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It is shown that, in modulated magnetic resonance on spin-% systems, the time-averaged absorp-
tion signal of the optical pump beam can be obtained directly from the dressed-atom energy eigen-
values of the Floquet Hamiltonian for arbitrary orientations of the optical pump beam, namely, by a
straightforward generalization of Shirley’s well-known result [Phys. Rev. 138, B979 (1965)]. Analyt-
ical and numerical results derived from this generalized diagonalization technique are compared
with the vanishing damping solution of the Bloch equations from the preceding paper [W. M.
Ruyten, Phys. Rev. A 42, 4226 (1990)] and are shown to be in complete agreement with the latter.

I. INTRODUCTION

In the preceding paper, to be referred to as Ref. 1, we
have studied in detail the resonance behavior of a two-
level system driven by either amplitude-modulated or
frequency-modulated optical fields, or by a combination
of static and oscillating magnetic fields. In particular, for
the magnetic-resonance geometry, we have investigated
how the absorption of the circularly polarized optical
pump-beam depends, in general, on the orientation of the
pump beam with respect to the magnetic fields. Al-
though the analysis in Ref. 1 is based on solution of the
Bloch equations, namely in terms of matrix continued
fractions, we have frequently referred to the concept of
level crossings in a dressed-atom energy-level diagram.
This concept arises not in the Bloch equation formula-
tion, but rather in formulations where the eigenvalues of
the field-atom system (the dressed atom) are determined,
for example, by diagonalizing the Floquet Hamiltonian.
Specifically, a well-known result, first obtained by Shirley,
states that the time-averaged transition probability P,,
between two states @ and b in such a system can be ob-
tained from the dressed-atom energy eigenvalues g by the
simple expression’
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where g is the level spacing of the spin-1 system in the
absence of the oscillating field (that is, for the case of
magnetic resonance, w,=7y H, where y is the gyromag-
netic ratio of the spin-1 system, and H|, is the magnitude
of the static magnetic field). But since the energy eigen-
values ¢ do not depend on the pump-beam orientation
(they do depend on the relative orientation of the static
and oscillating magnetic fields), the question arises how
Eq. (1.1) can be modified to take into account the pump-
beam dependence of the resonance behavior of the sys-
tem. It is the purpose of this paper to show that this gen-
eralization can, in fact, be arrived at in a very simple and
straightforward manner, namely by the substitution

30, (1.2)

in Eq. (1.1), where e, is a unit vector along the pump-
beam, and w ,=yH, is the Rabi frequency vector associ-
ated with the static magnetic field H,. After formally es-
tablishing this result in Sec. II, some numerical calcula-
tions are performed in Sec. III to show that, indeed, the
results obtained with Egs. (1.1) and (1.2) are in perfect
agreement with the results obtained in Ref. 1 using the
vanishing damping continued-fraction (VDCF) solution
to the Bloch equations. Specifically, it is shown that the
special field geometries that lead to pump-beam-
independent resonances can be easily inferred from the
three-dimensional dressed-atom energy-level diagram of
the system. In Sec. IV, the generalized diagonalization
results from Eqgs. (1.1) and (1.2) are used to confirm some
results from the VDCF calculations analytically, namely
the shifts of the multiple quantum resonances from the
weak-field values w,=mw (where m is an integer and w is
the modulation frequency of the oscillating magnetic
field), and, also in the weak-field limit, the expression for
the transition probability itself. Section V presents a
brief conclusion.

II. GENERALIZATION
OF THE DIAGONALIZATION TECHNIQUE

Solving the Bloch equations for a magnetic- or optical-
resonance problem, as is done in Ref. 1, is only one possi-
ble approach to studying the resonance behavior of a
modulated interaction. Other approaches that have been
used, and are mentioned in Sec. III of Ref. 1, are those
based on a resolvent formalism,>” > continued-fraction
perturbation theory,® and unitary transformations of
coordinate frames.” Here we consider Shirley’s method
of diagonalization of the Floquet Hamiltonian.?
Specifically, we show how this method can be generalized
to account for an arbitrary orientation of the optical
pump-beam in a magnetic-resonance geometry as shown
in Fig. 1.

