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Self-pulsing in a band model for dye lasers
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%'e study the self-pulsing stemming from the Risken-Nummedal-Graham-Haken-type multimode
instability in the dye laser described by a band model. Analytical self-pulsing solutions for arbitrary
pumping are presented. A distinct feature of the pulsation is that it corresponds to a very low

pumping threshold and the required cavity-mode condition can be satisfied in a conventional ring
dye laser. Another distinct feature is that the phase velocity of the pulsation may be smaller than
the light velocity in the medium. The simple rule, which tells us whether the pulsation is a super- or
subcritical one and was found for the two-level model in a previous paper, has been extended to the
band model. The results are relevant for experimental investigation of the Risken-Nummedal-
Graham-Haken-type multimode instabilities, which are intrinsic to multimode lasers, but have not

yet been identified in experiment.

I. INTRODUCTION

The present paper deals with the self-pulsing develop-
ing from the Risken-Nummedal-Graham-Haken
(RNGH} -type multimode instabilities in ring dye lasers.
It is a succession of our previous work on multimode in-
stabilities in the band model for dye lasers' and an exten-
sion of the analytical self-pulsing solutions obtained for
two-level systems.

A. RNGH instability in two-level systems

The multimode instability in a homogeneously
broadened unidirectional ring laser was first investigated
by Risken and Nummedal and Graham and Haken in
1968. They found that a cavity mode propagating in the
z direction with infinitesimal amplitude A in the form

u;„(A)( ~a„~(ct,„(A), (1.2)

where A is the dimensionless pump parameter. In the
(A, a) plane the upper and lower boundaries of the insta-
bility region are given by

ct,„;„=—(3A —y+Ryl X
A —2 —y+R

(1.3)

with R =—[A —2(4+3y)A+y ] ' y=yt/y|
y—=~/y~, where ~, yi, and

y~~
are the relaxation constants

of the electric field, the polarization, and the inversion re-
spectively; c is the light velocity in the medium. Mean-

A exp(ia~), a,= (v=O, +1,+2, . . . ),L

where L is the cavity length, grows to destroy the stabili-
ty of the stationary solution if the wave number a, falls
into the regime

ingful solutions a;„(A)and a,„(A)exist only for

A) A, ;„=4+3y+2&2(1+y)(2+y). (1.4)

By increasing A the instability condition (1.2} is satisfied
by fulfilling either

a„=a,„(A,) or a =ct;„(A,) .
C C

The critical pumping A, is called the second threshold
and satisfies A, ~A, ;„~8.In the literature this mul-
timode instability is called Risken-Nummedal-Graham-
Haken instability. Direct numerical integration of the
Maxwell-Bloch laser equations showed that a steady,
traveling wave self-pulsing will develop from the RNGH
instability, and for certain values of the cavity length the
pulsing solution can be stable below the second thresh-
old.

In the vicinity of the second threshold the self-pulsing
was analyzed by Haken and Ohno. They found
analytical results for the temporal form of the laser out-
put and established an analogy between the onset of the
self-pulsing and phase transitions in systems far from
equilibrium. '

Later on many authors extended the study to consider
systems with detuning" ' and systems where the longi-
tudinal profile of the stationary field is not a constant'
and they found similar multimode instabilities. Other ex-
amples can also be found in Refs. 15—18. A comprehen-
sive description of these developments is presented by the
review papers see also the introduction of our re-
cent paper. Essentially these kinds of instabilities are
caused by the excitation of the Rabi oscillation in laser
systems. ' Since the Rabi oscillation is bound to the in-
teraction between the atoms and the electric field, the
RNGH instability belongs to an intrinsic property of a
multimode laser.

In Ref. 2 we solved analytically the self-pulsing prob-
lem in a homogeneously broadened two-level ring laser
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under the limit
y~~ &&y~. For this system we found that

the onset of the self-pulsing corresponds to a first- (or
second-) order phase transition if a =a,„(A,) [or

C

a =a;„(A,)]. The physical reason is that a mode near
C

the gain center is suppressed by the stationary laser
operation below the second threshold. When this opera-
tion becomes unstable and absent, the gain of this mode
experiences an additional increase so that the amplitude
of the pulsation grows discontinually.

Though the theoretical studies have shown that the
RNGH-type instability is intrinsic to a multimode laser,
it has not yet been identified experimentally up to now.
As pointed out by Abraham, dye lasers are a good candi-
date for the experimental investigation, since the required
cavity mode condition can be easily satisfied.

B. Multimode instabilities in dye lasers

The experimental observations of the higher-order in-
stabilities and bichromatic operations in dye lasers re-
ported by Hillman et al. , and further experiments done
by Stroud and co-workers have inspired a series of
theoretical work to investigate the multimode instabilities
in dye lasers. " '

To explain the novel phenomena observed in the exper-
iments we have proposed a band model for dye lasers' in
the framework of the semiclassical laser theory developed
by Haken. ' The energy-level diagram of this model
consists of a single upper lasing level and a lower lasing
band of many sublevels. For this model we have found
two kinds of multimode instabilities for different popula-
tion relaxation rates yb of the sublevels.

