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Stochastic Toda-oscillator model of the bad-cavity laser
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The statistical noise properties of the laser radiation in a low-Q (bad) cavity are theoretically in-

vestigated. The bad-cavity laser system is shown to be exactly equivalent to the stochastic Toda os-

cillator (STO} in the case of negligible polarization noise. Transforming the STO Langevin equation
to the Fokker-Planck equation with a position-dependent diffusion coefficient, analytical expressions
of the probability distribution are obtained as particular solutions in a stationary state with the aid
of the expansion into a complete orthogonal set. We predict novel statistical features of the laser

light, e.g. , a power tail of the intensity distribution function, non-Gaussian nature of the field Auc-

tuation, and super-Poissonian photoelectron statistics. General solutions are also given in a closed
form in terms of the matrix continued fraction to compare with the particular solutions. The good-
cavity case is reanalyzed in our formalism to root out differences between them.

I. INTRODUCTION

Statistical dynamics of lasers have been investigated
very much in terms of nonequilibrium and nonlinear sta-
tistical physics. ' Lasers are a good example of a non-
linear stochastic system that has increased current in-
terest not only in fundamental physics but also in the
wide field of applications of lasers. The information
transmission rates in optical communications, the accura-
cy of optical computing techniques, and the reliability of
spectroscopic data are dependent on and limited by the
nature of the fluctuations present in the laser light.

The Langevin equations and/or the Fokker-Planck
equations (FPE's) of laser variables have been tried to be
solved in order to clarify the statistical feature of lasers,
particularly multimode dye lasers. The dynamics of
lasers with two-level materials is essentially characterized
by three relaxation constants in the semiclassical model:
the field decay rate K, including a transmission loss
through the cavity mirrors, the polarization relaxation
constant (the transverse decay rate) yt, and the popula-
tion relaxation constant (the longitudinal decay rate) y~~.

So far, lasers with a high-Q cavity (under the good-cavity
condition) have been given much attention because their
condition is more easily accessible in experiments. In the
limit of I%' ((y~~, y~, the simplest model, the one-variable
Langevin equation, was employed and analyzed. The
adiabatic elimination of both the polarization and popu-
lation difference is valid in this limit. In the case of K,((g J however, both the electric field and population
need to be considered, and the adiabatic approximation is
justified only for the polarization. As a result, multivari-
able FPE must be treated. In this case, the detailed bal-
ance is violated and it is harder to get stationary solutions
of the FPE than in the one-variable case. Recently, a
CO2 laser has been studied in the limit of

y~~ «E,y, with
the aid of the center manifold theorem.

A laser with a low-Q cavity (under the bad-cavity con-

dition K ) y~~, yt), on the other hand, is also an interesting
system in terms of its strong dissipation and nonlinearity
from the viewpoint of statistical physics. In this system,
we need to consider both the atomic polarization and
population difference to discuss the laser dynamics by el-
iminating the electric field only. ' Experimental studies
on this system have recently progressed by the use of far-
infrared (FIR) lasers and masers. However, thus far
there has been little progress in the theoretical under-
standing of this bad-cavity system. Deterministic modu-
lation properties of this system were comprehensively
clarified in terms of optical chaos and bifurcation se-
quences. ' The modulated system is equivalent to the
forced Toda oscillator and exhibits a variety of deter-
ministic dynamics including bistability, nonlinear reso-
nance, quasiperiodicity, and intermittent behavior. In
this paper, on the other hand, we pay attention to the sto-
chastic dynamics of the laser with a low-Q cavity de-
scribed by the Langevin equation of the stochastic Toda
oscillator (STO), and the resultant two-variable FPE is
analytically solved for the first time to clarify the statisti-
cal properties of the radiation under the bad-cavity con-
dition. It is so di5cult to obtain the steady-state solu-
tions of the two-variable FPE because of the violation of
the detailed balance that many problems remain to be
solved.

In our preceding Rapid Communication, "we reported
briefly analytic solutions of the FPE for the STO model
and derived a novel intensity distribution function with a
longer tail than that in the good-cavity case. More de-
tailed results are reported in this paper. The way both
the deterministic and statistical dynamics of laser radia-
tion depend on the number of operating longitudinal
modes is also intersting. In accordance with its number,
we must use a proper model to describe lasers. (i) In the
single-mode operation, a laser becomes a low-dimensional
dynamical system if fluctuations are negligible, which has
been studied in terms of optical chaos and Lorenz insta-
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bility. ' (ii) When several longitudinal modes oscillate
simultaneously, on the other hand, the system has many
degrees of freedom which require the high-dimensional
model. In this case, numerical analysis becomes a power-
ful tool instead of analytical methods to study the high-
dirnensional properties of deterministic dynamics.

' '
(iii) In particular, when infinitely many modes operate
simultaneously as in a dye laser, stochastic forces can be
employed to describe phenomenologically the Auctuation
effects of the many off-resonant modes on the relevant
resonant mode. " This is also one approach to clarify the
statistics of optical multirnode chaos found under the
bad-cavity condition. ' In this way, the stochastic model
may also describe a limit of a many multimode operation
of a deterministic laser. The stochastic and deterministic
(dynamical) approaches are complements of each other in
the study of multimode operation. However, we should
note that the central limit theorem cannot be applied to
the multimode laser because modes are not independent
of one another and the mode-mode interaction plays an
important role in multimode laser fluctuations. '

This paper is concerned with the bad-cavity laser with
field and population fluctuations. No polarization Auc-

tuation is considered and it is shown to be negligible, e.g. ,
in the strong pumping case. The case where the polariza-
tion fluctuation is also considered in addition to the field
and population noises has already been investigated in de-
tail in Refs. 6 and 7 with the use of other methods. Com-
parison between them will be made afterwards. Concern-
ing a bad-cavity property, laser Langevin equations con-
tain not only additive noises but also multiplicative ones
resulting from the adiabatic elimination of the field. We
transform them to the STO Langevin equation by a loga-
rithmic transformation and to the two-dimensional FPE
which is similar to the one-dimensional Kramers equa-
tion, but is different in a diffusion coeScient depending
on a position variable. We seek analytic solutions of the
FPE as particular solutions in the stationary state with
the aid of an expansion method into a complete orthogo-
nal set (a kind of eigenfunction expansion). These are ex-
act solutions in the case where the field noise is weak;
otherwise, we obtain approximate solutions yielding a
power tail of the intensity distribution function. " Novel
statistical features of the laser light which result from its
longer tail are predicted for the first time. The stationary
intensity variance and photoelectron statistics are paid
particular attention to clarify the non-Gaussian and the
super-Poissonian characteristics. In addition, general
solutions are also given in a closed form in terms of the
matrix continued fraction' (MCF). Comparison between
the particular solutions and general MCF ones are made
to discuss the velocity distribution function of the STO.
The good-cavity case is also reanalyzed in our formalism
to derive the modified STO equation and to root out
differences from the bad-cavity case. These results will
become foundations in applying the low-Q cavity laser to
optical communications, optical information processing,
and incoherent laser spectroscopy, and in analyzing the
cavityless laser or the amplified spontaneous emission.

This paper is organized as follows. In Sec. II the sto-
chastic Toda-oscillator model is introduced and the

relevant FPE is derived. The probability density of the
Toda-oscillator variables is expanded to the orthogonal
complete set. Under a suitable "no-current" condition,
we obtain in Sec. III analytic solutions of FPE and dis-
cuss the intensity statistics and photoelectron statistics.
A general solution is given in Sec. IV to discuss the pop-
ulation (velocity) distribution function. For comparison,
the good-cavity case is reexamined in Sec. V. Discussion
on the pseudoenergy and stability of the STO and a sum-
mary are given in Sec. VI.