Figure 1(a) depicts the same geometry as that of Fig. 1
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FIG. 1. General magnetic-resonance geometry defined in two
different coordinate systems, namely with the oscillating field
H,cos(wt) along the z axis (a) and the static field H, along the Z
axis (b), respectively. In (a), the components of the static field
and of the pump-beam vector e, along and transverse to the os-
cillating field are denoted by H and ¢ and by H, and e, re-
spectively. In both cases, €, is the projection of the pump-beam
vector on the plane defined by the two magnetic fields, at angles
x' with the z axis and Y’ — 3 with the Z axis, respectively.

in Ref. 1. That is, the oscillating radio-frequency (rf)
magnetic field is along the z axis in a Cartesian coordi-
nate system, and is denoted by H,cos(wt), where o is the
modulation frequency. The static magnetic field H, is in
the xz plane, making an angle J with the rf field. Finally,
the propagation direction of the optical pump beam is
denoted by the unit vector e,, and is specified by the po-
lar angles Y and ¢ with respect to the xyz system.

Following Yabuzaki et al’s treatment,* it is con-
venient to define the Hamiltonian for this problem in the
alternative coordinate system shown in Fig. 1(b), namely,
one in which the static magnetic field is along the Z axis,
and the oscillating magnetic field is in the XZ plane,
namely, at an angle —¢ with respect to the static field (in
Yabuzaki et al., the oscillating field is oriented at an an-
gle +9 with respect to the static field;* however, the po-
sitions and the shifts of the various multiple quantum res-
onances are independent of the sign of ). In the XYZ
system, the orientation of the pump-beam unit vector e
is now specified by the polar angles ¢ and 7, and the
Hamiltonian for the interaction can be written as (taking
#i=1)
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where f[o and V are the zero-oscillating field and the os-
cillating field interaction Hamiltonians, given by

Ho=wol, +wa'a , 2.2)

and

V=2T-(ae,+a Te¥), (2.3)
respectively, where w,=vyH,, is the static field Rabi fre-
quency, @ and @ * are creation and annihilation operators
of the radio-frequency photons, A is the coupling
coefficient (given, for large average photon numbers N, by
A=w,/2N "> _where w,=yH, is the oscillating field
Rabi frequency), and e; =(—sind,0,cos?) is a unit vector
in the direction of the radio-frequency field. Lastly, in
Egs. (2.2) and (2.3), J and J, are the total spin operator of
the spin-1 atom, and its projection on the static magnetic
field Hy. The eigenstates of the Hamiltonian #/, from Eq.
(2.2) are denoted by the product states |+,n)
=|+)®|n), where the states |+ ) and |—) are the
eigenstates of the atom in the static magnetic field, and
the states |n) indicate photon states of the oscillating
magnetic field. These eigenstates and their associated ei-
genvalues are given by*

Holt,n)=(notloyl+,n), (2.4)

where it has been assumed that the energy eigenvalues of
the unperturbed atom are given by *lw, In terms of
these eigenstates, the nonvanishing matrix elements of
the interaction Hamiltonian <V from Eq. (2.3) are given
by

(+,n V|t,n—1)=(+t,n—1|V|+,n)

==+V cos?, (2.5a)
and
(£,n| V| Fon—1)=(F,n—1|V|+,n)
=—Vsind , (2.5b)

where, for large average photon numbers N, V=1lo,.
With Egs. (2.4) and (2.5), the Floquet Hamiltonian, rela-
tive to the dressed-atom eigenstates |*,n ), becomes [see

H=H,+V , (2.1)  Eq. (41) in Ref. 4]
J
[+,n—=1) |—=,n—=1) |+,n) |—,n) |+,n+1) |—,n+1)
|+,n—1) loy—o 0 B A 0 0
g = |[—,n—1) 0 —q0y—w A —B 0 0
F™ 4,n) -+ B A log 0 B 4 :
|—,n) A4 —B 0 —lo, A —B
|+,n+1)| -+ 0 0 B A logto 0
|—,n+1) 0 0 A —B 0 —loyto
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where A =—Vsind and B =V cosd. (Because of their
slightly different definition of the angle ¢, 4 =+ V sind
in Yabuzaki et al.’s work.*)

Diagonalization of the infinite-dimensional Floquet
Hamiltonian from Eq. (2.6) yields two infinite sets of

dressed-atom energy eigenvalues qﬁ,k) and q};"). Since the
sets are periodic (that is, ¢'*; " =¢ ¥ +1w) and comple-

mentary to each other (that is, ¢'¥’ +¢’ =0), it suffices

to consider only one branch of eigenvalues, say, those
with values between 0 and {, denoted by ¢:

quLk]—kw—*q(Bk’—kw . 2.7
The ¢’s depend on the interaction strength w, (or V), the
static Rabi frequency w,, and the angle J between the
static and the oscillating magnetic fields. For example,
Fig. 1 in Ref. 8 displays three-dimensional plots of g for
several fixed interaction strengths w, as a function of the
static field Rabi frequency components @;=w,cos? and
o, =wgsind, that is, the static field Rabi frequency com-
ponents along and perpendicular to the oscillating field,
respectively [see Fig. 1(a)].