If yb is comparable to the relaxation constant yd of the
upper lasing level, then the occupation of the band can-
not be neglected. Through the stimulated emission the
sublevels, which are important for a particular laser
operation, can be so strongly populated that the corre-
sponding inversions decrease to a certain minimum value.
Consequently, the original lasing state becomes unstable
and a new laser operation takes place. In contrast to the
RNGH instability and self-pulsing this kind of mul-
timode instabilities is caused by saturation of different
sublevels and result in new multichromatical laser opera-
tions. ' We believe that they are those observed in the
experiments.

Another case is yb »yd, i.e., the population of the
sublevels decays very fast and the band is always empty.
The stationary solution and its stability in this case have
been studied in Ref. 1. The results show that the mul-
timode instability corresponds to a very low second
threshold. The physical reason is that the sublevels,
which are not in resonance with the stationary laser
operation, facilitate the excitation of the side modes.

In this paper we continue to study the case yb »yd.
We shall show that self-pulsing takes place above the
second threshold and present analytical solutions of the
pulsations. Since the second threshold and the self-
pulsing solutions coincide with those found for two-level
systems in the limit that the band reduces to a single
level, we call this multimode instability RNGH-type in-
stability.

The self-pulsing in the band model has some new dis-
tinct features in comparison to that of two-level systems.
The most distinct one is that the second threshold may be
very low. To observe the RNGH-type instability and the
self-pulsing in a dye laser does not require the pump
power to be at least nine times the first lasing threshold.
For the experimentalist this shows another advantage of
using a dye laser to investigate the RNGH-type instabili-
ty, besides that the cavity mode condition can be easily
satisfied. Therefore the self-pulsing solutions presented
in this paper may become the first ones to be observed in
future experiment on the RNGH instabilities.

Another new feature of the self-pulsing in the band
model is that the phase velocity U of the pulsation may be
smaller than the light velocity c in the active medium.
This means that U & c, which has been regarded as a gen-
eral property of self-pulsing in active medium, is only an
incidental result of the two-level model.

C. Experimental data of the relaxation constants

The relaxation constants y, y&, and yb of the polar-
ization, the population of the upper lasing level, and the
population of the band are of particular importance for
the band model. For the rhodamine 6G molecule, which
is used in the experiments, y and yd have the typi-
cal values yz

——10' —10' s ' and yd-—10 —10' s ', re-
spectively. The measurement of yb is very diScult.
Ricard and Ducuing measured yb for those sublevels
which are located spectrally 5600 A below the upper las-
ing level and found a value yb-—2.5X10" s '. For
these sublevels yb »yd holds and the population of the
sublevels can be neglected. ' This is the case with which
we are concerned in the present work.

We mention in passing that the sublevels which are
relevant to the bichromatical operations reported in Ref.
24 are located about 5970 A spectrally below the upper
lasing level. In other words, they lie more than 300 A
lower than the sublevels measured by Ricard and Ducu-
ing. For these lower sublevels the population relaxation
constant may be much smaller, as we assumed in Refs.
29 and 30.

The paper is organized as follows. In Sec. II a brief in-
troduction of the band model is presented. The stability
of the stationary solution is analyzed in Sec. III. In con-
trast to Ref. 1, we are interested here in the case of
discrete cavity modes because the spacing between adja-
cent cavity modes in a dye laser is usually comparable to
the Rabi frequency. The main part of this work is Sec.
IV, where the self-pulsing solutions in the band model are
obtained analytically. A summary of the results is given
in Sec. V.

II. BAND MODEL

We only present the Maxwell-Bloch equations and ex-
plain the meaning of the quantities of the band model. A
detailed derivation can be found in Refs. 1 and 23.

The relevant energy-level diagram of a dye laser is de-
scribed in Fig. 1. It consists of a single upper lasing level,
which corresponds to the lowest vibrational level of the
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PUM

E(z+L, t}=E(z,t),
P(z+L, t) =P(z, t),
D(z+L, t)=D(z, t) .

(2.6)

"m &m

7/i 7p

The effective pump parameter A in (2.5) is defined by
A=(DO D,—}/D„where Do is the unsaturated inversion
due to pump and relaxation processes, and D, is the
threshold inversion to be given in (2.14). By definition
the first threshold is A=O. ~, y, and y& are the relaxa-
tion rates of E, P, and D, respectively.

The parameters Ih I are the dimensionless frequency
spacing between the mth sublevel and the band center
m =0.

FIG. 1. Relevant energy-level diagram for a cw dye laser
consists of an excited single-level and a ground band with many
sublevels. The upper lasing level can interact with each of the
lower sublevels, but there is not interaction among the sublevels
themselves.

For simplicity we assume

=Am,

(2.7)

(2.8)

first electronic excited state (S, ) of the dye molecules,
and a lower lasing band of many sublevels, which
represent the vibrational and rotational levels of the elec-
tronic ground state (So) of the molecules. The relevance
of these sublevels is evidenced by the very wide spectral
tunability (several hundred angstroms) of dye lasers.

