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Fourth-order interference of joint single-photon wave packets in lossless optical systems
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We examine the fourth-order interference properties of two photons at a lossless four-port optical
device. The photon pair is represented by a joint single-photon wave-packet state with arbitrary
spectral composition. We explicitly determine the coincidence probabilities at the output ports of a
beam splitter and a Mach-Zehnder interferometer when the incident wave packet is described by a
joint Gaussian spectral distribution and the two photons are incident one at each port of the device.
For uncorrelated and distinguishable input photons, the fourth-order interference is readily under-
stood in terms of the particle or wave behavior of each photon acting separately. On the other
hand, highly correlated photon pairs, such as those generated from spontaneous parametric down-
conversion, exhibit fourth-order interference effects at the output of the interferometer that depend
expressly on the joint nature of the photon-pair wave packet, and cannot be described by the parti-
cle or wave behavior of either photon.

I. INTRODUCTION

The production of photon pairs from atomic cascade
processes' and parametric down-conversion has permit-
ted a number of fundamental experiments to be carried
out. In particular, if both photons are incident at one
of the ports of a beam splitter, each of them produces an
ouput photon-number distribution consistent with the be-
havior of distinguishable classical particles, whereas if
both are directed to one input port of an interferometer,
each of them generates a photon-number distribution ex-
hibiting second-order interference effects akin to those of
classical waves as the path-length difference in the device
is altered. '

However, if the photons are direct to both input ports
of these devices, the ouput photon-number distribution
exhibits fourth-order interference effects that cannot be
explained by either simple particle or wave behavior, as
has been confirmed in beam-splitter experiments. ' The
precise behavior to be expected is sensitive to the spectral
correlation of the photons, which reAects the degree to
which they are entangled at the source. These effects can
be observed by two photodetectors working in coin-
cidence.

In this paper we consider the interference of two pho-
tons at an arbitrary lossless four-port optical device when
each of them is incident on one of the input ports. In
Sec. II we construct joint single-photon wave packets
with an arbitrary degree of spectral correlation and em-

ploy this description in Sec. III to obtain the coincidence
probabilities at the output of the device. We consider the
lossless beam splitter as an illustrative example and re-

cover a number of results that were previously obtained.
We then apply the theory to the Mach-Zehnder inter-
ferometer and delineate a broad range of fourth-order in-
terference effects. We discuss our principal results in Sec.
IV.

II. PHOTON WAVE PACKETS

According to the quantum theory of optical coherence,
the electromagnetic field can be expanded in modes hav-
ing a single variety of polychromatic photons excited.
These wave-packet modes are constructed from weighed
superpositions of the monochromatic modes of the field.
For simplicity, we consider a field of known polarization,
quantized in a one-dimensional cavity of infinite length.
A wave-packet operator can be defined as

A (e)=—I e(co)a (co)dco,
0

where e(co) is a complex amplitude, and a (co) is the con-
tinuum raising operator at the angular frequency co, obey-
ing the commutator relation

[a( )c,oa (co')]—:a(co)a (co') —a (co')a(co)

=6(co—co')I .
~

AA A
The symbol I denotes the identity operator (IO=O,
where 0 is an arbitrary operator}, while 6(~—co'} is the
Dirac delta function. This wave-packet operator obeys
the boson commutation relation

[A(e), A (e)]=I,
provided the amplitude e(co} is normalized such that
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6 CO dc' —1
0

(4)

which integrates to unity via Eq. (4).
We now consider the coherence properties of single-

photon wave packets. Since only one mode is excited, the
positive-frequency part of the electric field (normalized to
photon units} can be represented at time t by

E'+'(t):—(2m )
' f 8(co)e ' 'dc@ V(t) A (e), (7)

0

where the symbol denotes an equivalence, and V(t) is
the temporal profile of the single-photon wave packet,

V(t)=(2n) ' f e(cu)e ' 'dao . (8)
0

From Eqs. (3), (5), and (7), the Glauber first-order
correlation function of the positive-frequency part of the
field P'+'(t) at time t, with its adjoint P' '(t) at time
t+v., can be written' '"

G"'(t, r) =Tr[pE' —'(t +r)P' '(t)]

= V"(t +r) V(t), (9)

where Tr denotes a trace over a density operator p, which
is given here by p=

I 1;e&(1;eI.
A normalized average of this function within a time

window long enough to capture the full wave packet (we
represent the window as effectively infinite) follows from
Eqs. (6)—(9),

f G'"(t, r}dt
y(r)—=f" G" I(t, o)dt

= f P(co)e' 'dc@ .

y(r) is therefore the characteristic function of the proba-
bility density P(cu). The coherence time of a single-
photon wave packet can then be defined according to'

t, =~ '"f Iy(r)I'dr. (11)

As a particular example, we consider a single-photon
wave packet described by the complex amplitude

2

e(co)=(2rro2) '~4exp exp( i coto ), —

where cotp is the phase associated with a time shift tp.
According to Eq. (6), it defines a Gaussian probability
density with center frequency cop and spectral width ~,

A single-photon wave-packet state is obtained by per-
mitting the operator of Eq. (1) to act on the vacuum ac-
cording to

I 1 e & = A (e) I0 &
= f e(~)