II. STOCHASTIC TODA-OSCILLATOR MODEL

A. Langevin Maxwell-Bloch equations

E(t)= K—E+igP +-d E

dt 4
r, (t),

1/2

(2. la)

d PP(t) = y—~P igED—+-
dt 4

I (t), (2.1b)

D(t) =
y~~~—D +y ~~~D'

—'+2ig (EP' E'P)—
1/2

gD

2
r, (t), (2.1c)

where g is a coupling constant between field and matter,
and D' ' denotes the population inversion describing a
pumping. Here Sz, 4'p, and SD are measures of fluctua-
tion strength, which should be simply determined by the
fluctuation-dissipation theorem in the semiclassical
single-mode laser system. ' ' ' Multimode effects are
also included in Sz, Sp, and SD as additional terms Ãz",
Kp", and O'D, respectively. Therefore, we treat them as
control parameters, i.e.,

E ——2Kn, h+ EE

Sp =2y~cV2+ 4'p",

4', =2y ++4;",

(2.2a)

(2.2b)

(2.2c)

where n, h
= [exp(A'co, Iks T) 1] ' is the num—ber of

thermal photons (which is small in an optical frequency
region) when the reservoir is in the thermal equilibrium
with temperature T. An additional term 4z represents

The interaction of the cavity field with the two-level
material is described semiclassically by the Maxwell-
Boloch equations of the electric field envelope E, the po-
larization envelope P, and the population difference D in
the slowly varying approximation. The field is assumed
to be a plane wave and no spatial structure is considered
throughout this paper. We shall consider three kinds of
classical fiuctuating forces: the field noise
I z( t) = I t(t—)+il 2(t), the polarization noise
I p( t):I 3(t)+i I 4(t), and the population noise
I D(t) = I s(t), which are applied, respectively, to each
variable. Here the I (t)'s (j =1, . . . , 5) are real. Then
we start with the Langevin Maxwell-Bloch equations in
the case of atomic resonance under the mean-field ap-
proximation

' 1/2
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P(t) =—y~P —+ PD i-d g . g E

ck K KI4
1/2

Dr, (r)

P

4
r (r), (2.3a)

d 2—D(t)= —y D+y D'"—4
II II

1/2

extrinsic contributions to the field noise, e.g., the off-
resonant mode fluctuations or an injected noise field. The
polarization noise strength eVp is derived to satisfy
Einstein's theory and includes the population of the
upper atomic level N2. The total population is denoted
as N. Although N2 depends on D (t) in a strict sense (i.e.,

N2 =N2(t) = 2[N +D (t)]), we assume in this paper that

4, N2, and X are constant in time for simplicity. The ex-
trinsic population noises (including a pump noise and
multimode effects) are described in ePD, which is assumed
to be a small constant independent of a pump parame-
ter. "

In the case of a low-Q cavity, the electric field follows
adiabatically the material variables. Then, eliminating
E (t) from Eq. (2.1), we get

' 1/2

The ratio y =y~~/y~ is restricted to be less than 2 and is
small in an ordinary lasing medium. The noise strengths
are rewritten for simplicity by three control parameters
independent of A as

2SE= gE, (2.6a)
gDth

S,= (2.6b)

= 1 1SD=
2y y~Dh

'2

(2.6c)

Here we confine our discussion to the case where the
pumping is rather strong ( A ) 1) and fluctuating forces
applied on P are negligible in comparison with those on
D. Then the phase of polarization y:—argP is nearly con-
stant in time (dy/dr=0). Thus we consider the situa-
tion in which I E(r) and rD(r) play dominant roles as the
fluctuations on the population difference of the system.
Eliminating D(r) from Eqs. (2.5) in an exact manner, the
second-order stochastic differential equation of P(r) is de-
rived. Additionally, employing the logarithmic trans-
form, i.e.,

D

2

—4—g E

K 4

' 1/2

Im[P'I s(t)] . (2.3b)

u (r) = 2 lnIP(r)

we arrive at the STO equation

d u du —dU(u)

(2.7)

Because of this adiabatic elimination procedure, not
only additive fluctuation terms but also multiplicative
ones appear in the Langevin equations [Eqs. (2.3)]. Here
we shall use normalized variables in dimensionless units:

7=yet )

=2(ySD )' 1 &(r)+ (y AS@ )' e" sing&I, (r)
—(yASE)'~ e"~ cosy&I z(r),

where

(2.&)

2 2

P(&) = », P(r),
K ( A y|yii)'

D(r): D( )r
th

(2.4b)

(2.4c)

1/2
d — —— . D SE

P(r) =P(D —1) i-
d7 yA

rE(r)

where D,z =—Ey~/g is a lasing threshold of the popula-
tion inversion, and A =D' '/D, h

—1 is a pump parame-
ter which is zero at threshold. In the noiseless (deter-
ministic) case (SE=S~=SD=0), IPI and D become uni-

ty in the steady state above the threshold ( A )0). Then
the Langevin equations become

U(u)—=e"—u —1 (2.9)

is the Toda potential which is an asymmetric potential.
Here y plays as a damping constant of the STO and
—2y AdU/du is the force due to the potential. The vari-
ables u ( r) and u ( r):du ( r) /d v. —describe the position and
velocity of the Brownian particle, respectively, bounded
in the potential 2yAU(u) and applied the fluctuating
forces. A position-independent friction y i and a
position-dependent fluctuation (corresponding to the u-
dependent temperature) e' I;(r) are characteristics of
the STO system describing the bad-cavity laser. The
readers should compare with the modified STO equation
[Eq. (5.1)] in the good-cavity case (Sec. V A).

SP+-
yA

I p(r),

D(r) = yD+ y( A +—1)—y A ~P ~'
d7

+(ys, )'"r,(r)
—

—,'(y AS~)' Im[P *I ~(r)] .

(2.5a)

(2.5b)

B. Fokker-Planck equation for the STO

We consider the case where the correlation times of the
noises are much smaller than the fastest characteristic
time of the dynamical system -K '. Therefore, in the
first approximation, the fluctuations I;(r)'s are assumed
to be the Gaussian random processes with zero means
and 6 correlations, i.e.,
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(r, (r)) =0,
( r, (r)r, (r )) =2S„a(r—r ) (i,~

= 1, . . . , 5) .

(2.10a)

(2.10b)

In this case, the Langevin equations for two variables u

and u lead to the two-variable FPE:

stationary solution and from the right with its inverse,
X;„can be brought to an Hermitian form, i.e.,

(u) (u)Xi«exp
&

X;«exp
4vd(u) 4vd(u)

BW(u, u, r)
a~

(2.11)
= —ya a,

where a (a ) is the annihilation (creation) operator,

(2.15)

In Eq. (2.11), W(u, u, r) is the distribution function in po-
sition and velocity space (u, u). Here we note that u and
u are independent stochastic variables. The Fokker-
Planck operator can be split into a reversible (streaming)
part X„,„and an irreversible (collision) part X„,as'

l 0
a =vd(u) +—

2 vd(u)

a = —vd(u) +—1
Bu

(2.16a)

(2.16b)

X„p(u, u )=L„„(u,u )+L,„,(u, u ),
where

(2.12) These satisfy a communication relation for boson opera-
tors, [a,a ]=1. For the reversible operator, we carry out
the similar transform to get

X„,(u, u )
—= u—+2y A

c) — dU(u)
Bu du

a

Bu
(2. 13a)

aD, ——a D, —X„, . (2.17)

X;„(u,u):—y u+vd(u)
a 2

BQ Bu
(2.13b)

The reversible operator describes the motion of
an ensemble obeying the reversible equation, u
= —2yAdU/du, and is shown to be an anti-Hermitian
operator. The irreversible operator, which describes
energy-dissipation through friction and diffusion, has a
second-order derivative. This is neither an anti-
Hermitian nor a Hermitian operator.