Let Wand lP& be the eigenvalue and eigenfunction of
the excited single level and W and lP & be those of the
mth sublevel, respectively. Then the wave function l4&
of the dye molecule can be expanded as

I@&=c(t)e '~""lP&+ g c (t}e lP &, (21}
m&8

where 8 stands for all the sublevels of the band. Intro-
ducing the polarization P with respect to the mth sub-
level and the population D for the upper level by the
correspondence relations,

i.e., the sublevels are equally spaced.
The parameters If I characterize the dipole matrix

element 6 =(P l{ er)lP&—of the lP&
—

lP & transi-
tion. Define the total dipole moment strength 8 by

' 1/2

9=
~w 1+~'

then f is defined by

(2.10)

By definition If ) are positive constants and satisfy the
normalization

(2.11)

For simplicity, we assume that If I are symmetric with
respect to the band center

P ~c(t)c'(t), D~lc(t)l (2.2)
—m (2.12)

we can derive the following Maxwell-Bloch equations
based on Haken's semiclassical laser theory: '
BE BEaE —e +~+— P
Bt Bz

(2.3)

BP = —y~(1 ih )P +y —f DE, (2.4)

BD A

Bt
= —y A+1 D ——g (P*E+P E—) . (2.5)m pit

mEQ

In these equations the population of the sublevels has
been neglected due to yi, »y„.' E(z, t) refers to the
electric-field strength, P (z, t) to the macroscopic polar-
ization with respect to the mth sublevel, and D(z, t) to
the macroscopic population density of the excited state.
They satisfy the periodic boundary conditions

and that the central sublevels have greater dipole mo-
ments

fo f+i f=2 — ' &0-- (2.13}

where coo is the frequency of the lP &
—

l Po & transition.
The stationary solutions of this model and the stability

analysis for continuous cavity mode (L ~ ~ ) have been

The property (2.13) is a sufficient condition of the stable
stationary solution for small pump parameter. '

For simplicity the dynamic variables E(z, t), I P (z, t) I,
and D(z, t) in (2.3)—(2.5) have been normalized by the
constants

fi/ y g y AK/ y g y 16KyP = D, =
2A ' i n8coo&8A . ' 2n 0 coo

(2.14)
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studied in Ref. 1. In this work we are interested in the
case of discrete cavity modes and the self-pulsing solu-
tions developing from the instabilities. It is easy to see
that this band model reduces to the two-level model if
fo= 1 and f ~0=0.

III. INSTABILITY OF THE STATIONARY SOLUTION

The stationary solution of (2.3)—(2.5) is given by

E, =1, P
1 —imam

' (3.1)

This solution describes a unidirectional laser operation
with the frequency ~0. It is worth pointing out that in
this operation not only the center sublevel, which
resonates with the lasing field, but all the other sublevels
take part in the lasing transitions also.

A. General formalism of linear stability analysis

27TC V
" Lv'y, y,

Deaning

(v=O, +1,+2, . . . ) (3.3)

+ =e —e Pm, + Pm —Pm ~
+ = + (3.4)

To study the stability we consider small perturbations
5E, 5E', 5P, 5P', and 5D for the stationary solution
and make the ansatz

(5E,5E*,5P,5P*,5D )

=(e,e,p,p, d )exp[boyd y~(At iPz/—c)] . (3.2)

We call A and P the eigenvalue and the wave number of
the perturbation regardless of the scaling factors. To
satisfy the periodic boundary condition P must be equal
to 1 of the discrete values

B. Pump-independent characteristic equation

The characteristic equation (3.7) does not depend on
the pump parameter A. In the following we show that all
the roots of this equation have a nonpositive real part.
To this end we need the inequality

(1+x„)f
ReF(x)= g ™&1

Eg (1+x„)+(x, +Am)

for x„~0 (3.9)

where the equation is valid only for x —=x„+ix;=0(x„
and x, are real). The proof of the inequality for a con-
tinuous band was given in Ref. 1. For discrete sublevels
the mathematical problem is much more diScult and the
proof is given in the Appendix.

Now we consider the real part of (3.7) and show that
Rei, ~0. In fact, if ReA, & 0, then on the left-hand side of
the equation one has &yReA/y&0, but on the right-
hand side there exists —I+ReF(&yA) &0, according to
(3.9). This contradiction shows ReA, & 0. Furthermore,
that the equation in (3.9) exists only for a =b =0 implies
that ReA, =O exists only for P=O. Obviously all these ei-
genvalues do not indicate any instability of the stationary
solution.

C. Pump-dependent characteristic equation

We consider (3.8) for a sufficiently small pump at first.
At A=O (3.8) reduces to (3.7) if the denominator on the
right-hand side is not equal to zero. That is, besides the
root A, = —&y, which is the zero of the denominator, all
the other roots of (3.8) are equal to those of (3.7). There-
fore all the roots for PAO have negative real part and
that for P=O has a zero real part. In the limit A~+0
only the latter may obtain a positive real part. Using per-
turbation theory one obtains this root (which is zero for
P=A=O) from (3.8)

it is easy to work out two independent characteristic
equations for (e,p ) and (e+,P +,d), respectively.
In terms of the band structure function F (x),

—A[2 —F'(0)j&0 for P=O, A~+0
y

(3.10)

F(x)—:g
~& 1+iAm+x (3.5)

where x is a complex variable, and

Vd K
X

p Vp

(3.6)

the two independent characteristic equations are given by

(1+iglv'y A)F(i &yq—)Re — — =0 .1+iplay + AF(i &y rt)
(3.11)

where the inequality F'(0) &0 has been taken into ac-
count. The proof of F'(0) &0 is given in the Appendix.
Therefore all the roots of (3.8) have a negative real part
(regardless of P) in the limit A —++0.

