(xcos82+zsin82) direction, and

n, (r, co&) contains the I = 1, m =+1 term (see Fig. 1). Ap-

plying the boundary conditions at the surface yields the
following solutions for the first-order electron density at
the two laser frequencies:

1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15
&t ~q) + cos82sln8 c s((o) ) /D ) ( co2 )

(A2b)
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The boundary conditions yield the following expression
for N(r, co) ):

N(r, cu, ) = 3@„(co,)q, ai, (q, r )/Q, i ', (q, a ), (A2c)

D, (co, ) =e„( 1 —1/0, )

where i ', (z) implies the derivative with respect to z, and
the denominator D, (co, ) is given by

2.4 2.6 2.8 3.0 3.2
I

3.4 3.6 +2ez(co, )[1—i, (q a )/0 q ai ', (q a)], (A2d)

FIG. 7. Reduced coherent and incoherent intensities vs

Fg ( ct)+ ) ~ (a) ct)+ =26)g 0.05ct)p. The conversion factors are
29.19 and 0.12 W/cm' for coherent and incoherent intensities.
(b) co+=coq, the conversion factors are 0.23 W/cm and 0.30
mW/cm for coherent and incoherent intensities. (c)
co =0.05coq, the conversion factors are 13.76 pW/cm and 6.65
nW/cm' for the coherent and incoherent intensity. p=10
L =1 mm, and a =100A. E,„(r, co, ) =2„(r, co, ) 3, cos8/D, ( co, ), (A3a)

with 0—:~ (co, +iv)Ice and v is assumed to be frequen-
cy independent. The real part of this important denomi-
nator vanishes at co+. This denominator dominates the
electrodynamics of microparticle composites, whenever
the surface (or Frohlich) dipole mode is excited by
COJ.

—COg.

The first-order electric field E,(r, coi
) is given by
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E]„(I cd2 X '(r cd2) A 2(sin82 cosO

+cos82sinO cosct/) ID] (co2)

E,g(r, co, ) = X—g(r, co, ) A, sinO/D, (co, ),
E]g(r, co2) =Xg( r, co2) A 2(cos82cosO cos/}I]

—sin82sinO) /D] (co2),

E]~(r,co])=0,
E]g(r, co2) = Xg(r, co2) A2cos82sinp

where

X„(r, ciao)=3 e(/co)[1 i', (q —r)IQ i', (q, a)],
Xg(r, co~)=3e/, (co )[1 i](q—r)/II q ri](q a)] .

The first-order electron drift velocity v, (r, co, ) is

v, „(r,co, ) =X„(r,co, )v,pcosO/D, (co, ),
v, „(r,co2) =X„(r,cd2)V2p(sin82COSO

+cos82sinO cos///] ) /D, (co2),

(A3b)

(A3c)

(A3d)

(A3e)

(A3fl

(A3g)

(A3h)

(A4a)

(A4b)

v]g(r, co])= —Xg(r, co, )u]psinO/D](co]),

u, g(r, co2) =Kg(r, cd2)v2p(cos82cosOcos]t]

—sin82sinO) /D, ( co2),

u&](r, co])=0,

v ]g ( I, cd 2 ) — Xg( r, cd 2)v 2p cos 82si np /D ] ( cd 2 )

(A4c)

(A4d)

(A4e)

(A4fl

X„(r,co ) =3e/, (cd, )[1—i', (q r)li ', (q a)], (A4g)

Xg(r, co )=3e/, (co, )[1 i](—q~r)/i I (qua)q r] . (A4h)

APPENDIX B

First, the different components S„+(r') —of the driver
~lin

tertn S—(r) in Eqs. (2.11) depend only weakly on frequen-
cy and do not reAect the surface-mode resonances of the
microparticles, and are defined below:

where Vip= ie—A /m(cd +iv) and the various X„are
defined as

S„+(r)=S„+—(r) —3[—Xg(r, co, )X„(r,+co2)+Xg(r, +co2)X„(r,co, )]L+alr, - (Bla)

S,+—(r ) =N, (r, co, )X„(r,+co2)+N2(r, +co2)X„(r,co, )

(Blb)

+N] (r, co] )X„(r,+co2)co]/(+co2+i v)+N, (r, +co2)X„(r,co] )co2/(cd]+i v }

L +—[X„(r,co—])X'„(r,+co2) Xg(r, co] )X„—(r, +co2)a Ir ] L +—[X„(r,+—co2)X'(r, co] )
—Xg(r, +co2)X„(r,co])a Ir ]