Equation (2.11) resembles the one-dimensional Kra-
mers equation, ' which is a special FPE describing the
Brownian motion in a potential. The Kramers equation
has been employed to study reaction kinetics, superionic
conductors, Josephson tunneling junction, relaxation of
dipoles, or second-order phase-locked loops. Here we find
that in addition to above systems, the noisy bad-cavity
laser is also described by a kind of of Kramers equation.
Risken' derived a general solution of the Kramers equa-
tion in terms of MCF for arbitrary potentials. Here we

pay attention to a difference between our FPE for the
STO and the original Kramers equation. The difference
lies in the diffusion coeScient which depends on the posi-
tion variable u, i.e.,

yvd(u)—:y ( ASze" +4SD ), (2.14)

in our FPE system, while the diffusion in the original
Kramers equation is constant in position. This means
that the thermal velocity (diffusio velocity) of the
Brownian particle is a function of the position; that is,
the temperature of environment depends on the position.
In the u &0 region {corresponding to high intensity of
laser light), the diffusion is stronger and the system
suffers from the stronger noises. Position dependence of
the diffusion makes it harder to solve the FPE.

Solving the FPE with the aid of the expansion into a
complete orthogonal set, we seek, first of all, the most
suitable set for the expansion. A stationary solution of
X;„,is proportional to exp[ —(u ) /[2vd(u)]]. Therefore,
by multiplying L„,from the left with a square root of the

Here we employ the differential operators D, and D2,
defined by

C}

D, =vd(u)
BQ

(2.18a)

+ 2yA dU(u)
Dp =vg u

Bu vd(u) du
(2.18b)

and a residual part

(u )3 dvd(u)

2vd(u)
(2.19)

which results from the position dependence of the
diffusion velocity.

Considering the natural boundary conditions,

lim W(u, u, r)= lim W(u, u, r)=0,
p —++ oo

and the Fokker-Planck operator of the form

(2.20)

+pp(u u ) +p(u u )(y~ ct +aD& +u D&+&„,)

X [%„(u;u )] (2.21)

the probability distribution 8' is expanded with respect
to uis

W( u, u, r)=4 (ou; u) g c„(u, )4r„( ; u),u
n=0

(2.22)

%„(u;u )=
[n!& ~2v (du)]'~

(Ei ) uX exp — H„
4vd(u) vd(u)

(2.23)

Here H„(x) is the Hermite polynomials defined by

Z2 Z2
H„(z)=( —1)"exp exp

2 dz" 2
(2.24)

where the expansion function is chosen to be the Hermite
function as
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The expansion functions %„(u;u ) (n =0, 1,2, . . . ) form a
complete set and have the correct natural boundary con-
dition. They are eigenfunctions ofX;„,that is,

X;,„V„(u;u)=—ya a%„(u;u)

S„(u,u, r) =u W(u, u, r),

S.(u, u, r) =—— yu+2yA W( u, u, r)
—dU(u)

Q du

(3.2a)

= —yn%„(u;u) . (2.25)
BW(u, u, r)—yv u

Bu
(3.2b)

Using the orthonormal relation,

f )P (u;u )%„(u;u )du =6 (2.26)

where c„(u,r)=0 for n (0 and f '„"'s are the expansion-
coefficient operators with respect to u:

dvd(u)f ' = [n (—n —1)(n —2)]'
n

u
(2.28a)

we obtain the one-sided recurrence equation for the ex-
pansion coefficients c„(u, r)(n =0, 1,2, . . . ), that is

ac„(u,r)
a7.

(2.27)

S„(u,r)= I S„(u,u, r)du=v„(u)c)(u, r) . (3.3)

We pay attention in this section to the "no-current" situ-
ation where the stationary probability current S„"(u)van-
ishes, i.e., S„"(u)—:0, Vu. This corresponds to the case
where the velocity of the Toda oscillator u obeys a
Gaussian distribution symmetric around ( u ) =0, i.e.,

W"(u, u ) =c0'(u)[)I10(u;u )]

are generally nonzero in the N-dimensional FPE system
even under the natural boundary condition. Therefore,
we shall consider the following case to find a stationary
solution analytically. The probability current in u direc-
tion integrated over the velocity u is given by c)(u, r),
that is,

8 2y A dU(u)nv—d u
Bu v„(u) du

c() (u) (u )2
exp&2n.vd( u ) 2vd2( u )

(3.4)

f (0)—

, dv„(u)
2n

du

a dvd(u)f "'=—(n+1)' v (u) (n+1)—
Bu du

(2.28b)

(2.28c)

(2.28d)

where the variance of velocity is vd(u). This means that
the population difference D =

—,
' u + 1 also obeys the

Gaussian distribution centered at D=1. This Gaussian
character results essentially from the S„"(u)=0 property.
In this case, any statistical properties are calculated from
only the zeroth coefficient c0'(u), which must satisfy the
equations

The hierarchical equation [Eq. (2.27)] is equivalent exact-
ly to the original FPE [Eq. (2.11)]. Multiplicative noise
results in the u-dependent diffusion coefficient and in ex-
istence of f '„'c„3 term in Eq. (2.27). The Laplace
transform of this type of recurrence equation without the

( —3f '„' term was first solved by Brinkman.

f ( 1)cs't
( u )

—0

f ( 3) st( ) 0

(3.5a)

(3.5b)

Solving these equations, we obtain an analytic solution of
the FPE as a particular solution, which is called the "no-
current" (NC) solution hereafter. Other stationary solu-
tions in the case of S„"(u)%0will be discussed in Sec. IU.

III. ANALYTIC SOLUTIONS
OF THE FOKKER-PLANCK EQUATION

A. Static distribution functions for the STO

u uBS as

()u
(3.1)

The u and u components of the probability current
defined as

In N-dimensional (N ~ 2) FPE, it is difficult to obtain
its stationary solutions because the detailed-balance con-
dition is not satisfied. The relevant FPE [Eq. (2.11)] is
written as a continuity equation:

W"(u, u ) = exp — U(u)yA
2+SO 2SD

(u )'
Xexp

8SD
(3.6)

where N is a normalization constant independent of u

and u. As mentioned above, the velocity u, which is con-
nected to the population difference as u =2(D —1), obeys
the Gaussian distribution corresponding to the Maxwell

I. Negligiblegeld JFuctuation (SE =0) case

Only in this case, the detailed-balance condition and
the relation Eq. (3.5b) are automatically satisfied. Then
an exact stationary solution is easily calculated from the
integration off ', "c0 (u) =0 as
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distribution of the Brownian particle whose mean veloci-

ty is zero and variance of u is 4S& independent of u. Al-

though the most probable position u * [the position of the
local maximum of the distribution function W"(u)] is al-

ways zero, which is a potential minimum, the mean value
of u is negative due to the asymmetry of Toda potential
which is given as

(u) =lb
2SD

—ln
A

2SD
(3.7)

where f(x) is the digamma function. This NC solution
[Eq. (3.6)] is a well-known distribution function as a "po-
tential solution. "

/
l~//g /

~ a a = ~sfi~~~rz~g

2. Weak jield fluctuation (0&SE «4' /A) case

In this case, the detailed balance is violated so that no
potential solution exists. Therefore, no nontrivial NC
solution exists in a mathematically rigorous sense because
f 3 'co'(u)=0 leads to co (u)=—0. Even in such a case,
FPE can be solved exactly by the aid of MCF, as will be
shown in Sec. IV. Before the MCF solutions are dis-
cussed, we derive here an approximate but useful solution
in this particular case, which is given from integration of
Eq. (3.5) as

FIG. 1. Probability distribution functions of the STO in the
stationary state at A =5.0. Thick solid lines, Sz/y=0. 1; thin
solid lines, S&/y =0.5; thick dashed lines, S&/y =1.0; and thin
dotted lines, S&/y=1. 5, with three cases of SD/y=0. 2, 0.3,
and 0.4. In the cases of large SE/y, approximation becomes
worse, but the figures are plotted for comparison.

u* shift from the potential minimum, u =0, contrary to
the Ss =0 case [see Eq. (3.6)].

