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We report results of calculations of photodetachment rates and photoelectron energy spectra for
the negative hydrogen ion irradiated by a low-frequency field. We have carried out calculations in
both one-electron and two-electron models (with electron-electron correlation included in the initial
channel in the two-electron model). Our main focus is on exploring the differences between various
approximations that arise from different treatments of the electron-field interaction, rather than
from different treatments of the electron-electron interaction. Thus, for the most part, we describe
the active electron by the one-electron model. Within this framework, the Keldysh theory yields re-
sults in remarkably good agreement with those obtained using Floquet theory. Furthermore Kel-
dysh theory reproduces well the minima and ‘“‘discontinuous” slopes of the rate at thresholds. The
accuracy of the Keldysh approximation can be understood by examining the parameters that
characterize the strength of the electron-field interaction. The Faisal-Reiss theory also gives good
agreement with Floquet theory (unless the intensity is very high); the reason for this is more techni-
cal, having to do with the short range of the one-electron atomic potential. We have generalized the
Keldysh and Faisal-Reiss theories to include electron-electron correlation by representing the
ground-state ion with an accurate two-electron wave function. Correlation leads to a long-range in-
teraction of the active electron with the atomic core, and thereby to more significant discrepancies
between the Keldysh and Faisal-Reiss theories. We compare results obtained using the two-
electron Keldysh theory with results, obtained by others, using two-electron perturbation theory
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and two-electron Floquet theory.

I. INTRODUCTION

In this paper we present results of various calculations
of rates for multiphoton detachment of the negative hy-
drogen ion H™ by a low-frequency field. Our primary
goal is to illustrate the differences between several ap-
proximations that arise through different treatments of
the electron-field interaction, rather than through
different treatments of the electron-electron interaction.
Therefore, throughout most of this paper, we describe the
active electron within a one-electron model. However, in
Sec. IV, we also present results of a calculation based on
using a many-parameter Hylleraas wave function to
represent the unperturbed ground state of the ion; in this
latter calculation, we take into account electron-electron
correlation in the initial channel.

In our one-electron model of H™, the atomic potential
is taken to be the Yukawa potential

—r/ag

W(r)=—p< — )

where B=1.1 a.u. and where a;=1.0 a.u. This model
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was used previously! to discuss multiphoton detachment
of H™. The potential W(r) supports only one bound
state, with a binding energy of —0.027 565 4 a.u., that is,
about —0.750 eV, close to the binding energy —0.7551
eV for the real H™. Furthermore, the solution of the
Schrodinger equation for an electron moving in W(r)
yields a radial probability distribution that is close to the
distribution obtained by integrating an accurate two-
electron probability density for H™ over the coordinates
of one of the electrons.! (Moreover, as we see in Sec. IV,
the inclusion of electron-electron correlation does not
lead to photodetachment rates that are very different
from those obtained using the one-electron model.)
Within the framework of the one-electron model, we
compare estimates of multiphoton detachment rates ob-
tained from perturbation theory, from a modified form of
perturbation theory, from Keldysh theory,? from Faisal-
Reiss theory,’ and from Floquet theory.*

We take the results of Floquet theory as our bench-
mark. Roughly speaking, the Floquet ansatz is reliable
when ionization (or photodetachment) takes place over a
time interval long compared to cycle of the field, a condi-
tion that can be written as #/T", <<27 /w, where T'; is the
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total ionization width of the initial bound state and o is
the frequency of the field. Over the intensity and fre-
quency ranges considered here (intensities up to about
10'2 W/cm?, frequencies down to about 0.1 eV) this in-
equality is amply satisfied.

We find the agreement between the Keldysh and Flo-
quet theories to be rather good, even excellent at very low
frequencies. That the Keldysh approximation is so accu-
rate may seem surprising, but can be understood by con-
sidering the parameters’ that measure the strength of the
electron-field interaction in the initial and final channels.
In the length gauge the electron-field interaction is
—eF(t)-x where F(1)=Re(Fge ~'“) is the (external) elec-
tric field, whose amplitude is Fy=(Fg§-F;)!/2. The inten-
sity of the field is I =cF3 /8, and the ponderomotive en-
ergy of an electron (mass u, charge e) in this field is
P=e?F}/4uw®. The dimensionless parameter which, in
the length gauge, characterizes the strength of the in-
teraction of the electron with the field in the initial state
is roughly A{"=|eF,a; /8E|, where a; is the characteris-
tic orbital radius of the electron in the initial unperturbed
state, and where 8E is the smallest energy detuning from
a one-photon resonance between the initial unperturbed
level and other discrete levels to which a one-photon
transition is not forbidden. For H™ there are no other
discrete levels and so we take 8E to be either the distance
of the unperturbed ground-state level from the continu-
um threshold or #iw, whichever is the larger. The unper-
turbed ground-state energy E,-‘O’ is about —0.028 a.u.,
and the expectation value of r with respect to the unper-
turbed ground state is, to the nearest whole number, 3
a.u. Putting a; =3 a.u. we have A!” <0.06 for an intensity
I <10 W/cm?. Since A!" is small, it should be a reason-
able approximation, in the length gauge, to neglect the
field in the initial channel; in other words, we can replace
the exact electron state vector |W(¢)) by the state vector

|®,(t)) = exp(—iE Ot /#)|®; )

representing the unperturbed initial bound state.® On the
other hand, the parameter }Jf” that measures the strength
of the electron-field coupling in the final (continuum)
state is not necessarily small. This parameter differs from
A{Y through the replacement of a; by the excursion ampli-
tude of a free electron, which is roughly eF,/uw?; in ad-
dition, we always have 8E =#w (the separation of con-
necting levels). Hence A{'=e?F}/ufiw’, which can be
rewritten as 4P /#fiw where P is the ponderomotive ener-
gy. At the CO, laser frequency w=~4.3X10"2 a.u., and
at an intensity of 10'© W/cm?, we have A(f”z4, which is
not small, so the motion of the electron may be strongly
influenced by the field in the final channel. However, the
atomic potential should have only a weak influence on
the motion of the electron in the final channel (it has a
strong influence in the initial channel since it binds, albeit
weakly, the electron). As discussed in further detail later,
the neglect of the field in the initial channel, and the
neglect of the atomic potential in the final channel, forms
the basis of the Keldysh theory,> which we therefore ex-
pect to yield reasonably accurate results. Note, however,
that although A{" vanishes as F,, vanishes, this does not
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imply that the Keldysh theory becomes exact as F, de-
creases; as F, vanishes, so does the photodetachment
rate, and although the Keldysh estimate of the rate also
vanishes, the relative error does not. The remarkable ac-
curacy of the Keldysh approximation for zero-range po-
tentials (also supporting only one bound state) has been
noted previously by others.”®

