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Displaced and squeezed Fock states have recently been thoroughly investigated. Application of
these states as the input of a Kerr nonlinear medium reveals many nonclassical effects. We solve

this problem analytically and demonstrate results by numerical examples. We introduce a phase
distribution for the antinormal quasidistribution P~ and show that the "phase" of the new states
can be sharply localized at some values. This happens when revivals appear in the field. If the
states are shifted by a reference wave, photon-number distributions clearly detect the structure of
P~. Damping of the new states is briefiy discussed.

I. INTRODUCTION

Considerable progress has recently been made in the
production of nonclassical light states. Fields with a low
level of noise become very attractive. From this point of
view Fock states are the limit of noiseless states. The
study of these states in various interactions has good
physical reasons, since there already exist some possibili-
ties to produce them (see also Ref. 1). In Ref. 1 we have
investigated displaced and squeezed Fock states
Ip, m )z=&(g)D(p)~m ). These states originate in a suc-
cessive evolution of the Fock states ~m ) in the linear and
quadratic interactions, represented by the displacement D
and squeeze S operators. Squeezed Fock and squeezed
thermal states have been investigated in parallel in Ref. 2,
where results supplementing Ref. 1 have been found. The
Fock states and their generalizations could lead to new
light sources with unexpected properties without analogy
in classical electromagnetic waves. These fields could be
useful in such diverse areas as optical spectroscopy, com-
munications, or biology. Further, they make possible an
experimental study of the limits of quantum mechanics.

In Ref. 1 we ascertained that antinormal quasidistribu-
tions p& for ~p, m ) states have the form of a modulated
squeezed annulus. We have shown that various oscilla-
tions in photon-number distributions are tightly connect-
ed to the structure of P&. Therefore the form of p(n) is
to some limit predictable from P&. We introduced and
broadly employed the one-parametric generating function
for ~p, m )s states with m )0. The Kerr nonlinear medi-

um, represented by the evolution operator U3 produces
crescent states. These states have very low noise levels.

This paper focuses on two subjects. The first deals
with new aspects of using ~p, m )z instead of coherent
states in the Kerr interaction. The second concerns
quantum revivals, which are characteristic for the Kerr
interaction. From a physical point of view these revivals
lead to states that generalize the usual coherent states to
"multiphase coherent states" (MCS). They have no clas-
sical analogy, but they broaden our comprehension of the
borders between quantum and classical light theory.

Interesting results, in some way similar to those found

here, were also given in Refs. 4 and 5. They also make
some comments on revivals for the Kerr nonlinearity.
But new insight into this subject, which develops observa-
tions effected in Refs. 4 and 5, is given here. We demon-
strate that fractional revivals can appear for any strength
and time of evolution in the Kerr nonlinear interaction.
This nonlinearity was further thoroughly examined in
Ref. 6 and it was used to model nonlinear interacting os-
cillators in Ref. 7.

The paper is organized as follows. In Sec. II we briefly
review some results for ~p, m )s states and give necessary
information about the Kerr nonlinearity. In Sec. III we
find the coherent-state representation ( a

~ U3 ~ p, m )g, the
related antinormal quasidistribution P&, and some of
wave functions. In Sec. IV we shift the states U3 ~p, m )
and find the antinormal characteristic function C& and
the generating function C~~' for them. Further, we show
how photon-number distributions p (n) and factorial mo-
ments ( W" )& for U3 ~p, m ) with m )0 can be derived
from C~'. In Sec. V we briefly mention damping of
U3~p, m )s. Section VI deals with revivals as specific
features of a quantum chaos in the Kerr nonlinearity. Fi-
nally Sec. VII presents numerical results and the Con-
clusion touches on some experimental points of view.

II. MINIREVIEW OF DISPLACED
AND SQUEEZED FOCK STATES

AND THE KERR NONLINEARITY

In Ref. 1 we have defined displaced and squeezed Fock
states ~p, m ) by the following formula (see also Ref. 8):

atm
~P, m & =S(g)D(P)~m &=S(g)D(P) '

(2.1)

where D(p) and S(g) are a displacement and squeeze
operator

D(p) =exp(pa —p'a ), S(g)=exp(ga —g'a ), (2.2)

and a, a are the creation and annihilation operators.
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The parameters p, v, referred to below, are related to g
b 8,9

U3 ( y ) =exp [—,
'
y & ( & —1 ) ] (2.5)

g = ( r /2)exp( —i 9),

)((,
=cosh(r ),

v= exp( —i 0}sinh(r),

and the coefficients ao, ao are defined by p=pao+ vao.
In the same place we found the coherent-state repre-

sentation for lp, m & states by the method of a generat-
ing function. We inserted the term exp(k, a+) into the
matrix element &alp, O&s= &alp&g, used the Baker-
Hausdorff theorem and the definition of Hermite poly-
nomials. ' The one-parametric representation of
& a l p, m &g appeared in the form (see Appendix)

where y=2XI/v. Notice that this operator preserves
photon-number statistics, as can be seen from (2.5). Its
averaged value in the Fock state ln & is a periodic func-
tion of y. Different n give various angular velocities. Su-
perposition of these motions for a given state has physical
consequences for the evolution. New coherent effects
without classical analogy appear. The lack of classical
analogy is probably tied to the fact that the quantum of
energy Am is finite. Different Pock states have very
different angular velocities and localized a-space eleva-
tions can appear. These wave packets form the revivals
of the starting P&.