ASE
X 1+ e"

4SD

—(1+2y/SE+')/A /2SD )

—(u)X exp 22ud(u)

N' yAW"(u, u ) = exp u
Ud(u) 2SD

(3.8)

B. Statistical properties of the light intensity

The normalized intensity of laser radiation is defined as
I= Ae", which is normalized to be A in the dynamical
(noiseless) case, while the normalized population
di8'erence is given as D =

—,u + 1. The stationary distribu-

tion for the norxnalized intensity and population
difference is derived from W"(u, u) by the relation

Wst(I, D)= —W" ln —,2(D —1)I A
with a normalization constant N'. This result is valid
only in the case where the field fluctuation is rather weak
in comparison with the population fluctuation, i.e.,
0&ST «4SD/A. When Sz =0, Eq. (3.8) coincides with
Eq. (3.6). Similar to the case of Ss =0, the velocity distri-
bution is Gaussian symmetric with respect to u =0 with
u-dependent variance of the velocity. The validity of this
approximate solution will be confirmed by comparing
with the general MCF solution in Sec. IV. The distribu-
tion function of u is derived by integrating W"(u, u) with
respect to u as

W"(u) —= f W"(u, u )du

' 1/2

(SEI+4SD )

2(D —1)
X exp

SEI+4SD
W"(I), (3.10)

W"(I ) =:c" lnst
' 1 st

I A

where W"(I) is the intensity distribution which is con-
nected to the first expansion coefficient co (u) and the
probability distribution W"(u, u), i.e. ,

yA=N" exp ' u
2SD

=—f W" ln, u du
l - „2I

—oo A
(3.11)

[ & + 2X /S& + y 3 /2SD )

X 1+ e"
4SD

(3.9)
Using Fq. (3.6), (3.8), or (3.9), we obtain explicit forms of
the intensity distribution.

This is illustrated in Fig. 1 for several noise strengths.
The distributions are asymmetric and their tails in the
u &0 side are longer than that in the u )0 side. The
most probable positions (the maxima of the distributions)

1. Negligible field fluctuation (SE =0) case

In this case, the intensity obeys the I distribution with
an exponential tail, i.e.,
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2SD
(3.12)

for S =0 where. VE —, e, is the normalization constant:

y A /2SD
y

o yA
2SD 2SD

7 (3.13)

with the gamma function I"(x). Equation (3.12) is an ex-
ac solution of the FPE. Figure 2 shows the exact inten-

[ q. . )] for several noise strengths.sity distribution [E . (3.12
'

s.

lower intensit
As increasing SD /y, maxima of th d' 'be istri ution move to
ower intensity, but the tails become longer. The t

y i y moments exist for an arbitrar order d
r. e station-

of the form
yor eran are

( I n)— I ( y A /2Sti +n )

I ( y A /2SD )

n =1,2, . . . . (3.14)

10

FIG. 3.
in (I D s

. 3. hree-dimensional plot of the d' 'be istri ution functionin, ) space. Parameters are A =5.0 S
Sq/y =0.5.

D y =0.4, and

2. Weakeak field jluctuation (0& Se «4So /3) case

While in the case of 0(S «4S /AW
' '

E D, the intensity I

as
an t e popu ation difference D have a distr'b t' his ri ution such

bution function is of the form

22

~,t(1 D ) ~ —&'" ~'soI
—(3/2+ 2y /S~ + y A /2SD )

X 1+ I

2(D —1)
(3.15)

for 0 & Ss ((4SD /A, where
'

yA /2SD

4SD
V

2SD SE

—( 1+2 y /Sp + y A /2SD )

X 1+-
4SD

(3.16)

(3.17)

E D . is distribution is symmetricfor 0&Sz «4S /A. Thi
Gaussian for D around (D ) =1 but is asymmetric for
the intensity I, as shown in Fi . 3 Thig. . e intensity distri-

and the beta functionction B (x,y). This is similar to th F d'-
igure 4 illustrates the intensity distribution

0.3

Q.2

0.1

15

0 15

FIG. 2. Exact distribution functions of the normal' d
'

orrna ize inten-

y o aser light in the stationary state at A =7.0
e uctuation is negligible (S =0) d Se z — an &/y

—0. 1,0.3, . . . , 1.9. Increasin Sg D, tails becomes longer, al-

t ough (I l is always (I ) = A =7.

FIG. 4. A roximpp ate distribution functions of the norma-
ized intensity of laser li ht in

o e normal-

e tails show power decays. Thick solid lines S~/y 0 09
y= .5; thick dashed lines, S&/y=1. 0 d

thin dotted lines, S / =1.5
; and

0.35
y= . , with three cases of SD/y=0. 15,

.35 and 0.55. In the cases of large S
mes worse, ut t e figures are plotted for comparison.
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veral arameters. Contrary to the S =0 case, a re-
h t th ntensity distributionis the fact t at t ein e

.16)~ has a power tai, not an exfunction [Eq. (3.1 )] as p
ex onent of the power tai is eva u'1 valuated asone. The exponent o

1 e fluctuation of theS . This implies a very arge u

h field noises Thereforeintensity inin the bad cavity wit e n
ents ( I " ) exist only for integersthe static intensity moments

0 & n & 1+2@/SE as

&I")=
n

4SD y g y

yA
1

2y
2SD SE

(3.18)

it I * does not coincide witThe most probable intensity
the mean intensity ~& I ~—~=A but

3 —2SD /y

1+SE/y
(3.19)

W"(I) shifts from (I) to awhich shows that a peak of 8',

(I) always exists regardless of0 ly the ea it
th of the field Auctuation to becomethe strength o t e e

h d t inistic value in con-no shift from tne etermin'
Rf3 A o 1 h

t th th t t o t( 2)
ith the ood-cavity case in e ~

a roaches 2/(n —1). e ng ~1' PP
intensity cumulants K„are p dare lotted in ig.
diverging e av'b h iors which are defined as

It, =(I ') —(I)',
K =(I') —3&I)(I')+2(I)',3—

Z =(I') —3&I')' —4(I)(I')4

+ 12(I )'(I ') —6(I )' .

—y 3 /2S~ —
1

lim 8'"(I ) o- I
I -~0

(3.20)

of the distribution function nearTherefore, the values of e
icall de ending on the ratio yI-0 vary drast y p

which are given as zero for y D, t auA &2S, a nite va u

y A =2SD, and ~ for y A & 2SD.