In the velocity gauge, the electron-field interaction is
—(e/uc) A(1)-p, with A(t)=Re( Aje ~'“') the vector po-
tential and p the canonical momentum. Note that
F(t)=(—1/¢c)3 A(1)/dt, and hence Fy=i(w/c) A,. The
parameter which characterizes the strength of the cou-
pling in the initial state is A\"’=|ev;F,/w8E |, where v, is
the characteristic orbital speed of the electron in the un-
perturbed ground state. Although A!" is small, A\*’ need
not be small. For example, at the CO, laser frequency we
have, taking v,~a;|E(”|/%=~0.08 a.u., the value
A"=0.4 at I=10'© W/cm?. In any case, as long as
#iw << |E/”| we have Al <<A{). Therefore, the approxi-
mation of |W(¢)) by |®,(z)) is less accurate in the veloci-
ty gauge; but this approximation forms the basis of the
Faisal-Reiss theory>—the only difference from the Kel-
dysh theory is the gauge in which the replacement of
|W(t)) by |®,(¢)) is made. Accordingly, one may expect
that, except in the weak-field limit A{") <<1, the Faisal-
Reiss theory yields poorer results than does the Keldysh
theory. In fact, however, the difference in the results ob-
tained from the two theories, in the context of multipho-
ton detachment from a negative ion, is not very
significant until the intensity is very high. The underly-
ing reason that the discrepancy is so small is simple but
technical, having to do with the short range of the atomic
potential; this is explained more fully in Sec. IIC. As in
the Keldysh approximation, in the Faisal-Reiss approxi-
mation the atomic potential is neglected in the final chan-
nel, and the motion of the free electron in this channel is
treated exactly. However, the parameter A¥’ which mea-
sures the coupling strength in the final channel, in the ve-
locity gauge, is not the same as k(f”; we have
MY)=|eFgv, /#iw’|, where v/ is the drift speed of the elec-
tron in the final state.

In lowest-order (Rayleigh-Schrodinger) perturbation
theory the field is neglected in both the initial and final
channels, but the atomic potential is fully included in
both channels. Note that when A{” <<1 and A{" <<A{”),
the field-induced shift A; of the initial unperturbed level
relative to the continuum threshold is very nearly —P,
where P, the ponderomotive energy, is P =e?’F (2, /4,uco2, as
defined above. The ratio P/#fiw is a measure of the in-
crease in the minimum number of photons which are re-
quired to detach the electron. Since the shift A; is omit-
ted in lowest-order perturbation theory, this theory
overestimates the ionization rate when, roughly speaking,
P/#%w is an appreciable fraction of unity. Perturbation
theory may be slightly improved by taking the energy
shift A; into account (still evaluating matrix elements in
lowest order). However, this modified (Brillouin-Wigner)
perturbation theory begins to break down when the ratio
of the excursion speed of a free electron to the orbital
speed of a bound electron exceeds roughly unity. This ra-
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tio is essentially 1/, where y, the Keldysh parameter, is A(t)=Re( Age '), (4a)
2 (0) 172

deﬁneq as (IE, | /2P) g For y <1 the ele.ctro'n charge Ay=—ilc/o)F,, (4b)

cloud is considerably distorted by the oscillating field,

and the electron spends less time in the region of the nu- Fo=F,[cos(£/2)%+i sin(£/2)§] , (4¢c)

cleus, the region where it can most easily absorb (and
emit) photons; consequently modified perturbation
theory, which neglects this effect, also overestimates
rates. Note that when y < 1, photodetachment occurs by
the electron tunneling through the barrier formed by the
atomic potential and the instantaneous applied electric
field.? In fact, y can be interpreted’ as the ratio of the
time it takes for the electron to pass through the barrier
to the cycle time of the oscillating field.

The success of the Keldysh theory within the frame-
work of our one-electron model suggests that it is
worthwhile to extend this theory to include electron-
electron correlation, at least in the initial channel. We
have done this by representing the ground state of the ion
by an accurate two-electron wave function. In the final
channel, correlation is neglected; the outgoing photoelec-
tron is described by a plane wave, while the remaining
electron is represented by the ground-state wave function
of atomic hydrogen. We have also generalized the
Faisal-Reiss theory in the same way; correlation results in
more significant discrepancies between the Keldysh and
Faisal-Reiss theories, due in part to the fact that the in-
teraction of the active electron with the atomic core is
long range.

In Sec. II, we describe, in more detail, the various ap-
proximations used in treating the interaction of the elec-
tron with the radiation field, within the framework of the
one-electron model. In Sec. III we present results ob-
tained using this model. These results include total pho-
todetachment rates as well as photoelectron energy spec-
tra. In Sec. IV we outline the extension of the Keldysh
and Faisal-Reiss theories to include correlation in the ini-
tial state, and we compare results obtained using these
theories with results obtained by others using (two-
electron) perturbation theory and Floquet theory.

II. DIFFERENT THEORIES

A. Floquet theory

_’Ifgle/ﬁFloquet ansatz is the replacement of |W(t)) by
e """|F(t)) where the Floquet vector |F(t)) is period-
ic in time with period 27 /w. The quasienergy

E,=E/®+A,—iT,/2 )

is determined by solving the eigenvalue problem that re-
sults from substituting the Floquet ansatz into the time-
dependent Schrodinger equation and imposing outgoing-
wave boundary conditions. We make the dipole approxi-
mation and work throughout in the velocity gauge,
wherein the electron-field interaction is

V(t)=—(e/uc) A(t)-p, (3)

with

where X and § are unit vectors that define the polariza-
tion plane, with £ the ellipticity parameter. It is con-
venient to introduce

|7k 4 (¢')]2
2p
Note that we have omitted, from ¥V (¢), the | A(¢)|? term

(e2/2uc®)| A(1)*=#k ,(1)]?/2u

é‘(t)z%fotdt’ —p ()

where
fik ,(t)=e A(t)/c (6)

is the “quiver momentum;” the | A(z)|? term has been ab-
sorbed into |W(t)), through the phase factor
e TIP/A=ILD whereby it contributes — P to the energy
shift A;. If o is well below the atomic-orbital frequency
of the bound electron, we have A; = —P. The Hamiltoni-
an of the electron is

H(t)=H,+V(), (7)
where H, is the atomic Hamiltonian
H,=(p*/2u)+ W, (8)

with W the atomic binding potential.
Making the Fourier expansion

1H)) =S e~ F, ), (9)

and writing
V(t)=V_ e '+ V_el (10)

the harmonic components |F, ) satisfy the homogeneous
set of equations

(E;+ntio—H)F, )=V _|F, _D+V_|F, ). (1)

This coupled set of equations, together with outgoing
wave boundary conditions on the harmonic components,
form an eigenvalue problem for E;. The imaginary part
of this eigenvalue gives the total ionization rate T'; /A. To
the extent that the Floquet ansatz is valid, I'; /% must be
equal to the sum of the partial N-photon ionization rates
I,y /%, that is,

r= 3 Ty, (12)

N (2N,)

where N, the minimum number of photons required to
photodetach the electron, is the least value of N for
which E;y, defined by

ENn=E!4+A,+Nto , (13)

is positive. The drift momentum (that is, cycle-averaged
momentum) of an electron that has absorbed N photons,
and is moving along #, is #iky=#kyn, where



42 MULTIPHOTON DETACHMENT OF H™ AND THE . . .

ky=2uE;y /%)
An electron moving freely through the field with drift
momentum 7k , is represented by

D (1)) =e "EITIOM gy (14)

where E = 17k ;|*/(2p), where
e(t,k)=—£f’dt'k-k,,(r>, (15)

and where |k ) represents a plane wave, normalized here
so that in x space (position space) {x|k)=e**. Note
that

(@ ()| Dp(1)) =(27m)8 (k. —k/) .