With increasing A the stationary solution loses its sta-
bility if A=i' (g ,is real). At this critical point the real
part of (3.8) yields

and

(AiP)= —I, —+F(VyA, )
x

(3.7)
Using the auxiliary function

H(rt, A)= 2A iFi +A iFi ——3F„—3gF,
V'y

(3.8)y
A

. 1+ (1+A,/v'y A)F(&yA)—
X 1+A/'&y+ AF(&y A.)

2

+ 1+ (F„—1),
y

(3.12)

We shall discuss these two equations separately. where F„,F, , and ~F~ are the real, imaginary part, and ab-
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H(ri, A)=0 .

The imaginary part of (3.8) becomes

(3.13}

solute value of F(i&y7)), respectively, one finds that
(3.11) is equivalent to

and Qydy is finite. This is a good approximation for
dye lasers, where y=lo and Qydy =10" s ', see
Sec. I C.

In this limit we expand the band structure function
into a power series

(I+ill/O y A—)F(i&yrI)
&y I +i rl/&y+AF(i &yg)

(3.14)

2

F(i &yrl) = I+F'(0}i&yrI F—"(0) +
2

(3.16)

The last couple of equations describe the second
threshold of the stationary solution. For a two-level
atom the band-structure function is given by
F(x)=1/(1+x) and (3.13) and (3.14) produce the identi-
cal results presented in Sec. I A. Therefore the instability
concerned here is an extension of the RNGH instability.
We call this instability RNGH-type instability.

Now we solve the threshold condition in the limit

Since F'(0) &0 and F"(0))0, where the latter is implied
by (3.9},we shall use the abbreviations

IF'I= —F'(o), IF"I=F"(o) .

Substituting (3.16}in H, we obtain

(3.17}

H(ri, A)= —2A +A(3IF'Iri —2) — +O(&y) .
IF"In'

2

(3.18}
=ydy= —+O

p

(3.15) Neglecting the small term O(&y) we obtain two solu-
tions from (3.13)

(A}=
„

I3IF'IA+I 9IF'I2A —4IF"IA(A+1
1/2

(3.19)

These solutions are real only for

A+A, 1

9 IF'I'/'4 F" —1
(3.20)

Therefore A, ;„is the minimum value of the second
threshold. For a two-level atom one has
F(x)=1/(1+x), IF'I =1, and IF"

I
=2. This produces

A, ;„=8,a result that one also expects from (1.4) in the
limit y~O. This minimum value was studied in Ref. 1.
The numerical results presented there show that A, ;„is
always smaller than its counterpart of the two-level mod-
el and may be equal to any number greater than zero.

In terms of A, ;„the critical frequency can be written
as

P, =P+(A, ) or P, =P (A, ) (3.24)

holds at the second threshold; see Fig. 2. In Sec. IV D we
shall show that in the former case the self-pulsing is su-
percritical, and in the latter case it is subcritical.

D. Lorentzian distribution of the dipole moments

For a laser cavity with finite cavity length L only the
discrete values IP„Iare allowed; see (3.3). The second
threshold A, is the minimum of all possible values
fulfilling either of p =p+(A). Denoting the critical in-

teger v by v, and the critical wave number p„byp„
C

then either

3IF IA,
IF"

I

1/2 ' 1/2

(3.21)

In order to calculate numerical values of the solutions,
we consider a concrete band structure. We assume that
the band is continuous and that the distribution of the di-
pole moments If I is a truncated Lorentzian:

In the same approximation one obtains from (3.14}

p+(A}=(l+yIF'I )r)+(A)— 2yA
g+(A)

(3.22)
(3.25}

(A)~g+(A), P (A)~P+(A) (3.23)

where the equalities hold only for A =A,
The functions p+(A) are the boundaries of the instabil-

ity region for the stationary solution in the (A, p) plane.

In this notation p+(A) and p (A) correspond to a,„(A)
and a;„(A),respectively (see Sec. I A). It is easy to show
that

where cr corresponds to hm, 28 is the dimensionless
bandwidth (the real bandwidth is equal to 28 y fi), I the
halfwidth of the Lorentzian, and CN the normalization
constant. The density of the sublevels has been included
in f (o ). We can change 8 and I to describe different
band structures. For dye molecules the sublevels are very
dense and they can be treated as a continuum.

In accord with (2.12) and (2.13)f (a ) satisfies
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5- B„=2.

I —1
CN (3.29)

2I [arctanB —(1/I )arctan(B /I )]

Straightforward calculations yield

3- v =2 F'(0)= 2
F' —1

B.r'C 8
1 — —I CNarctan1+8.' (3.30)

0
0

v=4

8 =2.
N

4. v=3

v=2

2-

0
0

I I
1 I

I
I I
I I
I I
I I

A, t I
a c f I

I
I
I
I
I

I

I
I

I

I

I
f

T

I

I

I

I
I
I

I

I

F"(0)= 2

I —1
2F'(0) + 1+

28I C

(1+B )
(3.31)

Based on these expressions we have calculated the func-
tions p+(A) and the results are demonstrated in Fig. 2.