C. Intensity variance and photoeotoelectron statistics

ionar intensity variance (thee second cumu-
f the statistics in order tolant) K is a good measure o t e sai

in the ood-cavity case. Thecari y1 if dift'erences from that in t e goo-
e um arameter A is one o e

e intensity statistics in a ow-most striking features of the inte
'

y
cavity. The intensity variance is given from Eq.
only in the region of 0 & SE /y & 2 as

wer value as the noise strengths are increased (see Ftg.
4). The skewness a3 and t e a ne

=3+12S / 3a =2+2SD /y 3 )0 and a4=3

f E where the intensity moments
1 A)ex (—,w

iven as I" =n!3 ", and the skewness and the flat-
aussian statistics of, w ere

a =3+6. These are also clearlyness are a, =2 and a4=
the low- cavity case. Therefore, wwe

should not treat the intensity fluctuation in a ow-
sian random process.

sit limit of the intensityLast, we refer to the low-intensity imit o e
distribution function. In both ththe cases of SE =0 an
0 & SE «4SD /3, t e is ri u

'
h d' t 'b tion function behaves in

the low-intensity limit (,I « 1) as

It, =((&I)')=(I') —(I)'
S /2y 2SD/y+

1 —S~ /2y 1 SE/2y— (3.21)

c 5

2P 1

SE/&

FIG. 5. Station yar cumulants o ef th intensity normalized by
third-, and fourth-order cumu-

a = case are plotted as a function of t e elants in the 3 =7.0 case are p
=0.0, 0.2, 0.4, andn th S -/ with a parameter SD/y =

h S =0 0 Th d06. Thick lines correspond to the SD= . ca
cumulant K, is the intensity variance

in the S+WO case and in
mi 1). 0th r analytical and nu-

ws in roportion to in

"gP" P 'limit A )) . e
s ' of the Langevin an

I d d oflaser also show the super Inear
. K ~A ', wit e

here the varithe ood-cavity case ' w ereddli 1ance is cons an, '
t t independent of 3, or epen s

'

1 —ei.e. K ~A ~

~

nts the statistical proper ies
h electron countingusually charac erterized by the p otoe ec

well-known Poisson
coherent light) is measured by the

deviation from t e we - n
st t st c ( h

b f hoo 1

variance,
ere n is the num er o p

d i hoo-n observation time an g isregistered in an o
d to the intensityfB nt which is connecte ocounting coe cien

23moments as
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((bn) ) 1

(.)

(I')

S~ /2y 2SD /y+
1 —S&/2y A

' (3.22)

for O~SE/y &2. This is always positive because we
confine our discussion to the classical nature of photons.
If we assume that the electric field obeys the complex
Gaussian process, g is given as unity, indicating the
Bose-Einstein statistics. Contrary to the good-cavity

3,4case, ' g tends to a nonzero value as increasing A, as
shown in Fig. 6. The first term of the right-hand side of
Eq. (3.22) is a measure of the deviation from the Poisson
statistics in which g becomes zero. This indicates that
the wave property of light remains and shows super-
Poisson statistics, in contrast with the coherent emission
in the good-cavity laser operating far above threshold
where particle picture of light (photon) becomes very
good.

In order to make the difference from Poisson statistics
clearer, we shall consider the stationary photoelectron
counting probability P(n, T», ) in which n photoelec-
trons are registered in an observation time T,b, . Because
quantum effects of photons are neglected, sub-Poissonian
character cannot be traced here. %'e confine ourselves to
the case of the short observation time, T,b, « v„where

is an intensity correlation time of the order E
Then, according to Mandel, P(n, T,b, ) is given for
n =0, 1,2, . . . by

10

P(n, T.„)=,f Pe &W"(g)dg,=1 (3.23)

t + Tobs-
g=e f I(t')dt'=eT, b,I, (3.24)

I

where W"(g) is the stationary intensity distribution and E

is an eSciency of the detector.
An integral form of P(n, T», ) for 0&SE «4SD/A is

given by Eqs. (3.16) and (3.23) as

A

FIG. 6. Photon-counting coefficient g as a function of the
pump parameter in the cases of SE/y=0. 0, 0.5, and 1.0;
SD/@=0.0, 0.2, and 0.4. Broken lines are in the SD =0 case.
For the nonzero S&/y, g becomes nonzero even in the strong
pump regime. In the region of small A where the STO model is
invalid, g diverges.

P(n, T,b, )= n +~rrz sD i SEC
yA /2$

n!(e T, b)
4SD 6Tobs

—( 1+2y /S~ +y 3 /2SD )

dg, (3.25)

where the photoelectron variance is always larger than the average number of photocounts ( n ) (super-Poissonian).
Explicit expression is obtained only in the SE =0 case to show the negatiue binomial distribution for n =0, 1,2, . . . ,

i.e.,

I ( n +y A /2SD )
P(n, T,„,)= r(y A /2S, )

y
2SD 'E Tobs

yA /2SD —{n + y A /2SD j

1+—
2SD e Togs

(3.26)

Here the average number of photocounts is given as (n ) =ET,b, A, and the photoelectron variance is larger than (n )
(super-Poissonian), i.e., ((hn) ) =(n )(1+2eT,b,SD/y)) (n ). In addition, the skewness u3 and flatness a4 of the
photoelectron distribution are evaluated as

1+4eT b,SD/y

[eT,b, A (1+2eT,b, SD/y]'
(3.27a)

1+12eT,b, SD /y +24e T,b,SD /y
cx4 —3 + )a4&3,

e T,b, A ( 1+2ET,b, SD /y )
(3.27b)
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where a3 and 0.~ are those of the Poisson distribution ap-
proximating Eq. (3.26), i.e., a3 =(eT,b, A )

'~ and a&~=3

+ (eT,b, A ) . This shows that the negative binomial
distribution has a longer tail than that of the Poisson dis-
tribution. In an artificial limit of A ~ ~ with (n ) con-
stant, this approaches the Poisson distribution
( n )"e (") /n! It should be noted in addition that the
Poisson distribution appears also in the limit of SD~O
with a fixed A. This limit corresponds to the coherent
light case without noises. On the other hand, Eq. (3.25)
for the Sz & 0 case does not approach the Poisson distri-
bution in any limits, which differs also from the Bose-
Einstein distribution or the negative binomial distribu-
tion. Anyway, both the distribution functions [Eqs.
(3.25) and (3.26)] are characterized by their longer tails
than that of the Poisson distribution. Thus laser emission
in the bad cavity yields a novel super-Poissonian photo-
electron statistics regardless of the field noise strength
SE.

Here we shall compare this STO model with the phe-
nomenological Langevin force model employed in our
previous paper to clarify differences in results obtained
by above two methods. The principal differences are as
follows. The STO model is useful only when (i) the atom-
ic polarization noise is negligible and (ii) the pumping is
relatively strong. On the other hand, the latter Langevin
method is free of the above limitations; that is, it is valid
for an arbitrary pumping rate and arbitrary noise
strengths (including polarization noise). More general dis-
cussion on the statistical properties can be done by the
latter method. However, it does not lead to analytical
solutions of the Fokker-Planck equation; therefore, we
cannot help doing numerical calculations in the latter
analysis. In spite of the above constraints, on the other
hand, analytical discussion is possible by the STO
method. It is difficult to trace power tail characteristics
by numerical approaches in the latter model, and they
should be clarified analytically in the STO method. Here
we note that a singularity of the intensity distribution
function near I=O was observed in the latter Langevin
model for y 3 /2SD & 1 where no singularity is expected

in the STO result (with no polarization noise). This
singularity, therefore, may be due to the atomic polariza-
tion fiuctuation which induces background noise in the
light intensity, resulting in a singular peak of W" (I=0).
Because two methods are substantially different in terms
of the considered situations, it is meaningless to simply
compare only the results

IV. GENERAL SOLUTIONS IN TERMS
OF THE MATRIX CONTINUED FRACTION

In the preceding section, we discuss only the no-
current case where the first expansion coefficient cQ(u 1)
plays a dominant role. In the case of nonvanishing prob-
ability current S„"(u)%0, on the other hand, all expan-
sion coefficients c„"(u) for n =0, 1,2, . . . are necessary in

discussing the solution of the FPE. This procedure can
be carried out in a closed form with the aid of the matrix
continued fraction (MCF), whose derivation and pro-
cedure are reviewed in the Appendix. Hereafter, we call
this general solution calculated by MCF as the "MCF
solution, " which is an exact, closed-form, and nonpertur-
bative solution of FPE's. This general solution is used
also for the checking an approximate solution.