The probability amplitude for finding the electron at
t~ in the state represented by |® (1)), if at =0 it
was in the state represented by |®,(z)), is’

Aﬁ:((pf(o)@i)—élfOsz[<q>,<t)|7{(t)*]|\y(t)> :

where T~ « and where

d

dt -’

Carrying out the operation with #(t) yields

FH()=H(t)—i#

] T (§73
Jaf,.=(k,|q>,.>—éf0 dte'™s

r/ﬁ)+ie(t,kf)<kf|WN/(t)> ’
(18)

and putting [W(¢)) =e ﬂ»E‘t/ﬁI

nary part of E;, we arrive at

F(t)), neglecting the imagi-

i(E,—Ey)t/f

] T
Aﬁ:(kflcb,-)—é%MNfodte ., (19)

where the matrix element M, is>°

w 2w/
= “dt

iNt +i0(tky)
=— e
N"ardo

(kylW|F(1)) ;  (20)

we have put k,=ky in My, anticipating energy conser-
vation. The rate for the electron to emerge with drift
momentum k , and an energy spread dE is

’ L 2
pUEME—SIA 5]

where p'(E /) is the density-of-states factor. Dropping all
finite (energy-nonconserving) terms in (d /dT)|A f,»|2, we
find that the cycle-averaged rate for the electron to ab-
sorb N = N, photons and emerge into the solid angle dn
with drift energy E;y and drift momentum 7k y =7k 1,
is

1 dT; 2
g—*dti:v =7ﬂp’(EN)|MN|2, @1

where the density of states factor is
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=(pky /8m#*). The Floquet vector is normalized so
that!°

S (—)(F T, ) =1, (22)

n

where T is the time-reversal operator, and where the
|F, ) are the harmonic components of the Floquet vector
that corresponds to the reverse sense of rotation for the
polarization of the field. Inserting the harmonic expan-
sion, Eq. (9), into the right-hand side of Eq. (20), and
writing O(t,k)=p sin(wt — x), where

pe'X=—(e/ucw)k- Ay, (23)

we can integrate over ¢ to yield>’

My= e Ny (—p)ky|WIF,) , (24)

where J,(z) is the regular Bessel function.

B. Keldysh theory

In the Keldysh theory |W(z)) is replaced by |®,(¢)) in
the length gauge. Since we are working in the velocity
gauge, we must replace |¥(¢)) by

e Ai(e/ﬁcJ/\(x,tl'(D (t))
1 ’

where e ~'(¢/#¢)A%0 is the unitary operator which trans-

forms a state vector in the length gauge to one in the ve-
locity gauge. Recalling that we remove the | A(¢)|? term,
we have

A(x,t)=— A(21)-x—(#ic /e)[&(t)+ Pt /#] (25)
and since
W) =e =" F0) ,

where E; =~E!”+A, with A; = —P, the Keldysh approxi-
mation amounts to replacing the Floquet vector |#(¢)) in
Eq. (20) by el(e/ﬁc)A(t)-x+1§(t)|q)i Y. This gives

K_ © 27/
Noardo

iNot +i0(1,k ) +18(1)

dte (ky—k, ()| WD, )

(26)

The usual form of the Keldysh approximation can be
recovered by first noting that
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(ky—k ()| W|®;)=(ky—k ,()|[H,—(p*/2p)]|®;) (27a)
={EO—(#/2u)[ky—k ()} {ky —k 4(1)|®D,) (27b)
=—1# %[Ncot+6(t,k~)+§(t)] (ky—k, ()]®;), (27¢)
where in arriving at the last step we used Egs. (5), (6), and (15), together with
Enx—E/”=N#o—P .
It follows that
Kzz—cj; 21r/mdt _'iﬁ%eww:ﬂe(:,k,v)w;(n (ky—k ,(D)|®,)
_ __Z_C:r_ Ozﬂ/wdt eint+i9(1,kN)+i§(1)<kN__kA(t)IeF(t).xlq)i> ’ 28)

where in arriving at the second step we integrated by
parts and used
¢l> y

(29)

dk 4(1)
dt

X

with fidk ,(t)/dt = —eF(2).

The integrand on the right-hand side of Eq. (28) oscil-
lates as ¢ varies, due to the phase factor, and the oscilla-
tion is rapid if either N >>1 or (P /#fiw) >> 1, as is the case
for a field of low frequency. The phase is stationary at
those values of ¢ for which

EO—(#/2u)[ky—k 4(1)]*=0 . (30)

However, since E % is negative, there is no real solution
of Eq. (30). Rather, there is a saddle point in the complex
t plane, and by distorting the contour of integration
around this saddle point, and evaluating the integral in
Eq. (28) by the saddle-point method, Keldysh was able to
derive his famous tunneling formula,? valid for frequen-
cies sufficiently low that the Keldysh parameter
y=(|E®|/2P)"/? is small compared to unity. Note that
the root-mean-square value of #k , () is V'2uP. Hence, if
v <<1, Eq. (30) is approximately satisfied at those real
values of ¢t for which k ,(¢)=ky; such points on the real ¢
axis lie close to the saddle point, and therefore yield the
greatest contribution to M%. In other words, if y <<1, a
photoelectron is most likely to emerge into the field with
a drift momentum #ky close to the value of the quiver
momentum 7k ,(¢) at the moment ¢ of escape.'""!? (The
photoelectron escapes with an instantaneous speed that is
not significantly larger than the characteristic atomic or-
bital speed.) The size of the quiver momentum at the mo-
ment of escape depends strongly on the polarization of
the field. In the case of linear polarization'' the magni-
tude of the electric field |Fycos(wt)| varies from zero to
Fy, and the electron is ejected when the field has its max-
imum magnitude F, (unless F is so large that significant
ionization can occur'! when |cos(wt )| << 1); but when the
field has its maximum magnitude, the quiver momentum

!

vanishes, and therefore the drift energy is at most of the
order of magnitude of the binding energy. Therefore, for
linear polarization, the photoelectron energy distribution
is peaked near the threshold, corresponding to N =N, for
the number N of photons absorbed. On the other hand,
in the case of circular polarization,'? #|k ,(#)|=V2uP
for all ¢, and therefore the drift energy is of order P,
which can be very large at low frequencies. Thus, for cir-
cular polarization the energy distribution is peaked at
N=2N, (at low frequencies). The energy distributions
for both linear and circular polarization were calculated,
on the  basis of the Keldysh theory, by
Nikishov and Ritus'®> and Perelomov, Popov, and
Terent’ev;'* for circularly polarized light the distribution
is Gaussian and peaks at N~N_,=2N,(1—2y2/3) with a
ful width at half maximum of about
2[N,In(2)/(V2y)]"%

Note that the momentum-space wave function (k|®;)
falls off rapidly as k=|k| increases beyond
k;=(2ulE!%| /#)'2. To see this, we can express (k|®;)
as an integral in position space. This integral is small if
the integrand oscillates. Now, the range of integration is
essentially the range 1/k; of the bound-state wave func-
tion (x|®,), so that e “*** and therefore the integrand,
undergo at least one oscillation over the range of integra-
tion when k /k; > 1; hence (k|®;) is small if k /k;> 1.
Similarly, the matrix element (k|W|®;) falls off rapidly
when k exceeds the larger of k; and 1/R,, where Ry, is
the characteristic range of the potential W. For the po-
tential of Eq. (1) we have Ry =1 a.u., which is much
shorter than the range of the bound state, but when we
take into account angular correlation between the elec-
trons (or polarization of the core) we have that Ry, is
greater than the range of the bound state (see Sec. IV).
For a neutral atom we always have that Ry is much
greater than the range of the bound state.