+ ,'(p/cd~a ) [—N](r,co] )N', (r, +co2)+N, (r, +co2)N', (r, co, )],
Sg (r ) =Sgc(r, co],hco2)+Sg&(r, cd], +co2),

S& (r)=S&(r, co], k cd) 2S+&(r, +cd2, cd]),

(B1c)

(B1(l)

and

Sgc(r, co„+co2)=S&(r,co„co2)+Xg(r, +co2)Xg(r, co, )L +—a Ir,
Sgs(r, cd„+co2)=Sgc(r, kco2, co, ),
S&(r, co„+cd2)=N, ( r, co, )Xg( r, +co2) +N, ( r, co, )Xg(r, +cd2)cd] /(+cd2+i v )

X„(r,co])Xg(r, +co2)L ——+ ,'(Pleo a)—N](r,co])N2(r, +co2 a r,

(Ble)

(Blfl

(B1g)

L +—=co [(co,+i v )(+co2+i v) ]

and the primed functions are defined as

/jF(r, cd )
F'(r, cd, ) =a

BI"

(B2a)

(B2b)

Then, to solve Eqs. (2.8) for a sphere, we again expand
n2(r, co+) in terms of spherical harmonics as n, (r, co ):

where the dimensionless linear electron density N](r, co )

is given in Eq. (A2c) and the L —function is defined by

I

n2(r, co+)= /8/ (q a)i/(q+r)Y/ (O, y)
l, m

+ Jdr'[Gz{q+ ~r, r')]I/ S+(r')]/f3 (B3a)

where the integral is an inhomogeneous term and the
coefficients 8I„, are determined by the boundary condi-
tions. The Green's function Gz(q+ ~r, r') is given by

Gz(q, ~r, r')=q+ gi/(q+r )k/(q~r )

I

X Y/* (O', P')Y/ (8,$), (B3b)
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V 4z(r, co+) =0

outside the microparticle, and the Poisson equation

V 4z(r, co+)=4menz(. r, co+)Ieb

(84a)

(84b)

within it. Equation (84) will be solved by expanding in
spherical harmonics. Thus, outside the sphere, we have

where the asterisk implies complex conjugate. The sum-
and difference-frequency fields obey the Laplace equation

order fields should have monopole and quadrupole char-
acters. The second-order electrostatic field should consist
of 1=0 and the 1=2, rn =(0,+1) terms. However, a
monopole field vanishes by change conservation. Hence
only the coefficients for the quadrupole contribute, i.e.,
Dzp(Czp ) and Dz+, ( Cz+, ) are nonzero. Finally, the
second-order drift velocity vz(r, co+) can be expressed in
terms of nz(r, co+) and @z(r,co+) via Euler's equation and
given by

4z(r, co+)= g C( (q+a)r "+"Y( (8,$) .
I, m

(Bsa)

The electrostatic potential inside the microparticle is
driven by the second-order charge density nz(r, co+).
Thus, within this region, we write the second-order elec-
trostatic potential as

ez(r, co+)= gD( (q+a }r'Y( (8, (t)
1, m

—(4me/e(, )f dr'Gp(r, r')nz(r', co+), (85b)

vz(r, co+)—vz (r, co+ )+vz(r', co+ ),
where

vz(r co~)= i[S+(r) (npe/m )V@z(r co+

+P Vnz(r, co+)]Inp(co++iv),

and

1
vz(r, co+) = — n, (r, co, }v,(r, kcoz)

no

(86a)

(86b)

where Gp(r, r') is the Green's function for the Laplace
equation. The coefficients for the various multiple fields,
CI and DI, are determined by the electrostatic bound-
ary conditions at the surface of the microsphere. The
first-order fields exhibit a dipolar character outside the
microparticle, viz. , the electrostatic fields consist of l =1,
m =0 at co&, and 1=1 m =+1 at cu2. Thus the second-

1
n, (r, +coz)v, (r, co, ) .

no
(86c)

Equations (Bl)—(85), along with the boundary conditions
on the drift velocity and the electrostatic potential, com-
pletely determine the unknown coefficients BI, CI, and

Dt . It is a tedious, but a straightforward task to obtain
the following expression for the density n z(r, co+):

nz(r, co+ ) = I + j (477/9) nz pp(r, co+)sin8z Y (p8p)+(16m l45)' nz zp(r, co+)sin8z Yzp(8)