Now we point out that this instability requires a cavity
length which is usual for dye lasers. To this end we let
the critical wave number P, =2 (compare to Fig. 2) and
assume other parameters to be c =3 X 10' cm s
ye=10 s ', and y =10' s ', respectively. It follows
then from (3.3) that I. =2mc/(p, 1/yzy~ = 3 cm.

exp iQy, y, rir ——z (4.1)

IV. SELF-PULSING SOLUTIONS FOR y ~0
Now we derive the running wave self-pulsing solutions

for the band model in the limit (3.15). Since the frequen-
cy g of the critical perturbation

FIG. 2. Unstable region of the stationary solution. At the
second threshold one has either (a) P, =P+(A, ) or (b)

p, =p (A, ).
lies on the order of 1 [see (3.21)], we introduce the local
time variable for the running wave by

Z+r—ay, (4.2)

f(~)=f( —0), f(o)&f(0') if l~l &lo'I

The band structure function is given by

(3.26)
where U is the phase velocity of the pulsation. By
definition we have

B CNd o.
F(x)=

(1+0 )(1+cr /I )

CN 1+x —i8~
iF ln 1+x +iB

a &y.r, d
dlBt ~ dr' Bz U dr

The scaling of time leads to

(4.3)

2(1+x) B
arctan (3.27) 0 =1d

d'T
(4.4)

where the complex logarithmic function should be under-
stood as

for the derivatives of field variables.
For a running wave self-pulsing the Maxwell-Bloch

equations (2.3)—(2.S) become
1+x —iB 1+x —iB

ln =ln
1+x +iB 1+x +i8

dE E+gP—
mE8

(4.5)

8 +x;—i arctan 1+x„

8 —x;
+arctan 1+x, (3.28)

dP
v'y = —(1 i hm )P +—f ED,

da A=v'y a+1 —D ——y (EP'+E*P
d7. 2

where the parameter e is defined by

(4.6)

(4.7)

The constant CN is determined by the normalization con-
dition F (0)= 1 and from (3.27) one obtains

1 cE'= 1
X

(4.8)
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In terms of r the periodic boundary condition (2.6) takes
the form

[E(r+ T, ),P (r+ T, ),D(r+ T„)]
= [E(r),P (r),D (r)], (4.9)

where the period T, is defined by

(4.10}

we obtain

dEo
IF I

= P, +E, +EOD, .
d~

The combination of (4.17) and this equation yields

dEo
(e+ IF'I) =EoD, .

dr

(4.21)

(4.22)

(4.23)

A. General solution

We shall solve E, IP ], D, and e (or U) for given sys-
tem parameters. To this end we expand (E,P,D) and e
with respect to the small parameter &y,

(E,P,D)=(EO,P OD )o+(Ei,P „Di)&y+
(4.11)

I=—EoE o

the two equations take the form

(~+ IF'I }
dI
d'r

(4.24)

(4.25)

Equations (4.19) and (4.23) form a closed set of equations
for Ep and D, . In terms of the intensity variable

E'=E +oE)v p+ ' ' ' (4.12) dDi
=A(1 I) . —

d7. (4.26)

In order to find the dominant terms Ep P 0 Dp and D&

(D, is important to Eo) only Ep is concerned. For simpli-
city we denote ep by e.

Substituting (4.11) into (4.5)—(4.7), to zeroth order we
obtain

These equations are similar to those presented in Ref. 2
(for the two-level model IF'I=1). Therefore we simply
present the solution as follows. Suppose that the pulse in-
tensity reaches the minimum I;n at ~=0, then the inver-
sion is given by

0=Po —Ep,
0= —(1 ibm )P 0—+f EODO, (4.14)

(4.27)

(4.13}
D, (r)=++A(e+ IF'I )[lnI(r) —lnI;„+I;„—I(r)],

mP 0= Ep,
1 —imam

Do=1 .

dDo =0.
d~

Taking (2.11) into account one obtains

(4.15)

(4.16)

where the sign is + if I(r) increases with r and it is —if
I(r) decreases; see (4.25). It is easy to show that all the
(local) minima of the function I(r) are equal to I;„;all
the maxima are equal to I,x, which is determined by

Imin '

dEo
e =P —E

1 1 (4.17)

dP 0 = —(1 ibm )P,+f (E—, +EOD, ), (4.18)d7.

The first-order perturbation of (4.5)—(4.7), which deter-
mines the field Eo(r), is given by

lnImax Imax lnImin Imin (4.28)

The mean value of I(r) can be found by integrating
(4.26), which produces

TI= I ~ d~=1.
TU 0

It follows, then, that

dD,
=A(1 EOEO ) . — (4.19)

0(I,„&1&I,„, (4.30)

At first we want to eliminate E, and P, from these
equations. To this end we divide (4.18) by (1.—ib, m) and
then sum over m. This leads to

where the equality holds for the stationary solution,
which is a limiting case of the self-pulsing. This relation
can also be shown by (4.28).