A significant difFerence between the NC solution [in
the S„"(u )

—=0 case] and the MCF solution [in the
S„"(u)40case] is clarified most clearly by comparing the
distribution function of the velocity of a Toda oscillator
W"(u} with the Gaussian distribution. The velocity dis-

tribution function for the STO under the no-current con-
dition is given from Eq. (3.4) as a Gaussian:

1
WNc(u ) = exp

vd v 21T

(u )'

2Vd
(4.1)

whose mean velocity is zero, i.e., ( u ) =0, and the veloci-

ty variance is given by vd. Unfortunately, no analytical
expression of WNC(u) is obtained in the case of
0 & S~ «4SD /A. The corresponding velocity distribu-
tion of the MCF solution is

a„'
W'~cp ( u }= WNC ( u ) + —g —exp

&2m „,v'n!
(u)
2Vd

1

Vd Vd

(4.2)

whose mean velocity is ( u ) =vda i and the velocity vari-

ance is vd[1 —(ai) +a&]. Here a„(n =1,2, . . . ) are the
expansion coefficients in the MCF. Numerical calcula-
tion is carried out in the case of 0 & S& «4SD /3 to com-

pare the velocity distributions of the NC and MCF solu-
tions. Figure 7 shows two velocity distributions which
are calculated from Eqs. (3.8) and (4.2). The difference
between them is small, and the MCF solution is similar to
the Gaussian, although the mean velocity becomes slight-

ly positive (a, )0) due to the anticorrelation between u

and u
Here we point out that there is also little difference be-

tween the position distribution functions WNc(u) and

W~c„(u) in both cases of Sz=0 and 0&ST &&4SD/A.
Therefore, the NC approximate solutions [Eqs. (3.8) and
(3.9)] are valid and useful enough unless the noise
strength Sz is so large. As a result, the intensity distribu-
tions in both the cases of S„"(u)=0 and WO, i.e., 8"~c(1!
and W~c„(1) are almost identical in the physical region
of the parameters within a numerical error, particularly
in the low-friction limit (y=yi/yi is small). This has
been confirmed also by an analysis of the Brownian
motion in a periodic potential. ' Because no remarkable
difference between them is found, we conclude that
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MCI'

the nonlinear coupling between the population of materi-
al and the electric field in the Maxwell-Block equations of
the good-cavity case, as shown later.

The Fokker-Planck operator is then given as

good
~ — () dU(u) ()

~u du

+y (1+Ae")u+I( v (u)
a —

~ . a
Bu Bu

(5.2)

—0.5 0.5

where the u-dependent diff'usion coefficient is ya up(u)
with the u-dependent diffusion velocity
u (u)=(S~Ae" +4SD)' . The probability distribution is
expanded by the complete orthogonal set as

FIG. 7. Velocity distribution function of the STO. The thick
line is obtained by the numerical MCF calculation [Eq. (4.2)];
the thin dotted line is Gaussian given by the analytical NC solu-
tions [Eq. (3.8)]. Parameters are A =5.0, Sv/y=0. 06, and
Sg/y =0.2.

Wsooz(u, u, r)=Co(u;u) g d„(u, r)4„(u;u),
n=0

4„(u,u ) =
) z2 exp

1 (u)
[n!&2nv, tr(u)]' 4v, (r(u)

(5.3a)

analytical (exact and approximate) expressions of the sta-
tionary solution under the no-current condition are of va-
lidity.

V. COMPARISON WITH THE GOOD-CAVITY CASE

A. Modified stochastic Toda-oscillator equation

+1((y AS )'~pe" sinOI 3(r)
—a.(y AS~)' e"~ cos8I 4(r), (5.1)

where u(r) —=21n~E(r) ~, I(—=K/y) is a scaled field decay
rate, 0=argE is the phase of the total field which is near-
ly constant, and U(u) is the Toda potential. The geld
noise is suppressed under a relatively high pumping, con-
trary to the bad-cavity case where the field and popula-
tion fluctuations become dominant in the strong pump
regime. Therefore, S~ and SD terms play essential roles
in the good-cavity stochastic system. This is the modified
STO equation. An important difference lies in a friction
term of the Toda oscillator. In contrast to the bad-cavity
case, the position-dependent friction appears, in addition
to the position-dependent fluctuations, to show a very
strong dissipation in the large u region. This results from

Comparing with the bad-cavity case, we present the re-
sults of the STO analysis for the good-cavity case
(y~) K, y)() to root out differences between them. Under
the good-cavity condition, the polarization can be adia-
batically eliminated from the Langevin Maxwell-Bloch
equations [Eq. (2.1)]. A similar procedure to the bad-
cavity case leads to the Langevin equation in the good-
cavity case:

d u +y(1+ A „)du
+2Ky A

d U(u)
dr du

=2~(yS, ))"r,(r)

u

u, (r(u)
(5.3b)

Here u, (r(u) is an effective diffusion velocity, defined as

Kvp(u)
u, (r(u) =

(1+Ae")

Sp Ae "+4SD
=K

Ae "+1

1/2

(5.4)

(5.5)

where d„(u, r)=0 for n (0 and g '„"' are the expansion-
coeScient operators with respect to u given as

du, (r(u)
g '„"=—[n (n —1)(n —2)]'~

du
(5.6a)

( )) )q2 () + 21(yA dU(u)
gn n veff u

()u u, (r(u) du

du, ~(u)
211

du

g '„"= ny(1+ A—e"),

(5.6b)

(5.6c)

g '„"= (n +1)' u, (—r(u)

dv. (r( u )
(n +1)'—

du
(5.6d)

Even in the additive noise only (Sp=0), the effective
diffusion depends on the position variable.

The one-sided recurrence equation of motion for the
expansion coefficients d„(u, r), n =0, 1,2, . . . , is given by
the use of orthonormal property of 4„as

()d„(u, r)
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B. Analytic solutions in the no-current case

W"„d(u)=Ns(Ae" +1)[U (u)]"
4SD

X exp u
2KSD Sp

(5.7)

where X is a normalization constant and

Under the no-current condition, we get a static proba-
bility distribution of u by integrating g ', "do'(u) =0 as

A

2v
1

1(2v)

yA
4KSD

The intensity moments are given for n = 1,2, . . . as
'n

I (2v+n ) A

I (2v) 2v

(5.10a)

(5.10b)

(5.11)

p
KSp

4SD —1
Sp

SpA
+1

4SD
(5.8)

The mean intensity is ( I ) = A, which is the same as that
in the bad-cavity case. However, the intensity variance is
linearly proportional to the pump parameter, i.e.,E)" =((bI) ) =2aSDA/y ~ A.