+(2m. /1 )5' nz»(r, co+)cos8z[ Y»(8, $)—Yz, (8,$)]), (87a)

where

I + =eb 2, Azq+a—14nmP D(co, )D. (coz), (87b)

where the denominator Dz(co+), which appears only in
the quadrupole radial density terms in Eq. (87d), is given
by

where q+=[co co+(co+—+iv)]' /P The qu. antity I +,
which has units of density, exhibits resonant behavior if
m, and/or co2 lie near the surface dipole mode frequency
e, . This feature of the second-order density response fol-
lows directly from the drive term S+(r). An examination
of Eq. (87a) reveals the important role of the initial
geometry as manifested in the angle L92. If the two laser
beams are collinear 02=m/2, then the system retains cy-
lindrical symmetry and the electron density is indepen-
dent of P. On the other hand, if the incident laser beams
are orthogonal 02=0, then the I =2, m =0 terms vanish.

The dimensionless functions in monopole and quadru-
pole radial density nz pp(r, co+ ) and n z z (r, co+ ) are given
by

nz pp(r, co+)=i p(q+ r )Jpp&(a, co+)Ii, (q+ a ) —Jpp(r, co+),

(87c)

1
Dz(co+) =2eb 1

0+

+3eh(co+)[I 2iz(q+a )IQ—+q+ai z(q+a )],
(88)

where A~=co+(co++iv)/co~ Note that . Dz(co+) is a
function only of co+, not co, or co2 individually. This
feature follows from the fact that Dz(co+ ) refiects the pos-
sibility of exciting a surface mode if co+ coincides with a
quadrupole Frohlich surface resonant frequency coq.

In Eqs. (87), the functions J( (r, co+ ) are defined as

(r, co+)=k({q+r)j('(r,co+)+i((q+r)j(' (r, co+),

(89a)
where {I,m)=(0, 0), (2,0), and (2, 1), and two functions
Jooz and J2 are defined by

nz z (r, co+)=Jz (a, co+)iz(q+r)/Dz(co+) —Jz (r, co+),

(B7d)

g+ r
Jppz(r, co+)= dr'r' Jpp(r', co+),

a
(89b)
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Jz (r, co+)=[3mb(cd+)+2mb]

(a, co+ )/iz(qua )

difference frequencies in the vicinity of the microparticle.
Inside the particle, the various components of the electric
field are given by

Ez (r cd+ ) =Ezp [ (477 I9 ) sin82 Ypp(8)X„pp(r )

with

+ ~b(cd~) z s(a cd+)III+i'2(q+a), (89c) +(16m./45)'c sin82 Yzp(8)X„+—zp(»)

—(2'/15)' cos8z
Jl' (r, co+)=kI (q+r)jI (r, cd+)+iI'(q~r)JI (r, co+),

(89d)
X [ Yzt(8, $)—Yz, (8,$)]X„—2~(r ) I,

(Bl la)
q+

Jznls( ~+) 4 d Jzm(r &~a) '
0

The functions jI ( r, co+) and j I (r, co+) are given by

j~(r, co+) =(q+ la ) dr'r' i p(q+r')S„(r'),
0 00

(89e) Eze(r, cd+) =Ezp[ —sin82sin28X& zp(r )

+cos82cos28cosPX& z, (r )],
Ezp(r co+) zpcos82cos8sjnNX9~21(r

(8 1 lb)

(Bl lc)

a
jpp(r, co+) =(q+ Ia ) dr'r' k p(q+r')S„+—(r'),

(810a)
E2p =477e r /~, q + (812)

jz (r, co+)=(q+ la ) dr'r' i 2(q+r')S„+—(r')
0 20

+(3/a )f dr'r'iz(q+r')Se (r'),

(8 lob)

(810c)

and

jz (r, co+)=(q+la )f dr'r' kz(q+r')S„+ (r')

+(3/a ) f dr' r'kz(q+r')Se (r'),

Thus the second-order electric fields have r, 8, and P
components. This complex polarization structure arises
from the fact that the incident fields for the noncollinear
configuration break the cylindrical symmetry of the sys-
tem, a point which is underscored by the fact that the P
component of the electric field vanishes; viz. , the cylindri-
cal symmetry is restored, if the two laser beams are col-
linear (i.e. , 82=m/2). The functions X,+—

, (r) are dimen-
sionless field strengths which are defined by

X„+—pp(») =(a Ir ) Jpp&(», co+)

where

(81od) —Jpps(a, cd+)i, (q+r )li, (q+a ),
X„+—2~(») =2g+Xz~(a, cd+)r/a

(813a)