As suggested by (4.27) a real inversion requires that

d ~ m, oP
dw ~~ 1 —imam mEB

P

(4.20)

+ g (E, +EOD)) .
1 —tom

~+IF'I )0. (4.31)

This will be shown in (4.49). Now we substitute D, (r) in
(4.25) and obtain

(4.32)d 7-=+ 1 dI
2V A I+1nI —lnI;„+I;„I—

Considering P o given by (4.16) and the equation where A is defined by
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(4.33)

max dp7=+
2V'A t" y Qlny —lnI,„+I,„—y (4.34)

The integration within the least period —T/2~ v. & T/2
leads to the result

I;„=1—5, 5~+0 . (4.40)

ity does not depend on TN or I;„individually, but de-
pends on their combination. This implies that, for aPxed
A, there are an infinity of solutions which have different
Tiv and I;„(herewe consider TN as a continuous param-
eter). A special solution among them is the one whose
I;„approaches 1:

In this period I(r) evolves from I,„(atr= —T/2) to
I;„(at~=I;„)and then back to I,„(atr=T/2).
Therefore T is given by

I
T= f . (435)

V A ~ y+lny —lnI,„+I,„—y
In order to satisfy the periodic boundary condition (4.9),
T must be equal to

By the approximation

52
ln(1+5) =5——,

2

it follows from (4.28) that

Imax= 1+5 '

Supposing

(4.41)

(4.42)

T.
TN

N

+) d),L

¹

(4.36)
I(r)= 1+5u (~),

we have

(4.43)

where N is a positive integer. For the right-hand side of
(4.35}we have, by (4.28), that

f max

V'A m ~ y Qlny —lnI,„+I,„—y
I

f,
-"

Qlny —InI,„+Im,„—y
Therefore (4.35) becomes

dg
N g lny —lnI m,„+I,„—y

(4.38}

QlnI(r) —lnI;„+I;„I(r)=— [1—u (r))'
2

(4.44}

=+ [arccosu (r) —~]1
(4.46)

Then it follows from (4.34) that

dg
lim

m» y Qlny —lnIm;„+Im;„—y
u(~) du (4.45)

(1—u )'

or

u (r) = —cos(~/2Ar) . (4.47)

That is, for giuen A, among many solutions there is a spe-
cial pulsation

(4.39)

Since within z E(O,L}the pulse intensity has N peaks, we
call N the pulse number. For later purposes it is helpful
to write this equation in the form

—'&2A=P„' f -"
&lny lnI,„+I,„—y—

where Pz is defined in (3.3).
Up to now we have solved (4.5)—(4.7) under the period-

ic condition (4.9) in the limit y~O. If e and n are
known, we can calculate I;„(orI,„)for given system
parameters from (4.39) and then find I(r) from (4.34).

B. Determination of the phase velocity v

For the two-level model we have shown that e or U,

which is the zeroth-order quantity with respect to V'y, is
determined by the periodicity of the higher-order expan-
sions of the self-pulsing solution. In doing so one must
refer to numerical calculations. In the two-level model
we incidentally succeeded to make a correct analytical
ansatz for e. However, for the band model it is impossi-
ble to construct analytical expressions from the numeri-
cal calculations. In this paragraph we shall develop an
analytical method to determine e.

Equation (4.38) shows that for given A the phase veloc-

I(~)= 1 —5 cos +2Ayd y t —— (4.48)

=rtz(A) or e= —fF'] .2A

rj~(A)
(4.49)

However, since this is the zeroth-order solution with
respect to y, there is no constraint on the frequency
&2A.

On the other hand, the infinitesimal term in (4.48},
which is a periodic but not a damped function of time, is
a critical perturbation for the stationary solution. Ac-
cording to the linear stability analysis, which is per-
forrned by considering higher-order solutions of the
Maxwell-Bloch equations (with respect to v'y), the fre-
quency of the critical perturbation must be equal to
r)+(A) as given by (3.21}. Therefore, by the definition of
A, it holds that
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In this way we have found e for given A. We emphasize
that this result does not depend on the minimum valueI;„,though it has been derived in the limit I;„~1—0.

Corresponding to 7)+(A) we denote the two solutions

by e+(A). It is easy to verify that these solutions reduce
to those presented in Ref. 2 if a two-level model is con-
cerned, where one has

~

F'
~

= 1 and
~

F"
~

=2.
Using (3.21) we can write the solutions in the form

e+(A)= . 1—2A 2

l+(A} Ac, min Ac, min

1 1

Ac, min

1/2

(4.50)

The phase velocity U follows from (4.8) and is given by —+2A =P+(A)
V

(4.52)
C

1 —ye+(A)
(4.51}

14

(n)

These two solutions are shown in Fig. 3.
It is interesting to notice that both the solutions e+(A)

in the band model may be smaller than zero, e.g., in the
case A, ;„(2 and A =A, ;„asshown by (4.50). That is,
both the possible phase velocities U+(A) may be smaller
than c. Therefore we conclude that the explanation on
the relation U & c given in Ref. 3, according to which the
inequality U &c must hold generally for self-pulsing, is
not correct. U & c is only a result of the two-level model.

In (4.48) we can also consider the spatial behavior of
the solution and compare it with the wave number of the
critical perturbations. This produces

where P+(A) are given by (3.22). It is easy to verify that
(4.49} and (4.52) are identical and generate the same re-
sults for e+(A) and U+(A).

C. Determination of the pulse number N

From linear stability analysis with respect to the sta-
tionary solution we know that for A & A, the infinitesimal
perturbation characterized by P, becomes unstable, i.e.,
the corresponding eigenvalue has a positive real part.
After the transient growth this unstable mode will devel-
op into a stabilized pulsation. Since there is no other
mode which becomes unstable, the pulsation consists of
only one basic component, i.e., the unstable mode, and its
higher-order harmonics. This implies that the pulsating
solution has the same spatial periodicity as that of the un-
stable mode. Therefore one has for the self-pulsing solu-
tion

1,2-

B„=2.0, I'=3.0, y=0.5
1/c Piv

=P,:—P„orN =v, .