Effective investigation of these phenomena can be car-
ried out by the following methods of calculation. The
nondiagonal representation of U3 in coherent states
serves us as the starting point. It results easily

&alp, m &
= — &alp& (v' —A ) H

m!

(i /2)y n( n —i )

t

rll Il

n=0 n.

(2.3) (2.6)

where

9=
2p

a*—ao

H=A'co& it+1&X(d ) d =ficoh+hXh(h —1), (2.4)

The investigation of the states lp, m & in Ref. 1 revealed
that the generating function method is a useful tool for
dealing with Fock states. We damped lp, m &s states in
the one- and two-photon absorption process. The two-
photon damping of a displaced and squeezed vacuum
gave us a new physical insight into this damping process.
Since this process damps more quickly higher intensities,
the elongated ellipsis of P& for a squeezed and displaced
vacuum became distorted. This led to even lower noise in
the states.

The Kerr medium blurs P~ over the space of a. If
such a field is mixed with a reference beam, lower noise
states could be obtained. We can expect that the same
mechanism could be effective for the states lp, m &g. Be-
sides this, we will see that the blurred states can periodi-
cally pull off and give a new physical picture of the evolu-
tion in the Kerr medium.

The Hamiltonian describing this nonlinearity reads

This matrix element together with the formula (2.3) en-
ables us to gain the coherent-state representation of the
field U3(y )S(g)D(p}lm &. It gives the antinormal quasi-
distributions P&. The Wigner quasidistribution can be
easily calculated, too. But it acquires both positive and
negative values. There is probably no simple intuitive
way to imagine such a complex field through this distri-
bution. We will see that the antinormal quasidistribution
could give us a new physical picture to the meaning of a
phase for the quantum fields. As can be expected the
normal quasidistribution does not exist from the same
reasons as for the field lp, m &g (see Ref. 1).

III. THE COHERENT-STATE REPRESENTATION,
ANTINORMAL QUASIDISTRIBUTION,

AND WAVE FUNCTIONS OF U3 Ip, m &~ STATES

This section investigates antinormal quasidistributions
and wave functions of the states U3lp, m & . The matrix
elements & a l U~ l p, m &s contain all important informa-
tion about the states U3 lp, m &g in easily accessible form.
To find &al U3lp, m &g we use the generating function of
& a

l p, m &g from the Appendix (we call it the
"unwrapped" form of &alP, m &s).

The matrix elements & a l U3 lp, m &g result from the fol-
lowing elegant method. We insert &alU3la, & from (2.6)
and &a, lp, m & in its "unwrapped" form into the com-
pleteness relation

where 8=8 8 is the number operator and X is propor-
tional to a third-order nonlinear susceptibility y . We
denote the evolution operator in the interaction picture
for (2.4) by U&(y). For the medium of a length I and a
velocity of light in the medium v, it acquires the form

f la&&al"

and obtain

(3.1)
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d a1
&alU3(y)S(g)D(p)lm &

=f (alU3la) & &a)lp, m &s

oo (i/2)yn(n —1)—/a'n y
7T n!n=0

gn ~ gmen

Bp" v'm! M,

X J exp pa, — +A, A+ —(af —ao) (a&lp&gd a, lz ~=o2

1 lal' IPI' v'
exp — — + p

V pm! 2 2 AM

(i/2)yn(n —1)e

n=0 n!

m 81
X y . (It.

. )J(Q —A, )"+~(Q —a, )--~H„„ 2 18 —8 E'

2+—W,

where the coefficients are

(3.2)

A =, A =A, A =—,8=—,8=
1 2

~ 2 ~ 3 ~ 1 ~ 2

—ao
7

A3 A3

2Ai
' 4A

(3.3)

In (3.2) we have replaced a", by (8"/Bp")exp(pa, )l 0. Also we used the matrix element (alp& from Ref. 9 and per-
formed the integration with the help of the following integral:"

f exp[ B IPI +(c—/2)P' +(c, /2)P +D,P+DP']d P= —exp [DD,B+—D2(c, /2)+D f(c/2)]

K =B CC, , ReK—)0, Re[B+(C,+C)/2] & 0 . (3.4)

Finally we transformed p, A, to other coefficients by the
linear transformation (p'=A, ,p=p+E'A, ), because they
appeared after the integration in a common product. The
Hermite polynominals resulted in the way shown in the
Appendix.

The formula (3.2) reveals how the elements ( a
I p, m & g

are superimposed. This information could be useful in
physical deliberations. Another rearrangement simplifies
(3.2)

(alU3IP, m &g=e ' g a'"f(n)
n=0

p~(a) =—(alpla &

1

l&alU IP, m—&, I'

2
e L Pi P2

—al-
Le

e
—lal2

n * n' a*na",
n, n'=0

where p is the density operator and L follows:

(3.6)

oo n

e
—~a /2 y f(n) ePa

=0 ~P p=0
(3.5)

The form of f ( n ) is obvious from its definition in (3.5), if
the last is compared with (3.2). Notice that the parame-
ter a appears in the last expression of (3.5) only in the ar-
gument of the exponential function. This greatly
simplifies integrations performed below.