C. Faisal-Reiss theory

The Faisal-Reiss approximation amounts to replacing
|W(¢)), in the velocity gauge, by
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e+i[§(t)+Pt/ﬁ]'q>i(t)) ,

where the phase factor e T/[¢V*P/%]l gppears only because
we remove the | A(#)|> term. This is equivalent to replac-
ing |F(¢)) in Eq. (20) by e *¢'?|®, ), and gives

In] 27/w
fR= f dte

iNot+i0(t,ky ) +idlt
N 27 Yo

(kylWlD,) .

(31)

Thus the Keldysh and Faisal-Reiss N-photon matrix ele-
ments differ only through the replacement of the instan-
taneous mechanical momentum, in the matrix element on
the right-hand side of Eq. (26), by the drift momentum.
The usual form of the Faisal-Reiss approximation can be
recovered upon noting that

(ky|W|®,)=(ky|[H, —(p*/2u)]|®,) (32)
=(E/9—Ex ) (kyl®,) , (33)
whereby we obtain
MfR=(P —Ntw){ky|®D;)
w 27/ iNt+i8(t,k,v-)+i§(t)
—_ dt 1
27 Yo ¢ (34)

The integral over ¢ can be reduced to a generalized Bessel
function.> We have {(1)= —(P /2iw)cos(§)sin(20t), and
for circular polarization (§=7/2) we have £(t)=0 so
that the integral over ¢ reduces to an ordinary Bessel
function.

The Faisal-Reiss theory gives a result that is
significantly different from the Keldysh theory only if
(ky—k ()|]W|®;) and (ky|W|®;) are significantly
different. Now (k|W|®, ) falls of rapidly with increasing
k =|k| only if kRy, > 1, provided that Ry (the range of
the potential W) is shorter than the range of the bound
state, which is true for the potential of Eq. (1). It follows
that for this potential the Keldysh and Faisal-Reiss
theories can give substantially different results only if the
root-mean-square value of k ,(¢) is larger than 1/Ry,
that is, if P >>(#*/uR}%); since Ry, ~1 a.u., the intensity
must be very high before there is a noticeable difference.'’

D. Perturbation theory

In perturbation theory My is evaluated to lowest (non-
vanishing) order in F, that is, to order (F, )V Thus, in
Eq. (24), we replace Jy _,(—p) by the leading term in its
power series expansion in p, we truncate the sum over n,
restricting n to the range 0=n =N, and for n in this
range we evaluate the harmonic components |F,) to
lowest (nonvanishing) order in the field F, that is, to or-
der (F,)". The “perturbative” harmonic components,
which we denote by |F’), satisfy a set of equations ob-
tained from Eq. (11) by omitting V _, replacing E; by the
unperturbed value E/, and putting |#?') =|®,). Thus
in place of Eq. (11) we have, for n >0,
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(E+nfio—H)FO) =V, |FL), |F)=],) .
35)

We can try to improve perturbation theory slightly by ap-
proximately including the shift A;, taking here, for sim-
plicity, A,=—P. Thus modified perturbation theory
differs from normal perturbation theory only in that the
harmonic components are evaluated by solving a set of
equations that differ from the set given by Eq. (35)
through the addition of —P to E/®.

III. RESULTS (ONE-ELECTRON MODEL)

In Figs. 1-3 we show estimates of rates, obtained in
the various approximations discussed above, for multi-
photon detachment of our model H™ by linearly polar-
ized light. These rates are total rates, integrated over all
angles of the emergent photoelectron and summed over
all channels. In Fig. 1 we show total rates versus intensi-
ty I at a fixed frequency of 0.49 eV; Fig. 2 is similar, but
for a fixed frequency of 0.12 eV (the CO, laser frequency).
We take the Floquet rates as the standard for compar-
ison.

Focusing on Fig. 1, we note first that the minimum
number of photons N, that must be absorbed to detach
the electron at the frequency 0.49 eV is 2 at low intensi-
ties. However, at the two-photon threshold intensity
(about 3.6X10'' W/cm?) N, increases from 2 to 3. We

o)

N WD 0 N

Photodetachment Rate (10~ a.u.)

(10" W/cm2 )

Intensity

FIG. 1. Estimates of the total rate vs intensity for photode-
tachment of H™ within the framework of the one-electron mod-
el described in the text—the potential is given by Eq. (1). The
radiation field has frequency 0.0180 a.u., that is, about 0.49 eV,
and is linearly polarized. The notation is as follows: F, Floquet
theory; K, Keldysh theory; P, perturbation theory; MP,
modified perturbation theory. The solid vertical line marks the
threshold intensity at which Ny, the minimum number of pho-
tons required to detach the electron, increases from 2 to 3. The
dashed vertical line indicates the value of this threshold intensi-
ty when the ac Stark shift is neglected. The upper horizontal
axis is the Keldysh parameter y =|E/!%| /2P, where E!® is the
unperturbed binding energy and P is the ponderomotive energy.
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FIG. 2. Same as Fig. 1 but for the frequency 0.00440 a.u,,
that is, about 0.12 eV. The rates calculated from Keldysh
theory and Floquet theory are indistinguishable. The solid vert-
ical lines mark thresholds, labeled by an integer n; at intensities
between the (n —1)th and nth thresholds we have No=n. The
curve labeled dc is the cycle-averaged rate for dc ionization.

see that ordinary (Rayleigh-Schrodinger) perturbation
theory begins to seriously break down at an intensity of
about 10'' W/cm?, when P /#w is about 0.12. (The early
breakdown of perturbation theory has been noted in
numerous papers, for example, Refs. 1, 8, and 10.)
Modified (Brillouin-Wigner) perturbation theory begins
to seriously break down when the Keldysh parameter
yE(IE,»(O)|/2P)l/2, which decreases with increasing I as
I712 is roughly unity. In fact, we see from Fig. 1 that
modified perturbation theory becomes inaccurate at an
intensity slightly above the two-photon threshold intensi-
ty, when y =~1.1. (The ratio of the excursion amplitude
a= IeFO /,ua)zl of a free electron to the binding radius g;
can be significantly larger than unity before modified per-
turbation theory is inadequate. In fact, y=1.1 corre-
sponds, with @,=3 a.u., to a/a;=4.) Both the Keldysh
and Faisal-Reiss theories give results in very good agree-

a.u.)
(@]

N oD N D W
T
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Photodetachment Rate (40