D. Final solution

(4.53)

08
0

(b)

2
c,mm

B„=0.3, I'=0.5, g=0.2

v, (ii)/c

lc

The combination of (4.39), (4.52), and (4.53) produces

P,(A)=P, '
f,

'"

Qlny —lnI;„+I;„—y
(4.54)

Now we show that on the left-hand side only P+ yields
the right solution. To this end we define the function

Is(I.,„)—= ' f (4.55)
lnimin + min

Numerical calculation shows that S(I,„)is a strictly
monotonically increasing function ofI,„.The minimum
of the function can be calculated analytically and the re-
sult is

1.0

09
4

L
I

I

I

I

I

I

I

I
I
I

I

I
I

cronin

I

10

lim S(I,„)=1.
max

(4.56)

Now we discuss the two possibilities by which the insta-
bility of the stationary solution takes place.

In the case P, =P+(A, ) it holds that

FIG. 3. Phase velocity v as a function of A. It may be greater
or smaller than c, depending on the concrete band structure.

P (A, ) &P+(A, )=P, . (4.57)

Therefore (4.54) cannot hold if its left-hand side is P (A).
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In the case P, =P (A, ) it holds that [see Fig. 2(b)] 12

dP (A)
&0 at A=A, .

dA
(4.58)

8-

B„=2.0, I =3.0, y=0.

This implies that (4.54) cannot hold for A & A, if its left-
hand side is P (A). Therefore the only acceptable solu-
tion of (4.54) is that given by P+(A).

In terms of g+ (A ) and P+ (A ) this solution is given by

y
1(~)7=k

+2r)+(A) dmin briny —lnI, „+I,„—y (4.59)
0

0

,
'

A,

y, ~~)=p, '
f,

-'
(4.60)

glny —lnI;„+I;„—y

20

(b)

B„=2.0, I =3.0, }(=0.5, P,= l.
For a given system one can solve the pulse amplitudeI,

„

from (4.60) and then the intensity I(r) from (4.59).
The phase velocity of the pulsation is equal to U+(A).
This self-pulsing solution is exact for arbitrary A in the
limit y ~0.

Now we show that the onset of self-pulsing may be
continuous (second-order phase transition) or discontinu-
ous (first-order phase transition), depending on how the
instability of the stationary solution occurs. We consider
(4.60) for the following two cases.

(i) P, =@+(A,). At the second threshold one has for
the self-pulsing S(I,„)= 1, which yields the same valueI,„=1as the stationary solution. Therefore the onset of
the self-pulsing is continuous. In this case I,„exists
only for A A, and it increases with increasing A, .

(ii) P, =P (A, ). Since P+(A, )&P (A, )=P„it fol-
lows that S(I,„)& 1 at A =A, . Considering the fact
that S(I,„)is a strictly monotonically increasing func-
tion, one finds I,„)1 at A =A, . Therefore the onset of
the self-pulsing is discontinuous when A is increased to
A, . On the other hand, if A is decreased from a value
greater than A, by which the self-pulsing already exists,
the pulsation persists until A is decreased to A, ;„,be-
cause P+(A, ;„)&P (A, ) =P, always holds. Thus both
the stationary solution and the self-pulsing solution may
operate for A C ( A, ~;„,A, ) and the system is bistable.
For A(A, ;„nopulse solution is allowed since g+(A)
and P+(A) are no longer real

The pulse amplitude I,„asa function of A in the two
cases is shown in Fig. 4.

Physically the simple criterion about the onset of the
self-pulsing may be understood as follows. In case (i) the
critical sidemode lies so far from the gain center and thus
absorbs so little energy from the system that it maintains
only an infinitesimal oscillation at the second threshold.
In case (ii) the critical sidemode lies nearer to the gain
center, but it is suppressed by the lasing mode (i.e., the
stationary solution) whose frequency is located in the
gain center. The breaking of the suppression leads to an
abrupt increase of gain for the sidernode so that it devel-
ops discontinuously into a finite pulsation.

10-

0
0

(g)
I

c,tnin

I
I

I
I
I
I
I

I
I

A,

FIG. 4. Pulse amplitude I,„asa function of A. (a) If
P, =P+(A, }, the self-pulsing solution is supercritical; (b) if
P, =P+(A, ), then it is subcritical and the system is bistable for
A'e(A', ...',:,)

V. CONCLUSIONS AND DISCUSSIONS

We have solved the self-pulsing problem in the band
model for ring dye lasers. The analytical solution is given
by (4.59) and (4.60), which applies for arbitrary pump pa-
rarneters. This pulsation resembles that of two-level sys-
terns, but it may be realized by a lower pump. Therefore
this work suggests a model for the experimental investi-
gation of the RNGH-type instabilities and the pulsations.
It should be noted that the stability of the pulse solution
has not been studied. Therefore we can only say that, if
the laser after the instability of the stationary solution is
a traveling wave, then the solution must be given by
(4.59) and (4.60).