From Shirley’s well-known formula, given in Eq. (1.1),
the time-averaged transition probability between two
states @ and b can be found directly from the dressed-
atom energy eigenvalues. In the work of Yabuzaki and
co-workers,*® which was carried out with an optical
pump beam perpendicular to the oscillating field (but in
the plane defined by H, and H,), the two states a and b
are associated with the atomic eigenstates |+ ) and | — ),
and, although this is not mentioned or discussed explicit-
ly in their work, the differentiation with respect to @, in
Eq. (1.1) is replaced by differentiation with respect to the
static Rabi frequency component o, perpendicular to the
oscillating rf field (calculation shows that only in this case
are Yabuzaki and co-workers’ numerical results reprol-

B 4 B cosy+ A4 siny cosn
A —B | |—Bsiny+ 4(cosy cosy—i siny)
and
twgtno 0
0 —twythnew
to'+tnow —lo)
— —lo,  —lojtne |’ (2.10b)

respectively, where the new parallel and perpendicular
projections of the static field Rabi frequency components
are defined as @ = wqcosy and w| = wesiny (recall that the
original components w; and w, constitute projections of
the static field Rabi frequency vector w, with respect to
the oscillating rf field, not the optical pump beam).
Having obtained the Floquet Hamiltonian with respect
to the new dressed-atom basis states |*=',n ), the impor-
tant observation is that Shirley’s method of diagonalizing
the Floquet Hamiltonian and subsequently computing the
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duced correctly).

Up until this point, it may be observed, the orientation
of the optical pump beam has not been taken into ac-
count. However, as shown in Ref. 1, the resonance be-
havior of the spin-1 system depends significantly on the
pump-beam orientation. Specifically, the absorption of
the optical pump beam is proportional to the projection
of the magnetization of the spin-I system along the
pump-beam propagation direction e, [see Eq. (2.5) in Ref.
1]. This means that the appropriate eigenstates for this
problem are not the states |+ ) and |—), which are
eigenstates of the projection operator J -~ along the static
magnetic field, but of the states |+’) and |—'), which
are eigenstates of the projection operator jp, defined
along the pump-beam propagation direction. With
respect to these latter eigenstates, the Floquet Hamiltoni-
an becomes, in terms of the Hamiltonian from Eq. (2.6),

He=R'H R , (2.8)

where the rotation matrix R is given, in terms of the po-
lar angles ¥ and 7 from Fig. 1(b), by’

—1n/2 —im/2

cosiie —sinlye

R= | i1 ge +inr2 coste 1 | (2.9)
[Actually, R is an infinite-dimensional matrix, whose only
nonvanishing elements are two-by-two blocks along the
diagonal as given in Eq. (2.9).] In writing Eq. (2.9), we
have conformed to Messiah’s notation, substituting for
the Euler angles a, f3, and y in Ref. 9 the values 7, ¢, and
0, respectively. Since the rotation matrix from Eq. (2.9)
operates on the atomic eigenstates |+ ) but not on the rf
photon states |n ), it follows that the matrix # from Eq.
(2.6) transforms in two-by-two blocks. Namely, the non-
vanishing off-diagonal and diagonal blocks transform un-
der the rotation R as

—B siny+ A (cosy cosn+1i sinn)
— B cosyy— A siny cosn ’

(2.10a)

f
time-averaged transition probability between two atomic
states (here, | +',n ) and | —',n )) by differentiation of the
dressed-atom energy eigenvalues remains essentially
unmodified. Indeed, the crucial step in the derivation of
Eq. (1.1) is that there exists a variable y for which the
operator 3£ /9y is diagonal with respect to the basis in
which # is expressed.’ Indeed, from Egs. (2.10), it fol-
lows that the new parallel Rabi frequency o] satisfies this
property, namely,

,n) . (2.11)

Thus, following the identical steps that led to Eq. (1.1),
the time-averaged transition probability between the two
states a'=|+') and b'=|—") (or vice versa), represent-
ing the absorption of the optical pump beam on propaga-
tion through the spin-1 system, is given by
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1
Pyy=> : (2.12)

where the ¢’s are the eigenvalues of the Floquet Hamil-
tonian given by Egs. (2.10) (actually, as discussed at the
end of Sec. III, the absorption signal is proportional to
the “no-transition probability” P,.,.=1—P_,.).