Our next goal is the antinormal quasidistributions P~
(Ref. 10) for the states U3lp, m & . This is the main re-
sult, which will answer basic questions about the prob-
lem. We postpone them to Sec. VII. P~ can be intro-
duced in the following form:

00 8" r)n
'

L = g f(n)f '(n')
n, n'=0 Bp Bp

(3.7)

The expression with L in (3.6) is in fact a two-parametric
representation of P&, described in Ref. l. If we substitute
a=a —ao in (3.6), we obtain P~. for the shifted states

D(ao)U3lpm &g, which could arise from the superposi-
tion of U3 Ip, m &g with a strong reference beam. Results
in Sec. IV will be presented for this generalized P~ .

Now consider the following wave functions

(q I U3lp, m &g. They are the coordinate representation of
the fields U3lp, m &~. They can be found similarly as

(qlP, m &s in Ref. 1. We make use of (3.5), (qla& from
Ref. 12, the completeness relation (3.1), and as a result
obtain
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(qlU, lP, m ),=
'n

e ~ g f(n) f exp( —lal —,'—a +pa'+&2aQ)
0 BP

' 1/4

e ~ g f(n)H„(Q)2
n=0

(3.8)

where Q=q&co/fi. The integration procedure, was ac-
complished as in (3.2). The wave functions (3.8) are
demonstrated by selected numerical examples in Sec. VII.
They arise by a coherent projection of P& on one coordi-
nate axis. This results in many interference oscillations
for longer times of evolution in the Kerr medium. The p
representation and other wave functions of the fields can
be found analogously.

Wave functions and coordinate variances were investi-
gated in Ref. 5 for a damped and amplified nonlinear os-
cillator. Some of the revival effects can be observed
there. Now we will examine the scalar product of
U3(y)lp, m )g with U3(y') p', m')s. It represents the
overlapping of the two wave functions. Physically, the
second power of its modulus gives the probability of
finding the oscillator in the state U3(y')lp', m')g, if we

know that it is in the state U3(y)lp, m ) . Originally the
Fock states were orthogonal (m lm') =5, but in the
course of evolution this relation breaks down. Intuitively
we can expect that the overlapping of two states
U3(y)lp, m )s with different parameters is nonzero, if the
corresponding P&, P'A overlap in the plane a. We can
find the scalar product similarly as we have found

, (p2, mzlpi, mi ) in Ref. l. After a simple algebra,

I

I

there results

, (p', m'IU3 U3lp, m &,

2 a2

=L)2 exp —a +p&a +p2a

L 12exp(p2p i } (3.9)

Here (3.4) and (3.5) were used and L,2 is a slightly

changed operator L from (3.7}. In its definition it is

necessary to substitute

f(n)=f, (n), f*(n')=f2(n') . (3.10)

The indices 1,2 at f in (3.10) correspond to the two states
in (3.9}. If we convert the product p2p, in (3.9) into
another one, as in (3.2), this expression can be rear-
ranged. To this purpose we make the transformation to-
ward the new parameters

p~ =P~+p2~ p2 P& P2 s
(3.11}

which permits us to rewrite the term with the partial
derivatives in Llz. The explicit form of (3.9) easily ap-
pears:

r

00 n n'
pg n'

g(p', m'lU3'U3lp, m&, = g fi(n)f2(" } .+' g g k I ( ) ' Hk+l(0)H + ' —k —l(0)
n, n'=0 k =01=0

(3.12)

Here the following property of Hermite polynomials

Hz„(0)=( —1)",', Hz„+i(0)=0, (3.13)

can be used to simplify (3.12). The structure of (3.12) has

a general form, which will often appear in the subsequent
analysis. It is of interest that if P& from (3.6) interacts
linearly with another quantum mode, the new P& ac-
quires a form similar to (3.12}. Physical consequences of
this interaction on revival states (see below) are nontrivi-

al. These investigations are planned to be published later

by some of our colleagues.

IV. GENERATING FUNCTIONS, PHOTON-NUMBER
DISTRIBUTIONS, AND FACTORIAI. MOMENTS

FOR U3lp, m )I STATES

So far we have examined wave functions of the fields

U3 ( y ) l p, m )g in the coherent states and the coordinate
representations. We can continue our investigation with
the moments of the type (a 'aj), (a'a J) for equal and
unequal i,j. They can be combined to give photon-

=L exp[(p, +g)(p —g*)], (4. 1)

where (3.4) and L from (3.7) have been used. Together
with the normal characteristic function C~ (Ref. 1()) they
generate the above shown moments for generally different

~ ~

l,j.
If we put a Kerr medium in an interferometer, we

could produce the field D (ao ) U3 l p, m )g. This state can
have sub-Poissonian distributions p(n}, which can be
detected as photon antibunching in the Hanbury Brown-
Twiss experiment. C~ for this field can be found as fol-
lows. We make the shift a=a —ao in P~ froin (4.1) and
obtain

C~ (g) =C& (g)exp(a o g
—

aors* } . (4.2)

I

number distributions p (n } or factorial moments
( W")~. ' The starting point will be the antinormal
quasidistribution P& from the preceding section.