We have further studied the criterion about the onset
of self-pulsing for the two-level model with finite y. It is
found that if P, =P (A, ), then the onset is discontinu-
ous; if P, =P+(A, ), then it may be discontinuous for P,
smaller than a certain value and it is always continuous
for P, greater than that value. These results show that
the criterion in the case of finite y does not have the sim-

ple form as presented in Sec. IV D, but they do support
the physical explanation discussed there.
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g4(x) =—[I+(bm ) ][(1+x„)+(x, b—m )2]

X[(1+x„)+(x, +b,m) ])0. (A13)

In (A9) it is obvious that for given x there exists an in-
teger K ~ 0 such that

APPENDIX: INKQUALITIKS
FOR THE BAND STRUCTURE FUNCTION

Suppose that [f ] (m =0,+1, . . . , +X) have the
properties

)0 if n&K
R„(x)~ &0 if n =K

&0 if n)K .
(A14)

Since Ro(x) =g3(x)/g4(x) )0, it follows from (A8) that

and F(x) is a complex function defined by
So(0)—So(x) =Ro(x) )0 . (A15)

N

F(x)=
~ 1+x l EPtl

(A2)

S„(0)—S„(x))0if n &K . (A16)

Now we use (AS) and (A14) for n =0, 1, . . . , K, step by
step, and find that

Then we have the following two inequalities:
(i) if x =—x, +ix; (x„and x, are real) satisfies x%0 andx„)0, then

N

ReF(0) =
~1+(bm)

For n &Ewehave

S„,(0)—S„,(x) &S„(0)—S„(x)if n )I{. .

This leads to

S„(0)—S„(x))S„(0)—S„(x)if n &K,

(A17)

(A18)

f (1+x„)
& ReF(x) =g, (A3)~(1+x„)+(x;—hm)

where S„=—lim„„S„.The sum of the infinite series can
be found by calculating the real part of the residue of the
function

(A4}
G(g)—:

(1+x i b,()(e "'~—1)—
at the point

(A19)

Proof of (i). For simplicity we introduce

1+x„
t (x)—: , m =0, +1,+2, . . . (A5)(1+x„}+(x; —b,m) That is

1+x
iA

(A20)

and

S„(x)=g t (x), n =0, 1,2, . . . .

Now we prove at first that

(A6)

QC'

1S„(x) =Re g =Ref rG(g)dg„1+x—imam

T

a sinh(a +b)
2 cosh(a+b) —cosc ' (A21)

S„(0))S„(x}for any n &0 . (A7} where a, b, and c are given by

Defining S
~
(0)=S 1(x)—=0, it follows from (A6) that 27TX„a= %0, b=, c= 27Tx;

(A22)

S„(0}—S„(x)=S„,(0)—S„,(x)+R„(x).
From the definitions of t and S„oneobtains

R„(x)=2t„(0)—t „(x)—t„(x)

(Ag)
It then follows

a sinha

2 cosha —1
(A23)

—g, (x)n —g~(x)n +g3(x)
g4(x)

(A9) Therefore we have, by simple calculations,

S„(0)—S„(x)

g, (x)—=2h x„&0,
gz(x) =—2b [(1+x„)x„+(3+x„)x,] )0,
g3(x)—:2[(1+x„)+x, ][2+x„)x„+x,]&0,

(A10)

(Al 1)

4,
'A 12)

where g.(x) (j =1,2, 3,4) are non-negative or positive
functions given by a sinh(a +b) —sinhb —sinha cosc

2 (cosha —1)[cosh(a +b) cosc]—(A24)

By the definitions of a and b and the assumption x„)0
we have a&0 and a+b =a(1+x„)%0.Therefore the
denominator (A24) is positive because cosh& 1 for any
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real and nonzero argument.
Now we show that the numerator of (A24) is also posi-

tive. Since the numerator is an even function of 6, we
may assume, without loss of generality, that 5&0, i.e.,
a )0 and b ~ 0. Then we have

sinh(a+b) —sinhb —sinha cosc

& sinh(a +b) —sinhb —sinha

=sinha coshb +sinhb cosha —sinha —sinhb ~ 0 .

(A25)

N N

= „[I+(am)']' = „I+(am)'
To prove it we introduce

(A30)

n 2 n

„[I+(hm)] = „1+(b,m)

(A31)

We have thus proved the inequality (A3).
Proof of (ii). The inequality (A4) can be written as

This means

S„(0)—S„(x))0 .

It follows then from (A18) that

S„(0)—S„(x)&0 if n &IC,

(A26)

(A27)

Un Vn 0 for any n 0. (A32)

This inequality can be proved by applying the same ap-
proach which has been used to prove (A7). Similar to
(A8) we define R„by

Considering (A28) and (A29), we find that (A30) holds if
and only if

(A16) and (A27) are identical to (A7).
Using (A7) we can prove (A3). To this end we use the

transformation

U„—V„=U„(—V„)+R„,
where U, —:V, —:0. It is easy to find that

(A33)

m= —N

N —1

f t = g(f. f.+i) g— t +fv
n=0 m= —n m= —N

(A28)

1 —6R„=2 (A34)
[I+(bn) ]

Obviously R„has the property (A14). Therefore the
sufficient condition for (A32) is that

From (Al) and (A7) it follows that U„—V„&0, (A35)

m= —N
f t (0)— g f t (x)

m= —N

N —
1

+fthm[(Stv(0) S~(x)]&0 . —

= g (f„f„+))[(S(—0)
—S„(x)]

where U„—:lim„„U„andV„—=lim„„V„.The sum-

mations can be performed by calculating the residues of
certain functions and the final result is

0U„—V„= &0, a —= rr/b, . (A36)
2sjnh a

(A29) This proves (A35) and hence the inequality (A4).
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