From Egs. (2.10) and (2.12), it is possible to calculate
the absorption of the optical pump beam for arbitrary
orientations of the magnetic fields and of the optical
pump beam. However, we now show that this absorption
signal can be obtained directly from Yabuzaki et al’s
original Floquet Hamiltonian, given in Eq. (2.6), even
though this Hamiltonian does not depend on the orienta-
tion of the pump beam. To this end, we observe that the
eigenvalues g from Eq. (2.6) and ¢’ from Eq. (2.10) must
be identical, since the rotation matrix R from Eq. (2.9) is
unitary. Furthermore, we observe that, if some function
f is defined in a (three-dimensional) Cartesian coordinate
space, the scalar product a-V f, where a is some vector in
this coordinate space, is independent of the choice of
coordinates:

a-Vf(x)=a-V'f(x'), (2.13)

where V and V' represent differentiation with respect to
the coordinates x and x’, respectively, and a and a’
represent the same vector, expressed in either coordinate
system. Associating the eigenvalues g and ¢’ with the
function f, associating, furthermore, the coordinates x
and x’ with projections of the static magnetic field H, on
three mutually orthogonal axes [namely, those in the
original coordinate system from Fig. 1(a) and the rotated
system in which Egs. (2.10) and (2.12) are expressed, re-
spectively], and, lastly, associating the vectors a and a’

from Eq. (2.13) with the pump-beam vector e,, we can
write

x=(o,0,0;), a=e,=(¢,e;,0), (2.14a)
and

x'=(o),0),0)), a'=e,=(1,0,0), (2.14b)

respectively, where e, =e, and e, =e, are the projections
of the pump-beam vector e, along and perpendicular to
the oscillating magnetic field H, in Fig. 1(a). From Egs.
(2.13) and (2.14), we then conclude that

aq’ 9q d

’ ’ r — [r— q
=e’. =e -Vg=—L-p¢ +—2 ¢ . 2.
;‘ e,"V'qg'=e,-Vgq H e ) e, (2.15)

This is exactly the generalization of Shirley’s result, con-
stituted by Egs. (1.1) and (1.2), that we set out to prove.
That is, for arbitrary pump-beam orientations e,, the
time-averaged transition probability associated with the
absorption of the optical pump beam on propagation

through the spin-J system is given by

99, , 9q

1—4 .
do, ' dw,

(2.16)

It should be noted that the choice of coordinate system in
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which the Rabi frequency vector @, is expressed is com-
pletely arbitrary, and the choice on the right-hand sides
of Egs. (2.15) and (2.16) are for convenience only [much
of the discussion on the resonance behavior of this system
has been in terms of the static field Rabi frequency com-
ponents o, and o), associated with the projections H
and H of the static field with respect to the oscillating
field in Fig. 1(a)]. Note that, by Eq. (2.16), the term
dg /w, in Shirley’s formula from Eq. (1.1) may be re-
placed, for the much studied magnetic-resonance
geometries with the pump beam along and perpendicular
to the oscillating magnetic field, by dg /3w, and d¢ /dw,,
respectively, thereby justifying Yabuzaki et al’s choice
(dq /8w, ) in Refs. 4 and 8.

III. NUMERICAL RESULTS

In this section we discuss some numerical results, ob-
tained with the generalized diagonalization technique,
and compare the results to those obtained with the van-
ishing damping continued-fraction solution of the Bloch
equations from Ref. 1.

First, Fig. 2 shows a typical three-dimensional energy-
level diagram, similar to those in Fig. 1 of Ref. 8, in
which the dressed-atom eigenvalues g are displayed, for a
fixed interaction strength w,;=2w, as a function of the
static Rabi frequency components o, and o, The
displayed values of g belong to one of the two central
branches of eigenvalues, obtained by truncating and di-
agonalizing the Floquet Hamiltonian from Eq. (2.6) at
n =110 terms. By Eq. (2.16), the time-averaged transi-
tion probability P,.,. is independent of the orientation of
the pump beam if the condition