The Fourier transform of P& from (3.6) gives the an-
tinormal characteristic function C& (Ref. 10)

C~(()=fP~(a)exp(ga' —g'a)d a
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Here C& from (4.1) is multiplied by a factor resulting

from the shift. We should show the explicit form of (4.2}.
After a transformation analogous to (3.11) C& acquires
the form of (3.12) with f, f* in place of f, ,f2. The ar-

guments of the first and second Hermite polynomial and
the exponential prefactor in (3.12) are nowexp(aors

—
aors*

—
lgl ) . (4.3)

At this point we will stop our investigation of C&, C&
because of the lack of space. But we encourage the in-
terested reader to do this at least for a few small mo-
ments. Despite its coinplexity the formula (3.12) and mo-
ments derived from it can be rather easily summed by a
computer.

In the rest of this section we can calculate the photon-
number generating functions C~' and C& ' . ' They easi-

ly result from their definitions

()C~'(A, )= f exp — C~(g)d~g

=L exp[p, p2(1 —
A, )],

C~'=C~ exp[ k(laol +aop2+aopi }1

(4.4)

(4.5)

Here C~ is the normal characteristic function, related to
CA by'

C~(g)=C&(g)exp(lgl ) .

As before, we yet present the explicit form of (4.5}.
Two transformations must be performed to attain this
goal. The first reads

I
P1 =P &+C1, P2 —P2+C2

where c„c2 are defined in (4.7). The second is the same
as in (3.11). After a little algebra we obtain C'z' in the
form of C~. But in C~' still the term (&A )"+" ap-
pears in the product with Hermite polynomials. The new
arguments and prefactor follow:

(4.9). For the simple case ao =0 the Hermite polynomials
need not be differentiated [their arguments are 0 in (4.6}],
so that closed formulas can easily be found. But photon-
number statistics and factorial moments for U3lp, m )g
states are the same as for the field lp, m ) . In Sec. VII
we show some of the photon-number distributions for the
states D (a o }U3 l p, m )g, calculated by another method.
There we will see how the reference beam clearly dis-
closes the hidden structure in P~.

Production of states D(ao)U3lp, m ) in the Kerr in-

terferometer might be a great problem in practice. The
presence of various sources of a noise may cover the
structure in P&. Since the noise in the field grows with
the time of interaction, stronger nonlinearities could help
solve the problem. On the other hand, low-temperature

experiments can substantially diminish the noise of a
scattering system.

G(a, a~)= exp ——la —a e
1 1

mC c (5.1)

V. DAMPING OF U3lp, m )I STATES

In this section we briefly summarize results obtained
for damped D (ao ) U3 ( y ) l p, m )g states. When damping
is included into the nonlinear oscillator model (2.4}, both
the result and the method of the solution become very
difficult. This problem was solved in Ref. 5 with P& for a
coherent state and in Ref. 6 for an arbitrary P&. Despite
the fact that this investigation is very realistic because of
a noise production in the Kerr interaction process, here
we choose a simpler approximation. %'e concentrate on
the problem of damping of p& for U3lp, m )g states,
prepared in the nonlinear Kerr oscillator.

W'e present analytical results for damped antinormal
quasidistributions P~, characteristic functions C&, and

I

generating functions C~'.
The Green function in the interaction picture for a

one-mode damping process reads'

C1+C2—i&A
2

—&A; exp( —
A, lao l ), (4.6)

where

C=(n+1)(1—e i''), (5.2)
where the coefticients are

A=1 —A, c = a c =c*.
1 l g 0, 2 1

(4.7)

A similar cornrnent can be given to the photon-number
generating function C~' and C~' as for C&, C~. In
principle they enable us to gain factorial moments
( W")~ and photon-number distributions p (n) by'

and n and y' are the mean number of chaotic phonons
and damping rate. We shift P& from (3.6) and insert this

into the convolution relation for a damped solution.
.We also use (3.4) and as a result obtain the damped an-
tinormal quasidistribution P~

P~(a, t ) = fP~(a, )G(a, ai)d a,
dk(W" & =( —I)" C'"'(~)

A, =O

p (n) = C~'(A. )
(
—1)"

dA, "
A, =1

(4.8)

(4.9)

exp —laol'—
~C C

XL exp[ A (A i+D )(Az+D*) —
A, ,a o

—A2ao],
In the general case ao =0 no closed formulas for p (n ) and
( W")~ exist. But for small k and n the generating func-
tion C~' can be successively differentiated in (4.8) and where the parameters A, D are

(5.3)
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C) =

D + + —(y''/2)&.
ao

AD —a0
Cp=C)

(5.4a)

from (5.3) can be rearranged to the form of C~' from
the preceding section. We must substitute A, c„c2 from
(4.7) by the expressions from (5.4a) and replace the ex-
ponential prefactor in (4.6) by

u2
exp —ia, i' — + AiDi'

mC C
(5.4b)

c,=, [GB,+ao(A —1)],1
(S.Sa)