This solution is exact when Sp =4SD, (i.e., p=O). In the
case where p is nonzero but small (i.e., ~p~ -0},it is ap-
proximate but nearly exact. In the former case (p=O),
although both the diffusion and friction depend on u,
their u dependence cancels with each other to lead an ex-
act solution. The case of p-0 corresponds to the case of
2y~~(N2 N, )-S—~ 2yR~"'&—0. Because y is very small
for ordinary laser material, the situation p-0 is realiz-
able if we control the external component of the popula-
tion noise (pump noise). Next, we shall calculate the in-
tensity distribution functions with the use of of Eq. (5.7)

I. Sp = 4Sgp (p, =0) case

2v —
&

2&I
exp

A
(5.12)

where the normalization constant is given as

I (2v)Sp p+v p/'2
q e

2. Sp-4SD (~p~ —0) case

A remarkable difference of the intensity statistics lies
in the fact that no power tail distribution is obtained in
any parameter region of the good-cavity case, i.e.,

W"„d(I ) =JV 2(I+1)(SpI+4SD ) "

In spite of the fact that both the additive and multipli-
cative noises exist in this case, the effective diffusion ve-
locity does not depend on the position variable u; that is,
the u-dependent friction and u-dependent diffusion are
balanced. Then we can obtain an exact solution of the
FPE. The stationary intensity distribution in the
Sp =4SD case has a similar form to the bad-cavity case
(I distribution):

and

X[W,, +,/2(p}

+2v q Wp —v —&/2, p+u{(p }] ~

8ySDp=
K p

2KSD

(5.13)

(5.14a)

(5.14b)

W"„d (I ) =JV,I ' ' exp
A

where

(5.9)
y

Here W &(z) is Whittaker s function. This distribution
function has an exponential tail. Therefore, any order of
intensity moments exist for all integers n = 1,2, . . . as

(I ")= I (2v+n)
/2, y+ + /2 &/2(p)+—(2—v+n)~q Wp— /2 1/2, + + /2(p}]—— —

[ Wp, —,+ —1/2(p )+2v&q W, , /, (p )] (5.15)

In the good-cavity limit (a./y~O) or the small SD limit
(accordingly, Sp is also small}, we find that the mean in-
tensity is given as (I ) =Sp A /4SD and the intensity vari-
ance is ((AI) ) =vSp A /8ySD, showing a linear depen-
dence on A. This is a clear difference from the bad-
cavity case.

In the good-cavity case, the intensity distribution has
no power tail and the intensity variance is only linearly

proportional to the pump parameter. Thus intensity fluc-
tuation of the good-cavity system is weaker than that of
the bad-cavity system, particularly in the strong pump re-
gime. This comes from the gain saturation mechanism of
the good-cavity laser where intracavity field becomes in-
tense to induce stronger interaction with the population
of the material (multiplicative feedback of the field to the
material) in comparison with the bad-cavity case (only
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additive feedfack resulting from weak field intensity due
to a large cavity loss). In the good-cavity case, the gain
factor G is subjected to a nonlinear saturation, while the
gain factor of the bad-cavity laser sufers only a linear de-
pletion, that is

good-cavity limit (~/y && 1), the variance becomes
( (b n ) ) = ( n ) to indicate the well-known Poisson statis-
tics where the fluctuation of the light wave is negligible
and the discreteness of the photoelectrons plays a dom-
inant role in photon-counting statistics.

Go
good

1+I /I,
(5.16a)

VI. DISCUSSION AND CONCLUSIONS

Gb, d
=Gb, d

—2y~ (5.16b)

1 I (2v+n)Pn, T,b,
=

n! I (2v) 2SD Ea' Tops

—(2~+ n]

2v

where G „d=2K(A+1) and Gt,d=2yi(A+1) are
linear (unsaturated) gains of the good- and bad-cavity sys-
tems, respectively, and I, =1 is a saturation intensity.
Therefore, remarkable differences appear in the large in-
tensity region (I) 1). This induces enhancement of the
friction for the modified STO in the large u region result-
ing in the suppression of intensity fluctuation in the large
I region of the high-Q cavity case.

Last, we refer to the photoelectron counting probabili-
ty which is evaluated analytically for a short observation
time only in the case of @=0as

I I=2(D —1) +2yA ——ln ——1 (6.1)

The first and second terms of the right-hand side of Eq.
(6.1) correspond to the kinetic and potential energy parts,
respectively. The distribution function may be given to
minimize the mean energy:

(6')= f du f du 6'(u, u)W"(u, u) . (62)

At first, comparing with NC solutions and MCF ones,
we discuss their realizability of the probability distribu-
tion in terms of the pseudoenergy of the STO. The pseu-
doenergy 8(u, u ) of the STO is defined as

2

8(u, u )—: +2y A U(u )
2

X 1+
2SD fK'Tobs

(5.17) Using the NC solution in Sec. III, mean energy is analyti-
cally calculated and of the form

whose mean is the same as that of Eq. (3.26), i.e.,
(n)=ET,b, A. The photoelectron variance is different
from the bad-cavity case by a factor ~, i.e.,
((An) ) =(n )(1+2eT,b, SDa./y). Therefore, in the

(@&NC 2$D+2Y A
2SD 2SD

for SE =0.

(6.3)

In the strong pump limit ( A ))1) or the weak population noise limit (SD/y « 1), this approaches 4SD. In the case of
the MCF solution, on the other hand, we have

oo oc rn 2n

( 6')McF=2SD(1+v'2az )+2y A g g g ( —1)"(2r—1)!!(2n+2m 2r —1)!!—
n =1 m =Or=0 (2n )!v'(2m )!

+ ~ao (2n+2m 2r+1)(2m+—1)
(2n + 1)+2m + 1 2m —2r+1 (6.4)

According to numerical calculations, there is little or no
difference between Eqs. (6.3) and (6.4). Therefore, their
realizabilities are almost the same in a parameter region
(0 & Sz «4$D /A ). This is another confirmation for the
validity and usefulness of the analytic NC solutions.

The temporal stability of the stationary solution should
be clarified by solving the eigenvalue problem of the
Fokker-Planck operator. ' The eigenvalue A, of the
Fokker-Planck operator satisfies the eigenvalue equa-
tion for n =0, 1,2, . . . , i.e.,

det~M „S„,(A, )+M „PI+M „+S„(k)
~

=0—, (6.5)

where I is a unit matrix and $„(A.) is a reduced transfer
matrix which satisfies the MCF relation [see Eq. (A9)] for
n =0, 1,2, . . . , i.e.,

S„(A.) = —[M „PI+M„++,S„+—, (A, )] 'M „+, . (6.6)

Here M „and M „- are coefficient matrices defined in the
Appendix.

We have solved numerically the above eigenvalue equa-
tion to obtain the following results. (i) The largest eigen-
value is always zero, X,„=O, independent of parameters
A, Sz and SD, and (ii) the other eigenvalues are all nega-
tive. This means that the stationary solution of FPE is
marginally stable. Therefore, the stationary distribution
functions obtained in this paper can exist in a physical
sense. Detailed results on the eigenvalue analysis will be
reported elsewhere. Anyhow, particular solutions of the
FPE (i.e., the NC solutions) almost coincide with the gen-
eral MCF solutions in the parameter region 0 ~ Sz
«4SD/A. Their realizability and stability have been
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checked; therefore, analytical solutions are useful enough
to discuss the statistical characteristics without the use of
more complicated MCF ones.