O _ 9dq _

dw, OJw,

(3.1

FIG. 2. Three-dimensional rendering of one branch of the
dressed-atom energy eigenvalues g as a function of the two stat-
ic field Rabi frequency components w; and w, (in units of the
modulation frequency w), for an interaction strength o, =4w.
Dashed and solid curves indicate points for which dq /3w, =0
and dq /3w, =0, respectively. Closed and open symbols indicate
level crossings and saddle points, respectively, and are labeled in
the same way as the corresponding points in Fig. 7(a) in Ref. 1.
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is satisfied. In Fig. 2, the points for which d¢g /dw,=0
and dq /3w, =0 are indicated by dashed and solid curves,
respectively. The intersections between these curves then
give the locations of the points (w,®, ) for which the con-
dition from Eq. (3.1) holds. These intersections fall into
two categories, namely, those that correspond to level
crossings in the dressed-atom energy-level diagram (the
solid symbols in Fig. 2, for which ¢ =0 or ¢ =3), and
those that correspond to level anticrossings, but are lo-
cated at saddle points in the same diagram (open symbols
in Fig. 2—actually, it is not obvious that these points
correspond to saddle points, rather than local extrema;
since all our calculations do, however, show these points
to be saddle points, we shall refer to them as such
without further justification). The level crossings are
given by the well-known parametric resonances for o, =0
and o =pw (with p a nonzero integer), the Haroche reso-
nances (namely, at w,;=0), and the Haroche-like reso-
nances (namely, at o =po, with ©,70). Indeed, these
level crossings have been observed, at the same locations,
for pump-beam orientations both along'® and perpendicu-
lar*® to the oscillating magnetic field. Like the level
crossings, the saddle points also occur for both zero and
nonzero values of w,. The former are given by the well-
known multiple quantum resonances, and the latter,
termed simply saddle-point resonances, were first dis-
cussed in Ref. 1. Numerical calculation shows that the
locations of these various special points, namely at which
the condition from Eq. (3.1) holds, are in exact agreement
with the values of @, and , at which the pump-beam-
independent resonances were found using the VDCF
technique from Ref. 1 (compare the special points in Fig.
2 with those in Fig. 7 in Ref. 1). Also, the dashed and
solid curves in Fig. 2 are in exact agreement with the
similarly coded curves in Fig. 7 in Ref. 1 which corre-
spond to pump-beam orientations with e,||H; and e,1H,,
respectively.

Of course, not only the positions of the various reso-
nances can be found from Eq. (2.16), but also the transi-
tion probabilities themselves. The results of such a calcu-
lation are shown in Fig. 3, which displays the quantity
P,., from Eq. (2.16) as a function of the parallel Rabi fre-
quency o, for fixed values w, and w,, and for various
pump-beam angles ' [as in Ref. 1, ' is the angle be-
tween the static magnetic field H, and the projection of
the pump-beam vector e, on the plane defined by the two
magnetic fields, that is, the xz plane in Fig. 1(a)]. This
calculation, carried out by truncating the Floquet matrix
from Eq. (2.6) at n =+10 terms and evaluating the
derivatives in Eq. (2.16) as finite differences (with a step
size of 107 3w), is found to be in agreement with the
VDCEF solution from Ref. 1 to better than one part in one
thousand for all points in Fig. 3. That is, by numerical
calculation, the time-averaged transition probability P,.,.
from the generalized diagonalization technique is found
to be related to the vanishing damping, time-averaged ab-
sorption signal (S'?)¥P as

Py =1[1=(S'P], v, =y,=1 (3.2)

where, according to Egs. (4.12)-(4.20) in Ref. 1, the
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VDCEF absorption signal is given by

2
VD _ (we, tae,)

(8'%) . , (3.3)
atoif
with
a=w +o(XP),,, (3.4)
B =7 t2(X\")y , (3.5)

and the matrix continued fractions X{*' and X{" follow
by backward iteration of

(0) 2 _w” k —w%/k (0)
XP=1"\ i o, . O (3.6)
1 |
and
0 7, twl/k?
X=X ], 0 + X | X 3.7

However, as indicated in Eq. (3.2), the two methods are
found to be in general agreement only for unit damping
ratios y,, and v, in the VDCF solution. This result, al-
though not trivial, is quite plausible since, in contrast to
the VDCF method, no damping terms appear in the
derivation of the generalized diagonalization results. Fig-
ure 4 shows explicitly that, although the positions of the
1

resonances (the points for which P,,.=1) are indepen-

dent of these damping ratios, the results from the VDCF

4 90°

FIG. 3. Time-averaged transition probabilities for fixed
values , =2w and w, = as a function of the parallel Rabi fre-
quency wj (in units of w), for various pump-beam angles y’. The
thin, dot-dashed curves show the approximations given in Eq.
(4.12). The solid curves are found both with the generalized di-
agonalization technique and the VDCF technique from Ref. 1.
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solution do, in general, depend on the values of y,, and
7,.- Note that, since the absorption of the circularly po-
larized pump beam takes place only from the excited
state level that was originally populated by the pump
beam, the absorption signal should be proportional to the
probability P, ,,=1—P,,., that is, the probability that
the atom remain in its original state, as is indeed found in
Eq. (2.3). The factor { in Eq. (2.3) then is due merely to
the normalization of the respective quantities in the two
methods.