120

FIG. 3. Same as Figs. 1 and 2, but for a fixed intensity of 10!
W/cm? and a variable frequency .
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ment with Floquet theory, except near the two-photon
threshold. We have not shown the Faisal-Reiss
results—they would be barely distinguishable on the
figure from those of Keldysh theory (the ratio of the
Faisal-Reiss to Keldysh estimates is about 0.95
throughout the intensity range of Fig. 1). As I vanishes,
the ratio of the Keldysh rate to the perturbative rate is
about 0.77. All approximations but ordinary perturba-
tion theory give rates that exhibit a minimum in the vi-
cinity of the two-photon threshold. Note that the N-
photon threshold intensity is the intensity for which
En=E!“+A,+Nw vanishes. The exact two-photon
threshold intensity is indicated by the solid vertical line
on Fig. 1, and the minimum of the Floquet rate is exactly
at this threshold intensity. That the Floquet rate has a
minimum at each N-photon threshold intensity is, as not-
ed earlier,” due to the fact that the phase space of the
electron in the N-photon channel vanishes as this channel
closes. The density of states factor p'(Ey)=puky /87 #*
vanishes as an N-photon channel closes, and the N-
photon partial rate vanishes at least as fast as ky van-
ishes, faster if the minimum value of the orbital angular
momentum quantum number, /y say, in the N-photon

channel is nonzero, since M, vanishes as (ky)" —see
Eqgs. (20) and (21). The drop in the total rate near an N-
photon threshold intensity simply reflects the vanishing
of the contribution of the N-photon partial rate. The
reason that Keldysh theory and modified perturbation
theory give rates that have minima slightly displaced
from the exact position of the three-photon threshold in-
tensity is because, in these two theories, A; is approxi-
mated by —P, and therefore the threshold appears dis-
placed by the (small) ac Stark shift, A; +P. Of course, in
ordinary perturbation theory no channels close as 1
varies, since A; is neglected. At the N-photon threshold
intensity, the nonperturbative total rate, as a function of
I, has a “discontinuous” slope; this is because ky, and
therefore the N-photon partial rate, have discontinuous
slopes at the threshold intensity. Naturally, in a real ex-
periment the discontinuity in the slope would be hard to
detect since a real laser pulse has a profile of intensities as
well as a frequency bandwidth. The reason that ordinary
perturbation theory breaks down at a value of P /#iw that
is rather small compared to unity is that the rate varies
rather rapidly as I increases toward the threshold of the
lowest open channel, indicating the presence of a nearby
singularity.

Note, incidentally, that the total rate for ionization of
neutral atoms varies smoothly as a multiphoton ioniza-
tion threshold is scanned with intensity.!® This is be-
cause, for neutral atoms, the square of the N-photon ma-
trix element M, diverges as 1/ky as the N-photon
threshold is approached from below, and hence the N-
photon partial rate [see Eq. (21)] tends to a nonvanishing
finite number; just above the N-photon threshold, the N-
photon partial rate vanishes, but there are infinitely many
resonances accumulating there and when the contribu-
tions of the open channels are averaged over these reso-
nances, the total rate exhibits a relatively smooth behav-
ior.

Returning to Fig. 1, observe that we have shown a
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break in the Floquet rate right at the threshold. This is
because of insufficient accuracy in our calculation. At a
threshold, there are two Floquet eigenvalues that are
both physically significant; they each lie on different
sheets of the Riemann energy surface.” When a threshold
is passed, these two eigenvalues switch roles—the one
that was not physically significant before the threshold
was passed becomes physically significant after the
threshold is passed, and vice versa. When the photode-
tachment width is relatively large, as it is in Fig. 1, this
switchover is difficult to follow numerically, and this is
what we mean by a loss of accuracy.

Before turning to Fig. 2, we note that in Ref. 1 partial
rates and angular distributions for multiphoton detach-
ment at ®=0.49 and 0.234 eV were presented, based on
Floquet calculations using the one-electron model. We
have redone these Floquet calculations of partial rates
and angular distributions using a different method out-
lined in Ref. 10. We reproduced results close to those of
Ref. 1 and we verified that the partial rates I';, sum to
the total rate I'; when the normalization of Eq. (22) is
used. (That the partial rates sum to the total rate was
also shown in Ref. 1, but a different normalization was
used, one that is not as convenient to implement numeri-
cally as the normalization chosen here.) Furthermore, we
have verified that the Keldysh theory gives essentially the
same results for the partial rates and angular distribu-
tions as reported in Ref. 1.

In Fig. 2, we present total rates for multiphoton de-
tachment by light of frequency 0.12 eV. We also present
the cycle-averaged rate for detachment by a dc field,
where by “cycle-averaged” we mean we have taken the
average over one cycle of the dc rate at the instantaneous
field F, cos(wt) (this average is independent of w). In the
low-intensity limit of multiphoton detachment, we have
No=7. At 1~0.9%X10° W/cm?, N, increases to 8, at
I=2.1X10"° W/cm?, Ny increases to 9, and at
I=~3.3X10'" W/cm? N, increases to 10. Both perturba-
tion theory and modified perturbation theory break down
somewhat below the seven-photon threshold intensity; at
this threshold y=2 (and a/a;=9). Both the Keldysh
and Faisal-Reiss theories give rates that are indistinguish-
able (on the figure) from the Floquet rate. The pondero-
motive energy P is inversely proportional to w?, and
therefore, at the low frequency of 0.12 eV, P is relatively
large. Thus the first few thresholds are reached at rela-
tively low intensities. At these low intensities the ac-
Stark shift, being only a very small fraction of P (less than
one percent), is negligible. Therefore A; is very close to
P, and the minima of the rates obtained in Keldysh
theory (and also Faisal-Reiss theory) occurs at almost ex-
actly the correct threshold intensities, at least for the first
few thresholds, where the intensity is low. We see that
the cycle-averaged dc rate approaches the Floquet rate as
I increases, that is, as ¥ decreases below unity; this is ex-
pected on the basis of the tunneling theory of Keldysh.2
Incidentally, we did not have as much difficult calculat-
ing the rate at the thresholds seen in Fig. 2 as we did at
the threshold in Fig. 1; this is because the rate is not as
large near the thresholds in Fig. 2 (recall our discussion
of the switchover of eigenvalues at a threshold in connec-
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tion with Fig. 1).