1c2=, [G82+ao (A —1)],

and

exp[GB&82+ ~ao~ (A —1)]/[8(C+e r ')] . (5.5b)

The unknown parameters follow:

G=Be r r 8 =a +~e rn'
1 0

B =a — e~ B=-~r2
0 B 7 C

and A, C are the same as in (5.4a).
Finally the bilinear form in A, A, 2 also remains in the

exponent of the damped generating function C~', which
acquires the form of the undamped C~'. Making use of
the definition (4.4) the result easily appears. The new
coefficients A', C, , C2 and the prefactor read

A'=6+A—
1 0c =a 1—

exp[ciao~ (A' —1)]/[ABB'(C+e r')],
(5.6a)

(5.6b)

where 8'=(1/8 )+(1/A, ) —1 and A, B,C, G are the same
as in (5.5).

The damped C~' gives the damped photon-number
distributions p ( n ) and factorial moments ( W" )~ from
(4.8) and (4.9) in the same way as C~' with coefficients in
(4.6) and (4.7).

We would still like to call attention to the fact that all
functions (P~, C~, C~') calculated in this section were
exponential functions and that in their arguments the pa-
rameters A, „A,2 appeared exactly in the second power.
This is connected with the bilinear structure of the an-
tinormal quasidistribution P~ (the diagonal coherent-
state representation of the density matrix). It was the

The damped C& results similarly. Using the definition
of C~ from (4.1) and P& from (5.3), C~t acquires the pre-
vious form of C~'. The new coefFicients A', c&,cz and
prefactor, analogous to (5.4b), are

A'=G+A,

principal point of the success of our analysis. Each of
two wave functions in the density matrix produces one of
the coefficients A, A,2. It is very interesting how these
coefficients transform to the damped density matrix,
which already cannot be resolved onto two wave func-
tions. Without using the methods of parameters, there
would be little chance of finding analytical results for the
damped states D(ao)U3(y)~P, I )~.

VI. REVIVALS IN THK KERR INTERACTION

Much effort was devoted to invent various wave pack-
ets since the time of Schrodinger. Generally, this meant
trying to find new states that even more resembled objects
like a photon or a particle. These states were the build-
ing blocks of quantum mechanics. We will try to show in
this section another kind of state lying on the boundary
between classical and quantum mechanics. These states
even more call to mind the concept of a particle.

Revivals in P~ are closely related to the structure of
the matrix element (a~ U3 at ) in (2.6). Notice that the
argument of the exponential function in the sum acquires
the form (i y /2)n (n —1). This suggests that the quasidis-
tribution P& completely returns to its starting shape, if
y/2=2m. . The fact that revivals can also be observed for

y =n. was already noted in Ref. 4 and in other papers' it
was further examined. Quite recently Ref. 15 appeared,
which could help to classify phenomena observed by us.
Now we will try to explain how revival structures in P&
can arise, generalizing those described in Refs. 4 and 14.

The sum of the arithmetic series of the first natural
numbers 1,2, 3, , n is S=n(n +1)/2. The last expres-
sion appears in the exponent of (2.6), but with n substitut-
ed by n —1. If the variable y is of the form 2m. /k, where
k is a natural number, the resulting exponent in (2.6)
would be (i2n!k)n(n —1)/2. The difference between
this term and the following one (i2n/k)(n+. 1)n/2 is
(i 2m/k)n. So that varying n in the set of natural num-

bers, the exponent acquires only the values
(i2n/k, i4m/k, . . . , i2. n. ), neglecting a coefficient equal
to a multiple of 2m. Now we set y =2m. /k and observe
the remaining terms (a "a& )" in (2.6). If the phase of a "a&

gains one of the shown k values, the phase of its nth
power again falls into the above-mentioned set. This
leads to a constructive interference of the terms in the
sum (2.6) and results in a local elevation of P&. If the
phase of a*a, is very different from one of the shown
values, terms in the series (2.6) have accidental phases,
densely placed in the interval (0,2'�) As a consequ. ence a
local elevation in P~ does not appear. Accidental phases
of terms in (2.6) even come if y&2m k/. a*a, may then
be arbitrary. As a result only accidental elevations ap-
pear in P~.

We might expect that, if y =2~/k, then k phases of a
should exist, at which P~ looks the same way. We will
see examples of this in the next section. For y=2m/k
the starting pattern of P~ will reappear k times on the
circle centered above the center of the coordinate system.
The radius of this circle is equal to the starting shift of

These new objects are placed there regularly with
the angle 2m/k between neighbors. The parameter y,
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which is equal to the product of the interaction constant
and time, acquires these important values 2m /k
(k = 1,2, 3, . . . ) in every neighborhood of zero. Therefore
interference effects might appear for times as small as we

want. An important exception to this rule comes if the
dimension of the starting pattern of P& is larger than

some limit, which depends on the radius of the circle on
which P~ lies. Then the new k objects will not have

places on the circle, and an interference diminishes them.
We may say that for 2n. ~ao~k )d, where d is the "dimen-
sion" of the starting P& and ao the coherent shift con-

nected with p (see Sec. II), the new objects are revealed
and for the reversed inequality they are hidden due to the
interference. This is in accord with reality, where for
small y and ao we do not observe such revivals. We need

greater y or o.o to see them.
To conclude this section we note that revivals, similar

to those discovered here, were observed in Ref. 15 for an
atomic system. They were generally analyzed there and
called fractional revivals. This is yet another result of the
rapidly developing field of fractal physics. Probably the
fractal structure of time evolutions in quantum mechan-
ics could be more easily realizable than it is in classical
physics.