Finally, it should be mentioned that, although the two
methods give identical results, the VDCF solution is
much less computationally intensive than the diagonali-
zation method, and that, furthermore, it allows damping
to be taken into account more easily, namely, by solving
the Bloch equations in terms of continued fractions
without taking the vanishing damping limit.

IV. CALCULATION OF SOME ANALYTICAL
RESULTS

Although the exact agreement between the numerical
results from the VDCF solution from Ref. 1 and the
present, generalized diagonalization technique would
seem to establish the correctness of both methods beyond
all reasonable doubt, it is of interest to derive also some
analytical results from the generalized diagonalization
technique, and compare these with the results from the
VDCEF solution. Thus we derive in this section expres-
sions for the lowest (second) -order shifts of the system’s
multiple quantum resonances from the weak-field reso-
nance conditions wy=mw, and for the transition proba-
bility P,.,., also in the weak-field limit.

To obtain expressions for the shifts of the multiple
quantum resonances, we use here a perturbation method
described by Salwen'' and used by Shirley.” In it, the
infinite-dimensional Floquet Hamiltonian from Eq. (2.6)
can be approximated by a two-by-two matrix H.
Specifically, near a resonance between two dressed-atom
eigenstates |a) and |B) of the unperturbed Hamiltonian
H, from Eq. (2.2), the elements of H are given, in terms
of the Floquet matrix # from Eq. (2.6), by

0.5
Py

0.4

0.3

0.2 1

0.1

0 1
4w“5

FIG. 4. As Fig. 3 for a pump-beam angle y’'=/4, but for
several values of the damping rates y,,,y,, in the VDCF solu-
tion from Egs. (3.2)-(3.7). The thin, dot-dashed curves show
the approximation from Eq. (4.13), and are labeled with the
value of y,,.
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i (H ) H ),
H’“':(j-[F)‘u\,—-{— E T HsT TSV

4.1)
Era B %_(ﬂr)gg

, mv=a,f

where g, is an approximation for the exact eigenvalue g
near the resonance. Identifying the generic states |a)
and |B) with the actual states |+,n ) (with unperturbed
eigenvalue g, =1w,) and |—,n +m ) (with unperturbed
eigenvalue g3= — 1w, +mw, where m is an arbitrary in-
teger), respectively, and setting g, =¢q,=qz=t©, (Which
is approximately true near the resonance condition
wy,=muw), the elements of H become, as a function of the
photon number m,

HW="1w,+(4%/0,, , (4.2a)

ﬁ'ﬁ’"’=—%w0+ma)—(z42/w)cm , (4.2b)
and

g%’:ﬁ‘ﬁ’g’zAB,,,‘,l—m(AB/w)&m,z, (4.2¢)

where A and B are as defined following Eq. (2.6), and the
coefficients c,, are given by

|mz2, m=x1,

€m = \2m /(m?—1) otherwise .

4.3)
As an example of the calculations leading to Egs. (4.2)

and (4.3), we observe that, for the single photon reso-
nance with m = +1, Eqgs. (2.6) and (4.1) yield

B? A? B?

— 1 1 — 1 —_
Go—500t® gytioyte gy 3wy

ry (1) __ 1 —
H ?w()

aa

B A B _a®

= , 4.
P 4.4)

W 20

where the approximations g,=~w,~w have been used.
With Egs. (4.2), the approximate values g m) of the per-
turbed eigenvalues of H are given by

§'">~Imot[(0g—mo+2c, A*/0)+442]"*,
(4.5)

where A represents the quantity on the right-hand side of
Eq. (4.2¢). Using the results

aO)O dw,

—— =cos1}, —2 =sind , (4.6a)
do, ©,
and
2 2
%f) o~ — 2:: sin?d cosd ,
I
342 22 (4.6b)
3 o sind cos’d
w, ©

the resonance shifts of the m-quantum resonances now
follow, by Eq. (2.16), from the condition e,-Vg "'=0, or
(8 '™ /3w, )e, +(37 "' /3w )e, =0. With Egs. (4.3),
(4.5), and (4.6), and substituting e, ~cosy’ and e, ~siny’,
we thus obtain
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wo=t[w—(V?/w)sin*}
+(4V?/w)sind cosd tan(F—x")] , (4.7)
for the m ==*1 resonances, and
v=mo——T_yiinZy | (4.8)
m-—1
for the m-quantum resonances with m==*1. Compar-