So (r) = 6Ssc(r, cd„+cdz)+S—ss(», co„+coz)+—6So (r),

(810e)

+Xz (r, co+) ,'Xz,„G(r,cd+), ——

Xo 2 (r, co+) = Q+ Xz (a, co+)r/a

(813b)

and the rest of S„+ (r) are giv-en in Eqs. (81).
~Im

Next, we focus on the electric component of the
second-order electric fields oscillating at the sum and

I

—[Xz (r, co+)+Xz G(», cd+)]/3, (813c)

where Q+ =[eb(cd~) —eb]I[3eb(cd+)+2mb]. The func-
tions Xz (r, co+) and Xz G(r, co+) are defined as

Xz (r, co+)=—,'[(air) Jz s(r, co+) —Jz (r, cd+)i3(q+1)/Dz(co+)]

Xz G(r, co+)= ,'[q+»J2 a(r, cd+) ——Jz (r, co+)[i, (q+r) —i, (q+a)r/a]/Dz(co, )],
(814a)

(814b)

with Jpps, Jz s, and Jz s given in Eqs. (89b), (89c), and
(89e), and

0
Jz~o(r, co+) = dr' J2~(r', co+)/r' . (815)

The electric field inside the microparticle has two pos-
sible frequencies where a surface-mode resonance can be
excited. Specifically, the presence of the I + factor im-
plies possible resonant enhancement of the field if co,

and/or co& coincide with the surface dipolar mode. Fur-
ther, the D2{co+) resonant denominator in Eqs. {B14)im-
plies that the quadrupole surface mode at co+ can also
amplify the field. In actual practice, it is not possible to
have all three frequencies co], co2, and ~+ coincide with a
Frohlich resonance for the second-order processes dis-
cussed here.

Outside the microparticle, the electric fields are qua-
drupolar in nature. In the near (static) zone, the electro-
static potential of a sphere is given by
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4~(r, co+) =—,
' [(16tr/45)'r Y~p(0)Q„

—(2sr/15)' [Y~, (0,$)

pole moments and given by

U2 = r dr n2 ~ (r, co+)
a 4

0
(B18a)

(B16)

= [Jz (a, co+)i 3(q a )/D2(to+)

—J, s(a, co )]/q~a . (B18b)

Q„=—16srel +sin82U2pa /3[3eb(co+)+2eb],

Q„= 4'—el cos02U2, a /[3eb(co+)+2eb]

(B17a)

(B17b)

where U2 is the dimensionless function in the quadru-

The components of the quadrupole moment Q„„ in terms
of the dimensionless quantities U2, are given by As expected, the quadrupole moments and the electro-

static field outside the microparticle are also surface
enhanced if either of the frequencies co, or co2 coincides
with the surface dipole resonance (from I+) or to~ with
the surface quadrupole resonance from Dz(to+ ).

The second-order electron drift velocity vz'(r, co+) in
Eq. (B6a) is given by

v2'„(r, co+) = Vzp[(4'/9)' sin02 Ypp(0)X~pp(r )+(16sr/45)' sin02 Y2p(0)X„2p(r)

—(2sr/15)' cos02[ Y2)(0,$)—Y2 ) (0,$)]Xg q)(r) ),
v2'g(r, co+)= V2p[ sin02sin20Xg~zp(r)+cos02cos20cosPXg~2&(r)],

v py ( r co+ ) = V2pcos0zcos0sinPX& 2, ( r )

(B19a)

(B19b)

(B19c)

where

V2p = i P q—+ I + /n p(to++i v ), (B20)

Xg z (r ) =a z (r) —Cz Sg,2p(r)

X~ 2,(r)=t 2~, (r) —C~, Sp ~, (r),
(B21c)

(B21d)

Jpp(" to+ )+X„pp(r )qTF /q+ (B21a)

and the dimensionless functions X, t (r ) are given by

X„pp(r ) =Jpps(a, co+)i, (q+r )/i, (q+a )

where Joo&, Joo, J2, D2, S 2, and S& 2& are defined pre-
viously in Eqs. (B8), (B9), and (B10), X,—t are the dimen-
sionless field strengths given in Eqs. (B13), qTF =co&/P,
and

X, 2 (r) =J2 (a, co+)i2(q+r )/D2(co+)

—J', (r, co+)+X,+—, (r)qT„/q+, (B21b)

2C~p =C2, = 1/q+a ",
o~ (r)=n2 2 (r, to+)/q+r+Xg 2 (r)qTF/q+ .

(B22a)

(B22b)
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