Figure 2 presents P~ as in Fig. 1 but for parameters
m =5, o.o=1.5, v=0.08, d =5. The values
y=0. 15,0.35, 1,2n/3 correspond to cases (a) —(d). Here
the coordinate center lies inside the ringlike P&. As a re-
sult P& resembles chaotically moving wave packets, espe-
cially for great y in (c). When revivals appear the struc-

(a)

VII. NUMERICAL RESULTS

In the section (i) below we show examples of charts for
antinortnal quasidistributions P& after the Eq. (3.6). In
(ii) we introduce intuitive phase distributions for the an-
tinormal quasidistributions P&. We show how the phase
can be sharply quantized to some periodic values in the
limit of a strong field. In (iii) we will present the coordi-
nate wave functions (3.8) by a few examples. Finally in

the section (iv) we present photon-number distributions
for some of P& from (i), which are yet shifted.

(i) In this section P~ from (3.6) are calculated for the
maximum number of terms in the sum n,„=65. This
implies that the results are without serious errors at most
for ~a~=5 —6. Nevertheless, some maps are presented
with ~a,„~ =7 for orientation in the marginal parts of
P&. In the following figures the plane a has the center of
the coordinate system in the center of the lined place.
The real axis goes along the lines and the imaginary axis
lies parallel to the line-end boundary. The basis is a
square with the half length of base d.

In Fig. 1 we can see the evolution of the shifted Fock
states with m =2, a0=3.5, v=0.08 (—=0), d=7, and

@=0,0.5,0. 15,0.25 for the cases (a) —(d). The coordinate
center is outside the ringlike P&. We observe that the
ring breaks into a series of disconnected hills, in the same
way as in Ref. 1 under a pure squeezing. The difference is
that now the elevations are not in a line, but lie on some-

thing, which reminds us of an Archimedes spiral. When
the distribution blurs around the coordinate center a
phase uncertainty grows in the field. Each peak corre-
sponds to a phase-localized wave packet. But peaks with
the same shape and a different distance from the coordi-
nate center have different meaning. They pertain to a
nonequal number of Bose particles. We can say that this
number is ~ao~ times the probability in the given peak.

(b)

(c)

FIG. l. Evolution of the antinormal quasidistribution P~ for
the state U3~P, m )g, with parameters rn =2, ao=3. 5, v=0.08,
and d =7. Cases (a) —(d) correspond to y =0,0.05,0. 15,0.25.
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««of p& evolves into symmetric, but unpredictable
forms. The case (d) shows quantum revivals for
y=2n. /3. Different parts of P~ interfere and P& does
not resemble the starting ringlike shape. The motion of
regions with accidental phase and probability magnitude
can be observed on phase-dependent moments (moments
shown in the beginning of Sec. IV with i' )

Figure 3 demonstrates the behavior of P& for the
squeezed Fock state with large m =10 and a =0.2,ao—

(-=0), v=0. 5, d =7, with y=0, 0.05,0. 15,n, for cases
a) —(d). We observe that the ends of the elliptical P&

start to rotate around the center Later
regions appear in the middle part of P~. Lower ends of
P& can be seen in (c). In Fig. 3(d) coherence in the field
leaeads to the revealing of three parts in P&. They
represent three packets with different phases and compa-
rable number of particles.

We will show what is common to all these figures. In
each of them there exist some points or axes of symme-
try. The case (a) has a center of symmetry and two axes

(b)

(b)

(c)

FIG. 2. The sarne as in Fig. 1, but for coefficients m =5,
a = 1.5, y =0.08, and d =5. Cases (a)—(d) belong to
y =0.15,0.35, 1,2m/3, respectively.

FIG. 3. AAs in Fig. 1 with parameters m=10, a0=0.2,
y=0. 5, and d=7. Surfaces (a)—{d) have y=0, 0.05,0. 15,
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times in the plane u. The calculation of (E) certainly

basis of the results (4.3), (3.12). Revivals renew the initia

field is lower here, but the phase is localized to six similar
maxima.

ne but theFigure isF' 5 reminiscent of the previous one, u
5shift is ap=2 anp= d d =7. The values of y =0.05,0. 15,0.2

correspond to cases a-( ) —(c). Here it can be seen how one
of the two arms breaks down into a lot of separate
locks. is is a c

arms towardao@0) and the resulting shift of one of the arms
higher a. In Fig. 5(d) we changed v=0. 8, y=ir and
~a ~

=2.5 for a better view. In addition, the phase of aoap —2. or a e
is for the first time nonzero, y=0. 7. Figu7. Fi ure 5(d) recon-
structs the starting "canoelike" P& in two exemp ars.