ison of Eqgs. (4.7) and (4.8) with the results from the van-
ishing damping continued-fraction calculation [Egs.
(5.3)-(5.7) in Ref. 1] shows that, to order V2, exactly the
same shifts are obtained using the generalized diagonali-
zation technique, including the pump-beam-dependent
term for the single quantum resonances. Note that it is
exactly the first-order off-diagonal element 4 = — V sind}
in Eq. (4.2¢) that gives rise to the pump-beam-dependent
shift for the single quantum resonances. By comparison,
although the m =2 resonances also have a nonvanish-
ing matrix element, namely, 4 = =( V?/m)sin2d, this ele-
ment is of second order in the interaction strength ¥, and
contributes only to the next higher order (fourth-order)
shift of the m =2 resonances. Generally, for small in-
teractions, the interaction strength for the m-quantum
resonances is proportional to V2™ [for |m|> 2, this fol-
lows from Eq. (4.1) only in higher-order perturbation
theory], and the lowest pump-beam-dependent shift is of
order V3" as was already established in Sec. IV of Ref.
1.

It deserves mention that Salwen’s perturbation tech-
nique is very closely related to (but precedes, by a decade
or so) the resolvent formalism, developed by Cohen-
Tannoudji.>~> In this formalism, the resolvent of the
Floquet Hamiltonian % from Eq. (2.6), projected onto
the same states |a) and |3) that are assumed in Eq. (4.1),
takes the form
—Hy—R(@)]7",

G(g)=|q (4.9)

where the so-called level shift operator R, as a function of
the (eigen)value ¢, can be expanded as

Q

R=V+PV
q—H,

YVP+ -, (4.10)

and where the projection operators 7 and @ are defined
as 73=|a)(_a|+|ﬁ)(ﬁl and @=1—2 (in terms of these
operators, #,=PH,P and V=PVP, where #, and V
are the operators from Egs. (2.2) and (2.3)—for conveni-
ence we have omitted the carets). Comparison of Eq.
(4.10) with Eq. (4.1) shows that the two expressions are
almost identical. Indeed, the diagonal elements of R are
equal to the interaction parts on the rxght hand 51des of
Egs. (4.2a) and (4.2b), namely, R RBB (A2 /w)c,,

However, it is not clear how the resolvent formalism can
be used to determine the shifts of the resonances in an ab-
sorption experiment with an arbitrary orientation of the
optical pump beam relative to the magnetic fields.
Specifically, the zero-oscillating field Hamiltonian %,
from Eq. (2.2) is no longer diagonal with respect to the
states |+',n ) projected along the pump beam, as follows
from the transformed two-by-two matrix in Eq. (2.10b).
Note that, for Salwen’s Eq. (4.1) to be used, the matrix
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Ffr must be diagonal also. In this case, however, the
pump-beam dependence of the resonances follows after
the eigenvalues of the Floquet Hamiltonian have been
determined.

Using Salwen’s technique, higher-order corrections to
the shifts of the resonances may be obtained as well. To
do this, one must first calculate the perturbed states |a’)
and |B’) (to order ¥?) in terms of the unperturbed states
|la) and |B), and substitute the new, perturbed matrix
elements (#),,. (with y,v=a',B') into the right-hand
side of Eq. (4.1). We will not pursue this approach here.
However, we do want to show that, for weak interactions,
another analytical result can be derived easily, namely for
excitation far off resonance. To this end we observe that,
for weak interaction, the eigenvalues of the dressed atom
are given approximately by

g=tloytno . (4.11)

From Fig. 2 it follows that this expression is a good ap-
proximation for the eigenvalues not only for small values
of the interaction strength, but also for relatively large
values of the rf Rabi frequency w,, as long as v, R w,, that
is, if the static magnetic field is sufficiently stronger than
the oscillating magnetic field. With Egs. (2.16), (3.2), and
(4.11), the time-averaged transition probability and ab-
sorption signal in this case become

P,,=1sin’y, S'V=cos’y, (4.12)
where ¢ is the angle between the static magnetic field and
the pump beam [see Fig. 1(b)]. (Note that , in terms of
the polar angles ¢, Y, and ¢ in Fig. 1,
cosyy=cosd cosp +sind siny cosgp.) Results calculated
with Eq. (4.12) are shown in Fig. 3 as the thin dashed
curves. It is seen that, indeed, at least for wyR w;, and
away from the narrow multiple quantum resonances, Eq.
(4.12) is a good approximation.