In Fig. 3 we show the rates versus 1/w for I fixed at
the value 10'! W/cm?. At this intensity, the parameter
AP which characterizes the strength of the electron-field
coupling in the initial channel, is small for all frequencies.
At large values of w, above the one-photon threshold fre-
quency (where N,=1), we have OJE=%w, and
MP=leFya; /#w|. As o decreases, Ai" increases, and
when the one-photon threshold frequency is passed, A\”
becomes the constant |eFya; /E!”|. Once again, Keldysh
theory is in good agreement with Floquet theory (as is
Faisal-Reiss theory), except perhaps in the region be-
tween the one- and two-photon thresholds; in this region
the s-p-s angular momentum channel is significant, and
the s-wave phase shift of the outgoing photoelectron
(which is neglected in the Keldysh-Faisal-Reiss theories)
is nonnegligible. At large values of » (above the one-
photon threshold frequency), both forms of perturbation
theory are rather accurate—naturally, the modified form
is the more accurate. Ordinary perturbation theory be-
gins to seriously break down between the one- and two-
photon threshold frequencies, below about w=< a.u,
when P /%iw=0.12, whereas modified perturbation theory
does not begin to seriously break down until the frequen-
cy is between the two- and three-photon thresholds,
below about o= a.u., when y=1.8 (and a/a;~10).
The minima in the rates at frequency thresholds are
analogous to the minima at intensity thresholds, and,
likewise, the slope in the rate at a frequency threshold is
also discontinuous. Rates for photodetachment of H™
were recently measured'® over a continuous frequency
range, and minima were clearly observed. Presumably
these experimentally observed minima, which have also
been discussed theoretically by others,!” ~!° occur at the
frequency thresholds; this is difficult to confirm
definitively since the intensity of the laser pulse used in
the experiment fluctuated wildly in time so that the
thresholds were ponderomotively shifted by uncertain
amounts during the passage of the pulse. Note that in
(ordinary) perturbation theory there is no ponderomotive
shift of the frequency thresholds; in Fig. 2 we see that the
unperturbed two-photon frequency threshold (where the
perturbative rate has a minimum) occurs at a significantly
lower frequency than does the shifted two-photon fre-
quency threshold. Incidentally, the perturbative rate is
very accurate at its two-photon minimum, though this
may be fortuitous.

In Fig. 4 we show the photoelectron energy distribu-
tions for both linear and circular polarizations at a fre-
quency of 0.12 eV and an intensity of 2X10'" W/cm?.
The Keldysh parameter y is about 0.43, and so photode-
tachment takes place through tunneling. We show the
N-photon partial rate, calculated using Keldysh theory,
versus the number N of photons absorbed (lower scale) or
versus the drift energy in the field, that is, the energy ab-
sorbed above the shifted threshold (upper scale). The en-
ergy distributions calculated using Faisal-Reiss theory
are not shown but would not be much different (only
slightly lower) than those of Fig. 4. Note that in the
weak-field limit the minimum number of photons re-
quired for photodetachment is 7 (|E?|~7#w), while at
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FIG. 4. Photoelectron energy spectra (calculated using the
Keldysh theory within the framework of the one-electron mod-
el) at a frequency of 0.004 40 a.u., that is, about 0.12 eV, and at
an intensity of 2X 10'"' W/cm?. We show results for linear (lin.)
or circular (circ.) polarization.

the intensity relevant to Fig. 4 we have N,=23; the pon-
deromotive energy is P~ 17%w, that is, about 2.0 eV, or,
equivalently, about 2.7|E/%|. We see that in the case of
linear polarization the distribution peaks at N =24, that
is, at N =N, so that the drift energy of the photoelectron
in the field is small, comparable to |E/?|. (The reason
that the partial rate is so low at N =23 is that 23 photons
lift the electron only barely above threshold.) However,
in the case of circular polarization the distribution peaks
at N =42, that is, at N=N;+19=2N,, where
(N —Ny)fiw=P, and hence the distribution peaks when
the drift energy of the electron in the field is about the
ponderomotive energy, in accord with the discussion of
Sec. II B and Refs. 11-14. The full width at half max-
imum of the distribution is (in the case of circular polar-
ization) about 13%w, which is the same as the width
2[V'2 NyIn(2)/y1'/? predicted in Ref. 13. The pondero-
motive energy is about twice as large as |E°'|, and evi-
dently, in the case of circular polarization, the photoelec-
tron emerges into the field with a drift momentum that is
about a factor of V2 larger than the characteristic
momentum that this electron had in its initial bound
state. In the experiments of Refs. 11 and 12, the photo-
electron has a drift momentum many times larger than
the characteristic bound-state momentum. Therefore,
the question naturally arises as to where this momentum
comes from, since a photon carries very little momentum.
Note that (in the dipole approximation) no net momen-
tum is removed from the radiation field, since the atomic
core, in this case, the neutral atom, acquires a drift
momentum that is equal and opposite to that acquired by
the detached photoelectron. However, the interference of
the electric field of the electron with the magnetic field of
the radiation transmits significant momentum to the elec-
tron. As long as the electron is bound to the core, this
momentum is balanced by the electrostatic binding force,
but once the electron becomes free of the core it receives
a net nonzero momentum. The heavy neutral core, on
the other hand, moves freely off with a constant
momentum-close to the instantaneous momentum it had
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at the moment of breakup. See the paper of Ref. 20 for
further discussion of this point. We note that while the
Keldysh theory accounts for this momentum transfer
mechanism, the Faisal-Reiss theory does not; in the latter
theory, the drift momentum comes from the bound-state
momentum distribution, and this distribution falls off
rapidly with increasing momentum, particularly if the or-
bital angular momentum quantum number of the bound
state is large. Hence, although the Faisal-Reiss theory
underestimates the ionization rate by only 10-20 % for
the parameters of Fig. 4, this theory seriously underesti-
mates the rate when P >>|E®|, if the light is circularly
polarized.
IV. TWO-ELECTRON MODEL

To include electron-electron correlation in the initial
channel we use a Hylleraas-type wave function to
represent the initial unperturbed bound state. Thus, with
x; and x, the electron coordinates, the unperturbed ion is
represented in position space by

(x,%,|®,)="3 c,..5't*u"e /% (36)
ILm,n

where, with rj=|le, we have s =r, +r,, t =r, —r,, and
u=r;,=|x,—x,/. We have factored out the (antisym-
metric) singlet spin component, so the spatial wave func-
tion (x,,x,|®,) is symmetric. As before, we define

_ 0
@)y =e o, ,
but now E;® is the unperturbed bound-state energy of the

complete ion. Recalling that we are working in the veloc-
ity gauge, the Keldysh ansatz is

Iw(t)>ze—i(e/ﬁc)A(x],xz,t)lq)i(t)) , 37)

where we have introduced a gauge-transform function
that is analogous to A(x,¢) of Eq. (25) but that depends
on both electron coordinates:

A(xp,X5,8)=— A(2)-(x,+x,)—2(fic /e)[£(t)+ Pt /#] .
(

38)
In the final channel the emergent photoelectron moves

freely through the field with drift momentum ik, and
drift energy |#ik (| /2u, while the other electron is bound
in the 1s state of atomic hydrogen, with energy
E®)\,)=—0.5 a.u. The state of the system, in the final
channel, is represented in position space by

1 —iE  t /Ai—iO(t,k )
(Xl,XZ'q)f(t))E—‘/—ae 4 4
—ile/fc s
X({x,%,le (e/ )A(x21)|kf’¢m1s)>
+{l1-2)), (39)
where O(t,k) was defined by Eq. (15), where

E;=ER), +|#ik|*/(2u) and where {1<>2} implies an
interchange of the two electrons in the preceding term, so
that the wave function is properly symmetrized, and
where

<31,32’kf»¢ﬂ(1s))E<x1|kf>X<x2|¢H(1s)> s (40)

with {(x|@y ) the wave function of ground-state atomic
hydrogen, normalized so that

(¢H(1s>|¢m1s>>=1 .