(a)

(c)
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42 KERR INTERACTION WITH DISPLACED AND SQUEEZED. . . 4187

Finally Fig. 8 shows p~ with the parameters m =0,
v=0.08, y=2m. /12, d=7 and a0=2. 5, 3.5,4.5, 5.5 for
the cases (a)—(d), respectively. We look at the transfer
from a "classical" toward a "quantum" behavior of P~.
For this specially chosen, the initial P~ reappears 12
times (if its "dimension" is sufficiently small) on the sur-

rounding of the circle centered at a=0 and having the
radius of the middle shift iao~ of P&. Ideas from the end
of Sec. VI are demonstrated here. We can deduce that
the critical radius for a coherent state and 12 revivals is
R„=12R„&/m =5.5, where R „z is a fictitious rad-
ius of P~" for a coherent state. As a result
R„&=5.5m. /12=1.44, which is in good agreement with
an approximate dimension of P~", calculated from
P&"=e i i /n. For R,»=1.44 we obtain P~"(R,»)
=P~ "(0)/8, so that neighboring P& on the circle nearly

(a) (a)

(b)
b)

(c)
(c)

FIG. 6. The same as in Fig. 1 for the coefficients m =1,
a0=2e"', v= 1, and d =7. Surfaces (a)—(d) have

7 =0,0.25,0.75, 27T/3.

FIG. '7. As in Fig. 1, but every case (a) —(d) has its own pa-
rameters. They are m =4, a0=2, v=0.08, y=m, d=6; m =1,
a0=3, v=0.08, y=m/2, d=5, m =0, ao=2, v=2. 5, @=2m/3,
d=6, m =2 ao=3. 5, v=0.08, y=m+0. 05, d=7 for (a)—(d).
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do not overlap. We can also obtain the relation between
ao' and n, where ao' is the critical shift of P&", which we

would like to observe placed n times on the circle with
the radius R„=lao" l. If we define R„h by

P~ "(R„h)=P'A'"(0)/10 we easily obtain, putting 2n lines
of length R„h on the perimeter of the circle with R„,the
relation

y=2rr/k, laol ) lao'l and a coherent state as the input,
we obtain a quite general field, which could be called a
"multiphase coherent state. " Such a field produces a
quantum analogy of the classical intensity

T

2+mE(r, t)=E,~„Re g exp i Er t—ot+
m=0

1
ao'I = n—/2 . (7.1) (7.2)

This relation introduces the minimal shift lao"l, which
must be chosen, if we want to gain quantum revivals of
order n. For this order the parameter y is
y=2m/n =rr/lao"l. Now we mention the fact, that for

(a)

where K is the wave vector, r is the coordinate, and co the
frequency of the field. In the classical case all the mo-
ments of E(r, t) are exactly zero. But for a quantum field
prepared in MCS only the odd moments of E are zero.
Since the intensity E concerns one mode, any measure-
ment on the field destroys all components in the quantum
analog of (7.2) simultaneously. The fact that for k )0 it
holds (E ) =0, but (E )t=E,~„, suggests that the medi-
um in which this field propagates should not have such a
propensity for damage by high field intensities.

(ii) In classical physics the concept a phase of a mono-
chromatic field is well based. This is not true in quantum
mechanics. Many attempts have been made to invent a
unitary phase operator with various levels of success.
Here we introduce the concept of the antinormal phase
distribution. Deeper theoretical investigation of the sub-
ject is out of our focus now.

Since the antinormal distribution P~ is normalized, we
can introduce the antinormal phase distribution P(qr) in
the following way:

P(g)= fP~(r)r dr . (7.3)

It is clear that this phase distribution is also normalized

(b) f P(q )dq =1 . (7.4)

c)

FIG. 8. Dependence of P~ on the parameter ao. The sur-
faces (a)—(d) correspond to the constants m =0, v=0.08,
y =2~/12, d =7, and a0=2.5, 3.5,4.5, 5, 5.

P(y) for a coherent state could be easily found, so that we
do not present it here. Intuitively it can be expected that
it is formed by a peak at the point of the phase of the
coherent shift P. It has good limit properties for large
lgl. The field then becomes quasiclassical, the phase un-
certainty disappears and P(p) approaches a 5 function.
The above definition of P(y) is one of many possible. It
has certainly some disadvantage but it can present the
field in some way. The normal phase distribution, defined
analogously to the antinormal one, is singular and there-
fore does not show a phase uncertainty where it should
be. The symmetric phase distribution loses its sense be-
cause it could be also negative.