For comparison, the approximation given in Eq. (4.12)
can also be obtained from the vanishing damping
continued-fraction solution. Namely, if we approximate,
to zeroth order in the interaction strength V, a=o, in
Eq. (3.4) and B,,=7,, in Eq. (3.5), then the time-averaged
absorption signal from Eq. (3.3) becomes

cos*t
1—(1—y,, )sin’d

(§O)VP= (4.13)

This approximation is shown in Fig. 4, where it is seen
that, indeed, in the VDCF calculation, the resonance be-
havior depends on the damping ratios y,, and (other
than in the weak-field limit) y,,. For a damping ratio
¥x: =1, the VDCF result from Eq. (4.13) is identical to
the result from Eq. (4.12), obtained from the generalized
diagonalization technique, thereby establishing once
more the equivalence of the two approaches, at least for
unit damping ratios in the VDCF method.

V. CONCLUSION

We have shown how Shirley’s well-known result for
the time-averaged transition probability of a spin-1 sys-
tem under the influence of a sinusoidally driven interac-
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tion can be generalized to account for an arbitrary orien-
tation of the optical pump beam in modulated magnetic
resonance. Thus the time-averaged absorption signal
can, as in Shirley’s original method, be obtained directly
from the dressed-atom energy eigenvalues of the system,
which follow by diagonalization of the Floquet Hamil-
tonian. The results are in complete agreement with those
obtained from the vanishing damping matrix continued-
fraction solution of the Bloch equations from the preced-
ing paper.! Although the generalized diagonalization
technique is more computationally intensive than this
latter VDCF solution, and damping is not as easily taken
into account, the technique offers the advantage of easy
visualization of the time-averaged resonance behavior of
the system, namely by inspection of the three-
dimensional dressed-atom energy-level diagram. Thus,
for example, the various special points for which the res-
onances are pump-beam independent are immediately
found to correspond to level crossings and saddle points
in the dressed-atom energy-level diagram. As in the
preceding paper, it is shown that the shifts of the various
multiple quantum resonances (particularly the lowest-
order shift of the single quantum resonance) depend on
the orientation of the optical pump beam, unlike what is
implied in some previous work on the problem.*®’
Although, in this paper, our discussion has been pri-
marily in terms of magnetic resonance, we note once
more that, as is pointed out in some detail in Refs. 1 and
12, each magnetic-resonance geometry corresponds, upon
making the rotating-wave approximation, to an optical-
resonance experiment. Thus, using the generalized diag-
onalization technique, one can obtain the time-averaged
fluorescence signal for narrow-band amplitude-modulated
(AM) or frequency (phase) -modulated (FM) excitation of
an optical two-level system from the dressed-atom
energy-level diagram using Eqgs. (1.1) and (1.2) after sub-
stituting the appropriate optical variables (see Sec. II in
Ref. 1). For example, the resonances of the time-
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averaged fluorescence signal in optical resonance for AM
and FM excitation are given by the solid and dashed
curves in Fig. 2, respectively, with the quantities on the
axes (0, and w,) corresponding to Rabi frequency and de-
tuning for AM excitation, and vice versa for the FM case
(see Fig. 2 in Ref. 1). Indeed, Floquet techniques have
been used to solve a variety of optical-resonance prob-
lems, for both two-level and multilevel systems.'>!* In
this regard, we point out that Shirley’s approach is not
restricted to the case of a two-level system. However, for
more than two levels, more complicated expressions for
the transition probabilities result, which require not only
determination of the eigenvalues of the Floquet Hamil-
tonian, but of the eigenvectors as well.>'>!* In this case,
it is no longer obvious how the resonance behavior of the
system is determined, say, by the location of level cross-
ings in the dressed-atom energy-level diagram. An excep-
tion is the symmetric three-level system, which, as shown
by Hermann and Swain, can be treated in essentially the
same way as the two-level system, resulting in an expres-
sion for the time-averaged transition probability similar
to Eq. (1.1)."> It would be of interest to obtain the ap-
propriate generalization of their result [the same as Eq.
(1.2)?] for arbitrary magnetic-resonance geometries and
to investigate, as in the present work, the existence and
special roles of level-crossing and saddle-point reso-
nances.

Finally, we remark once again that, although the ex-
istence of Haroche-like level crossings in the two-level
system at integer values of the parallel Rabi frequency o,
has been established firmly in an empirical sense (Refs. 4,
8, 1, and the present work), a formal proof of this proper-
ty is still lacking.
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