As before, we impose the normalization
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(DD @ /(1)) =28k —k/)

but this is not exactly in accord with the choice of the
normalization factor of 1/V'2 in Eq. (37) since the over-
lap

(k; le ™

i(e/fic)A(x,t) |¢H(l ))
s

~ @ 2r/w iINt +iO(t,k, ) +ig(1)
=\/2——f0 dte' TN ([ky =k 4 (D], dn1s)

27

where the factor of V2 accounts for the presence of both
electrons. We note that a similar generalization of the
Keldysh theory to two electrons was carried out and ap-
plied?! to the ionization of helium; in that application,
the outgoing photoelectron was described by a Coulomb
wave rather than a plane wave. Note also that the gen-
eralization of the Faisal-Reiss amplitude MER to two
electrons, differs from Eq. (41) only through the replace-
ment of ky —k 4(2) by ky on the right-hand side of Eq.
(41).

The spatial integration on the right-hand side of Eq.
(41) can be simplified by using the identity

M15<k,¢H(15)| ""7’1_ ICD,) (423)

2
°’—E§§’(’1s)——;’;k2 (kg @), (420)

with k =|k|. Note that, as far as the matrix element
is concerned, the effective interaction of the photoelec-
tron (electron 1) with the residual atom is determined by
the integral over x, of the interaction eX(r ;' —r ') mul-
tiplied by the weight function ¢ x,|dy 1)) (X, X,|®; ). If
electron-electron angular correlation in the initial chan-
nel were neglected, this weight function would be spheri-
cally symmetric in x,, and all the multipole terms of
eXr;;' —r!) would vanish upon integration over x,; in
that case, the effective interaction of electron 1 would de-
cay exponentially, the effective range being about 1 a.u,,
as for the one-electron potential W(r). However, when
angular correlation is included, multipole terms do con-
tribute and the effective interaction falls off with increas-

4147

is nonvanishing. However, since we are treating the two
electrons as independent (we neglect correlation) in the
final channel, it is consistent to neglect this overlap. One
mlg(ht/ﬁc&r(lsxder adding to !kf) a term (proportional to
P |#1(15)) ), O as to force the overlap to van-
ish, but we do not do this here. Combining Egs. (16),

(37), and (39) yields, in place of Eq. (26),

2 2
£ _¢F)x, ||®,), 41)

1

f

ing r, as a power of 1/r|; therefore, angular correlation,
that is, the terms in the variable u in the Hylleraas wave
function, Eq. (36), are expected to lead to a more
significant (though still small) difference between the
Faisal-Reiss and Keldysh theories than was found in
studying the one-electron model.

The term in eF(?)-x, on the right-hand side of Eq. (41)
contributes only through the electron-electron angular
correlation (the terms in ). Consequently, we expect the
matrix element

<k,¢H(13)]F(1)'xZ|¢’i)Ek’F(t)-/n (43)

to be small compared to Jl,. Furthermore, M, is pure
imaginary while J, is pure real, and the contributions of
these two matrix elements to X are out of phase by 7 /2
[the integration over ¢ in Eq. (41) does not alter the rela-
tive phase] so that there is no interference in the absolute
magnitude |M¥|. Hence, we expect the contribution
from M, to |MK| to be negligible. Both the matrix ele-
ments JW, and M, can be evaluated in closed form.

In Table I we illustrate the convergence of the total
binding energy E/® with respect to the number of terms
in the Hylleraas wave function of Eq. (36), and we also il-
lustrate the convergence of the matrix elements M, and
M, at three different values of k. The rate of convergence
of the energy is fast, which is not unexpected since the
energy estimate is a variational estimate, of second order
in the error of the wave function. On the other hand, the
errors in the estimates of the matrix elements are of first
order in the error of the wave function, and accordingly
the rate of convergence is slower. In fact, M, has not
converged, and is significantly effected by the inclusion of

TABLE I. Total binding energy, and overlap matrix elements J#;, and ,, defined by Eqgs. (42) and

(43) of the text, for the ground state of H™. The indices n, /, and m, are the powers of s,

t?, and u in the

Hylleraas wave function, Eq. (36) of the text; the total number of terms N, is indicated in the first
column of the table. The nonlinear parameter g of the wave function was chosen to minimize the ener-
gy. The number k is the momentum, in a.u., of the outgoing photoelectron.

./”.l l‘/"'Z
N, I m n q Energy k=0.01 k=02 k=1 k=001 k=02 k=1
2 0 1 0 13481 —0.512293 40.7 28.5 1.65 0.000 0.00 0.00
8 1 1 1 1.6085 —0.526816 37.5 26.9 1.82 0.038 0.66 0.42
12 1 2 1 15578 —0.527541 437 28.1 1.79 0.040 0.69 043
18 2 2 1 16267 —0.527686 45.1 28.1 1.78 0.035 0.61 0.43
24 2 3 1 1.6402 —0.527722 47.1 28.0 1.78 0.034 0.60 0.43
36 2 3 2 16274 —0.527745 47.8 279 1.78 0.031 0.54 0.37
48 3 3 2 17135 —0.527749 47.8 279 1.78 0.025 0.44 0.33
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terms in u 2. We could estimate these matrix elements us-
ing a variational procedure,?? but we deemed this un-
necessary since reasonable accuracy for /1, is obtained by
including 24 terms in the Hylleraas wave function, and
the relative contribution of the exact /M, to |MX| is al-
most certainly very small. Incidentally, #, vanishes
linearly with k as kK —0.

We have carried out calculations of photodetachment
rates using the “two-electron” Keldysh theory; in all cal-
culations we used the 24-term Hylleraas wave function.
In Fig. 5 we present results for two-photon detachment of
H™ by circularly polarized light. We show the photode-
tachment rate versus the photoelectron kinetic energy €
(the frequency is varied) at the fixed intensity of 10°
W/cm?.  This intensity is sufficiently low that the
electron-field interaction can be accurately treated within
perturbation theory. On the log-log scale of the figure,
our (Keldysh) results for the rate are almost indistin-
guishable from the perturbation theory results of Fink
and Zoller®”® and Liu and Starace.?* The Fink-Zoller and
Liu-Starace results were obtained by treating the atomic
interaction of the two electrons within the adiabatic hy-
perspherical formulation. To indicate the discrepancies,
we have plotted the ratio of the Liu-Starace estimate of
the rate to that of ours. Note that the rate vanishes rap-
idly as the photoelectron energy € does. An electron that
absorbs two circularly polarized photons has (in the per-
turbative limit) an orbital angular momentum quantum
number of 2, and therefore the rate vanishes with ¢ as £
(recall our discussion of the minima seen in Fig. 1). This
slope is confirmed by the results of Fig. 5. The photode-
tachment rate turns down as the photoelectron energy

Ratio
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FIG. 5. Lower box: Photodetachment rate I (in a.u.) vs pho-
toelectron energy € (in a.u.) for two-photon detachment of H™
by circularly polarized light at the intensity 10° W/cm?, calcu-
lated using the two-electron Keldysh theory. The vertical
dashed line marks the value of € (or, rather, w) for which one-
photon detachment becomes possible. Upper box: Ratio of the
(two-electron) perturbation theory rates of Liu and Starace (Ref.
24) to the two-electron Keldysh rates; these results would be in-
distinguishable on the scale of the lower box.

DORR, POTVLIEGE, PROULX, AND SHAKESHAFT 42

approaches fiw, close to the one-photon threshold.