In Figs. 9(a)—9(d) we show a representative example of
phase distributions P((p) after (7.3) for P& from Figs
8(a) —8(d). We can see in detail how the phase breaks
down in many "channels" when the starting shift uo
grows. For small shift ao no oscillations appear in P(p),
which is rather blurred due to the presence of the Kerr
interaction. The case (b) reveals first oscillations on a
broad background. In cases (c) and (d) ao still grows, os-
cillations become deeper, and the flat background slowly
disappears. For very large shifts we would practically see
12 5 functions placed at regular intervals. Figure 9 gives
a detailed view of the evolution of the phase of P~. It
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tions for the states D(az)U3~P, m ) with parameters
m =2, a0=2. 5, v=O, y=m, aa=~aa~e' . ~aa is 2.5,
1.25, 0, starting from the nearest curve. We can see p (n)
for P& which is composed of two circles for Fock states
lying on different parts of the point a=O. The three
curves correspond to three positions of the displaced
coordinate center, as it moves from the center of one of
the circles toward the point a=O. The first curve is
formed by a peak, corresponding to the circle having the
coordinate center inside, and by a three-hill-like part for
the displaced Fock state from the second circle. This
means that there is the probability 0.5 to find one particle
in the field and the same probability to find any other re-
sult, which lies dominantly between 10 and 40 particles.
As the coordinate center goes toward the point a =0, the
peak diininishes and it would seem, from p(n), that both
circles join together, forming p (n) of the starting ~P, m )s
[ U3 itself does not change p (n) statistics].

Figure 11(b) presents similar phenomenon in P&, but
now the parameters are m=O, a0=3, v=O, y=m and
a0=3, 1.5,0, beginning from the nearest curve. The
coordinate center moves on the real axis Ima =0 between
the two hills of P~, which correspond to two equivalent
coherent states displaced to the points a =3e'
3e ™l2.Interferences start to appear in p (n) even for a
small shift aa. Successively they become broader, but do
not disappear. Fields with "modulated Poissonian"
statistics could be produced in this way.

Figure 11(c) demonstrates sub-Poissonian behavior in

p(n). The parameters are m =1, a0=4, v=O, y=0. 15,
a0=1e"' ++', where y is 0,0.3,0.6, starting from the
nearest curve. The coefficients are similar to those from
Ref. 3, but now m = 1. We observe that the rniddle curve
is probably the most sub-Poissonian. Interferences and
broadening destroy the other two peaks.

The last example in Fig. 11(d) returns to higher y,
where revivals of a small multiplicity appear in Pz. The
parameters are m = 10, aa= 3, v=0. 7, y =2m/3,
a0 =3, 1.5,0, beginning at the nearest curve. The
squeezed vacuum, reproduced three times, is "observed"
first from the center of one of the vacua, then from the
middle point between a=O and the previous one, and
finally from the point a=O. In the first curve we can see
typical two-photon oscillation from the squeezed vacuum

having the coordinate center inside and slow interference
oscillations from the two remaining vacua. This field,
formed from a superposition of a squeezed vacuum and
some coherent part, could have applications in atomic
physics. We might expect that a stimulated scattering in
the presence of this field will be of a combined type. This
scattering will pass with some probability as in the pres-
ence of a squeezed vacuum and with another probability
as in a coherent field. But the evolution will also be
affected by some coherent effects from a simu1taneous ac-
tion of both parts. The curves continuously change to-
ward the last one, which looks like it would correspond
to a displaced and squeezed vacuum.

VIII. CONCLUSION

We have used displaced and squeezed Fock states, in-

vestigated in Refs. 1 and 2, as the input of the Kerr
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APPENDIX

We will exhibit the derivation of a Hermite polynomi-
al, from its generating function, in the elements

(a~P, m )g in (2.3). This way was used in nearly all for-

mulas presented above.
In Ref. 1 we show that

(a)S(g)D (P)exp(Aa ) ~0) =exp(A. A +LB )(a~P)g,

(Al)

where A, B are defined below (2.3). We call the second
expression in (Al) the generating function of (a~P, m )g.
From (Al), the definition of the Hermite polynomials

~ "d"
H„(z)=( —1)"e' e

dz"
(A2)

and the substitution z = —&—A ( A. +B j2 A ) we obtain

medium. The resulting states were presented by various
examples of distributions. A special type of these states
are the "multiphase coherent states" (see Fig. 8). We
have found that they have important unclassical proper-
ties. These states could probably be observed by carefully
performed experiments. In practice the field intensities
are usually strong, therefore revivals of higher number
seem to be observable. We presume that they will be
masked by noise and their P& will look like they have the
form of a continuous circle. We think that the lowest re-
vivals should be searched at first. It will probably be
more difficult to produce the multiphase coherent states
than the squeezed light. Their detections could be real-
ized by photon-number measurements in the Kerr inter-
ferometer. These measurements should be compared
with the theoretical results for p ( n ), examples of which
are in Fig. 11. The MCS states can be especially charac-
terized by their phase distributions. Figure 9 shows that
MCS preserve their unclassical behavior in the limit of a
strong field.

The Ui ~P, m ) states generalize both the crescent
states from Ref. 3 and the displaced and squeezed Fock
states from Ref. 1. They also form a special basis for cal-
culation, similar to ~p, m )z states. Preparation of these
states would be even more difficult than the production of
MCS. But since the Fock states will probably be pro-
duced in the future, we may think of their application in
the Kerr medium.
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(alP, m ) = &als(g)D(P)exp(ka )IO&lx=o
&m! t)J

ym —2

=(alP) exp( —8'/4A)( —&—A ) e ' = —(alP), (&—A ) H (z)' &m! dz, , &rn!

This procedure can be easily generalized if more differentiations, analogous to that from (A3), must be performed.

(A3)

P. Kral, J. Mod. Opt. 37, 889 (1990).
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