Finally, we refer to the controllability of noise
strengths, SE and S~, in actual experimental situations.
These values are given as

'2

interesting in terms of the spatiotemporal stochastic sys-
tem and noise-induced pattern formation. Another ex-
tension of this work is to construct the quantum-
mechanical version of the STO. Interplay between the
nonclassical nature of photons and the external fluctua-
tion is still controversial and to be clarified. These prob-
lems are left for future studies.

SE= 2

gD,„
2K

Ace /k~ T
e

+Ps (6.7a)
ACKNOWLEDGMENTS
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2

(6.7b)

Here Sz is controlled mainly by the field decay rate E,
which depends on the cavity mirror re6ectivity 8, viz. ,
E=~+(c/L )ilnR i (where x stands for a loss rate in the
gain medium resulting from absorption, diffraction, and
so on). We consider an additional term RE" as an arbi-
trary injection noise field to vary the field noise strength
in this analysis. On the other hand, S~ is usually fixed
when the total number of active atoms (or carriers) is
given. However, we vary S~ by controlling pumping
sources (e.g. , injection current supply or pumping light).
It is usually difficult to give a priori the expected values of
these noise strengths because many factors contribute
these values. They would rather be determined by the
observed statistical properties of light. Typical and
reasonable values are employed in the numerical calcula-
tions of this paper.

The main results of this paper are summarized below.
(i) The stochastic Toda-oscillator equation is derived

for the first time to study the statistical characters of a
low-Q cavity laser. It is transformed to the Fokker-
Planck equation with a position-dependent diffusion
coefficient and is solved exactly or approximately with
the aid of the complete orthogonal-function expansion.

(ii) Particular solutions of FPE are analytically ob-
tained under the no-current condition to show a long tail
(power tail) of the intensity distribution. Stationary in-
tensity variance is investigated as an example for clarify-
ing novel statistics due to the power tail. Super-
Poissonian photoelectron statistics is also examined.

(iii) General solutions are also obtained in a closed
form and are calculated numerically with the use of the
matrix continued fraction. Using them, the probability
distribution of the velocity of Toda oscillator (the popula-
tion difference) is discussed. Analytical particular solu-
tions are shown to be valid and useful enough in a physi-
cal parameter space.

(iv) A modified STO equation in the good-cavity case
is derived and investigated to clarify an essential
difference between the good- and bad-cavity conditions.
In the former case, the position-dependent friction of the
Toda oscillator appears and the intensity distribution has
no power tail, resulting from the strong gain saturation.

In the next step of this work, we need to pay attention
to the spatial coherence and spatial inhomogeneity which
may play a crucial role in the low-Q cavity. Then we
must give up the uniform-field and plane-wave approxi-
mations. Then the problem becomes multidimensional in
the space coordinate and hard to solve analytically but
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ments on the Langevin Maxwell-Bloch equations and the
photoelectron statistics. This work was supported in part
by the Scientific Grang-in-Aid from the Ministry of Edu-
cation, Science, and Culture of Japan.

APPENDIX: THE MATRIX
CONTINUED-FRACTION SOLUTION

In the case of nonvanishing probability current, we
need to consider all expansion coefficients c„(u,r) for
n =0, 1,2, . . . . This procedure can be carried out with
the aid of the matrix continued fraction according to
Risken. ' In the first step, we further expand c„(u,r)
into the complete set with respect to u to satisfy its
boundary condition [Eq. (2.20)j as

c„(u,r) = a„(r)"—expa&2~, , &p!
u

2A

XH u

a
(A 1)dna-

a„(r)=L-'„-"a„,+L '„-"a„,

(A2)

where

a„(r)='[a„'(r),a„'(r),a„'(r), . . .], (A3)

and the F '„"'s are the coefficient matrices whose elements
are listed elsewhere. Next, the reduced vector

a3„(r)
b„(r)= a3 +f(r)

a3 +2(r)
(A4)

where af(r) is an expansion coefficient (a„=0 for
n, p (0) and the factor a)0 is an arbitrary scaling pa-
rameter which is introduced in order to improve the con-
vergence of the expansion in the numerical calculation.
In this procedure, the exponential terms in the potential
and diffusion coefficient are also expanded to a power
series, and integrations with the Hermite function are
done by a symbolic and algebraic manipulation language.
Then a vector recurrence equation for n=0, 1,2, . . . is
obtained as
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is shown to obey a tridiagonal vector recurrence equa-
tion:

b„(r}=M„b„,+M „b„+M„+b„+i
dl-

(n =0, 1,2, . . . ) . (A&)

Here the coefficient matrices M n and M,—are given by

which have the following properties:

MO =0,

(M )„,=0, j=0, 1, 2, . . . ,

(A7a)

(A7b)

F( —3)
3n

0

0
(
—3)F 3n+1

F(—1)
3n

0 (A6a)

(M „+}0,=0, n, j=0, 1,2, . . . . (A7c)

M—n

0

(0)F3n
(
—1)F 3n+1

0
0

F 3"+2

0

F (1)

(0)F 3n+1
( —1)F 3n+2

0 0'
0 0

(
—3)F 3n+2

0

z, (1)
3n +1
(0)F 3n+2

(A6b)

(A6c)

When bp is given, the stationary solution b'„' of the re-
currence equation of motion (A5) is obtained in the form
of

b =S 1S 2' ' 'S1Spbp n=1, 2, . (A8)

where matrix S „ is introduced by b„~,=S nbn for
n =0, 1,2, . . . . These are represented in the MCF form of
M n and M,—, in the downward iteration

S„=—(M „+,+M „+~,S „+,) 'M „+,

+M n+1
—M n+1

+M n+2 M n+2
1

M n+3
—M n+3 —n+4

M n+3

M n+2

M n+1, (A9)

where 1/M k stands for inverse matrix M I,
'.

Using the normalization condition [bo(r }]0=a 0(r) —= 1, bo' is determined by solving the simultaneous linear equation

3P+2
(Mo+MO SO)i(bo') = —(Ma+MD+SO), 0, i =1,2, . . . , 3P+2,

j=1
(A 10)

where a nontrivial solution exists because of M p+M p S 0 =0. Here we assume that the expansion and MCF are trun-
cated as a suitable large integer p =P and n =N; then the matrices M „, M „-, and S „become (3P+3)X(3P+3)
square matrices. These truncation indices are determined by the requirement that further increases do not change the
higher-order components, e.g. , ap, a1, . . . , within a given accuracy. It turns out that the scaling parameter a influences
crucially the truncation number P. The scaling parameter a is determined in such a way that P and X become as small
as possible. Typically, we choose 0, =2.0, P =50, and N=50.

When we obtain the expansion coefficients a„, any statistical properties in the stationary state can be calculated. For
example, the distribution function is given by

1
oc oo a &

1W"(u, u )= exp
2vravd(u) „0 0 v'n!p! 2

u (u)
a vd(u )

(A 1 1)

Then, the intensity distribution function is determined only by a~p as

W"(I ) = 1 1 ao
expa&2~ I, , &p~

1 Iln—
20.

1 I
H —ln—

O.
(A12)

From this expression, the stationary intensity moments (I ") are given for n = 1,2, . . . by
Qc 3c m 2/(I")= & " g g g (

—1)"(2r—1)!!(2k+2m 2r —I)!!—
k =0 m =Or =0 (2k )!&(2m )!

a2m+
0

n&a 2m +1

(2k + 1)&2m + 1

(2k+2m —2r+ 1)(2m + 1)
2k —2r+1 (A13)
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