In Fig. 6 we present results of two-electron Keldysh
theory for two-photon detachment of H™ by linearly po-
larized light. As in Fig. 5, we show the photodetachment
rate versus the photoelectron kinetic energy ¢ at the fixed
low intensity of 10° W/cm2. We also show the perturba-
tion theory results of Liu and Starace®* (based on the adi-
abatic hyperspherical formulation) as well as perturba-
tion theory results that we obtained within the frame-
work of the one-electron model; we have now multiplied
the latter results by a factor of 2, so as to take into ac-
count that either of two electrons may be ejected. The
two sets of perturbation theory results are qualitatively
the same, and the quantitative agreement is rather good
also, indicating the reliability of the one-electron model.?’
The agreement with the two-electron Keldysh results is
not as good, but is still reasonable. As in Fig. 3, the
discrepancy with Keldysh theory is probably due to the
neglect, in the Keldysh theory, of the s-wave phase shift
in the s-p-s channel; this phase shift is nonnegligible for €
well above zero. (The d-wave phase shift in the s-p-d
channel is small, so a similar discrepancy does not occur
in the case of circular polarization.) Note that the rate
should vanish with vanishing € as V'g; this slope is
confirmed by the results of Fig. 6. Note also that the
one-electron Keldysh results (not shown) have roughly
the same shape as the two-electron Keldysh results, but
are up to a factor of 1.7 higher; thus the agreement with
the Liu-Starace results is not quite as good.

Finally, in Table II we present results of two-electron
Keldysh theory for multiphoton detachment of H™ by
linearly polarized light at two frequencies close to the
CO, laser frequency, and at four different intensities. We
also show the results of two-electron Faisal-Reiss theory,
results of Mercouris and Nicolaides?® obtained using
two-electron Floquet theory, and results of various calcu-
lations (Floquet, Keldysh, and Faisal-Reiss) carried out
within the framework of the one-electron model; once
again, we have multiplied the “‘one-electron results” by a
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FIG. 6. Photodetachment rate " (in a.u.) vs photoelectron
energy € (in a.u.) for two-photon detachment of H™ by linearly
polarized light at the intensity 10° W/cm?, calculated using K,
two-electron Keldysh theory; P, one-electron perturbation
theory; LS, two-electron perturbation theory (Liu-Starace, Ref.
24).
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TABLE II. Total rate I (in a.u.) for ionization of H™ by linearly polarized light of various intensities
I (in 10° W/cm?), and frequencies o (in 107 a.u.). Column (a): two-electron Floquet results of Mer-
couris and Nicolaides, including electron-electron correlation (Ref. 26). Columns (b) and (c): two-
electron Keldysh and Faisal-Reiss results, respectively, based on a 24-parameter Hylleraas wave func-
tion for the initial state. Columns (d)-(f): results obtained within the framework of the one-electron
model. (d): Floquet, (¢): Keldysh, (f): Faisal-Reiss. Results in columns (d)—(f) have been multiplied by 2
to take into account two electrons. Note that, due to numerical roundoff error, we cannot obtain the
very small Floquet rates at I =1.402X 10° W/cm?. Here a[b] denotes a X 10°.

I © (@) (b) ©) (d) (e) )
1402 40  33[—11]  2.6[—16] 8.1[—16] 1.1[—15) 1.1[—15]
1402 43 3.3[—11] 3.1[—15] 8.8[—15] 1.2[— 14 1.1[—14]
2805 40  6.4[—11] 6.2[— 14] 1.7[—13]  24[—13]  23[—13]  22[—13]
2.805 43 62[—11]  4.0[—13] 1.1[—12) 1.4[—12] 1.5[—12] 1.4[—12)
11.22 40  2.1[—10]  4.8[—10] 1.2[—9] 1.6[—9] 1.6[—9] 1.5[—9]
11.22 43 2.7[—10] 8.8[—10]  2.1[—9] 2.7[-9] 2.8[—9] 2.6[—9]

25.25 40  3.7[-9] 5.2[—8) L1[-7] 1.5[-7) 1.6[—7] 1.5[—7]

25.25 43 45[—9] 5.1[—8) 1.0[—7] 1.4[—7) 1.4[—7] 1.4[-7)
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factor of 2. Our various one-electron results (columns d,
e, and f) are in good agreement with each other, and, in-
cidentally, agree closely with the results reported by
Reiss in Ref. 3. (In Ref. 3, Reiss calculated rates for mul-
tiphoton detachment of H™ by a CO, laser, using a one-
electron model with a very simple wave function to de-
scribe the H™ ground state.) Our “one-electron” results
never differ by more than a factor of 3 or 4 from our
two-electron Keldysh and Faisal-Reiss results. Our one-
are much smaller than two-electron results are in part
due to the differences in the values of the binding energy
of the active electron used in the one- and two-electron
calculations; the frequency is close to the seven-photon
threshold, whose exact position depends on the value of
the binding energy, and since the rate varies rapidly in
the vicinity of this threshold the rate is sensitive to the
binding energy. Note that, in both our one- and two-
electron calculations, we have N, =8, except for ©=0.43
a.u. at the intensities 1.402 and 2.805 X 10° W/cm?, where
we have Ny=7. In contrast to the one-electron model,
the two-electron Keldysh and Faisal-Reiss results are no-
ticeably different, by a factor of 2 or 3; this may be due to
the fact that correlation extends the range of the atomic
interaction of the active electron, as noted earlier in this
section. Our results are much smaller than those of Mer-
couris and Nicolaides [column (a)] at low intensities
(1.402 and 2.805X 10° W/cm?). We cannot establish the
source of such large discrepancies; however, we note that,
due to roundoff error, we found it very difficult to calcu-
late an accurate Floquet rate within our one-electron
model when the rate is very small, as it is at low
intensities—in fact, we were unable to calculate an accu-
rate rate at the intensity 1.402X10° W/cm?. The weak
field Floquet results of Crance?® are also in disagreement
with our results.

V. CONCLUSION

We have examined various approximations for treating
the electron-field interaction in the calculation of rates
for multiphoton detachment of H™ by low-frequency
light. Ordinary perturbation theory is inadequate once
the ponderomotive energy is an appreciable fraction of
#iw. Perturbation theory can be modified by taking into
account the energy shift of the bound level relative to the
continuum, and this leads to an improvement. However,
modified perturbation theory is inadequate once the in-
tensity is so high that the Keldysh parameter y is of or-
der unity or below. The Keldysh theory gives results in
remarkably good agreement with accurate multielectron
perturbation theory calculations, at low intensities, and
with single-electron Floquet calculations, at all intensi-
ties. We do not expect the Keldysh theory, in its present
form, to give accurate results near the resonance regions
of H™, and certainly this theory is not accurate in treat-
ing systems having many bound states, such as the hydro-
gen atom.'” Note that the Keldysh approximation yields
a vanishing dipole moment in the initial channel, so that,
within this approximation, ¥ ,(F,_ylex|F,) vanishes
for all integer N; this cancellation is perhaps one reason
why the numerical calculation of Nth order harmonic
generation rates tends to be less stable at high intensities
than the corresponding calculation of ionization rates.
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