I l.&d~, (5)
0

where ll. &—=e (~)IO& are the monochromatic single-
photon states. The probability P(co)des of observing a
photon of frequency between co and ~+de in this wave-
packet state is

(6)

P(co)=(2mcr )
'~ exp

(CO COO)

20
(13}

For a narrow-band profile (o «e~o), we find from Eqs.
(10} and (11) that the normalized first-order correlation
function is

y(r) =exp( —o r /2)exp(iaior),

and the coherence time

(14)

[&,(co),&i(co')] =0 . (16)

The simultaneous excitation of a single-photon wave
packet in each field can be described by the operator
product

+ (ei~ez)= A i(ei}Ai(ei)
= f f ei(ai)e2(co )& i (co)&2(co )dco dc'

(17)

provided that the two wave packets are created indepen-
dently. However, this assumption is too restrictive to ac-
count for wave packets that originate together from a
common source.

A more general formalism incorporates the joint com-
plex amplitude g(co, co'),

g (g) =—f f g(co, ~')a, (co)ct, (ai')dpi dao', (l8)
0 0

which describes the simultaneous excitation of the fields.
This joint wave-packet operator obeys the commutator

[k(g), IC (g)]=I+N, +N~, (19)

as long as the amplitude g(co, co') is normalized via

f f Ig(~~')I'd~d~'= 1 .

The operators 8', and 82 are normally ordered

N, —= f f gi(co, co')aJ (co)&, (co')dcodco', j=1,2 (21a)
0 0

gi(co, co'):—f g(co, Q)g*(co', Q)dQ,
0

$2(co, a)') —= f g(Q, co)g*(A, co')d 0,
(21b)

and do not contribute to expectations in the vacuum.
A joint single-photon wave-packet state is created ac-

cording to

I 1,, 1,;g& =—i~"(g) I0, 0&

= f f g(co, co')Il, &Il,„&de)den', (22)
0 o

such that the joint probability P(co, co')dao des of exciting
a photon frequency between co and co+den in the first
field and another of frequency between co' and co'+dao' in

t
0

is just the inverse bandwidth of the photon wave packet.
An ideal four-port optical device couples two fields

quantized along the directions of the input ports (labeled
by 1 and 2) obeying
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the second field is given by P (cu, ~') =(2rro. ) '(1 —rt )
' exp[ —Q(co, co')], (30)

P (~,~')d~ d~'—=
i & 1 i„I&12. I

1 i, lz, g& I'd~ d ~'

I@co & ) I dc' dco (23)

To obtain the coherence properties of this state, we
first note, in analogy with Eq. (7), that the product of the
two positive-frequency portions of the field operators, at
the respective times t' and t, can be represented by

2',+'(t')2', +'(t) =(2~)-'

X a~ co &2 co

where (co~, co2) and (t„t2) are the center frequencies and
time shifts associated with the constituent Gaussian wave
packets of spectral width o, and the parameter q reflects
their degree of correlation.

When v;=0, this joint wave packet factorizes into two
independent single-photon Gaussian wave packets, each
with an amplitude in the form of Eq. (12). On the other
hand, when q=+1, the Gaussian wave packets have
complete spectral anticorrelation and correlation, respec-
tively, since the frequencies co and co' are then constrained
by the relationships'

l(cgf + Ecp f )d
CO+CO —CO]+CO~ . (31)

V(t, t')K(g),

where V ( t, t ') is the joint temporal profile of the wave

packet,

V(t, t')—:(2m. )
' f f g(co, co')e '"'+ ' 'dcodco' .

0 0

(25)

The Glauber second-order correlation function for the
product of the positive-frequency parts of the fields at
times t' and t, with the adjoint product at times t +~ and
t'+ r', ' follows from Eqs. (19), (22), and (24),

Although P(co, co') is strictly not a probability density
when q=+1, these limits are nevertheless valid as 1ong
as they are taken after the calculation of statistical quan-
tities. In the limit g~ —1, this joint single-photon wave
packet then provides a suitable model for each pair of
photons emitted from a parametric down-converter,
which is governed by sum-frequency conservation. '

The characteristic function of the joint Gaussian prob-
ability density is well known. With the narrow-band ap-
proximation (cr ((co~,co2), the correlation function
represented in Eq. (27) is given by'

y(r, r')=exp[ cr (r +—r' +2rtrr')/2]
G"'(t, t', r, r')=Tr[pf, '(t+r)E', '(t'+r')

XE', +( gt', "(t)] X e px(im& )erxp(i c02 )r, (32)

yielding, via Eq. (28), the joint coherence times
(26)= V"(t +r, t '+ r') V (t, t'),

1t+=
o [2(1+rt)]'~

(33)
given the density operator p=~1, , lz., g)&1„12,(~. The
normalized, time-averaged second-order correlation func-
tion is provided by Eqs. (23)—(26),

f" f" G'"(t, t', r, r')dt dt'
y(r, r') =

f f G"'(t, t', 0,0)dt dt'

=f f P(co, co')e'"'+ 'dcudco' . (27)
0 0

This is the characteristic function of the joint probability
density P(co, co'), in analogy with that of Eq. (10) for a
single-photon wave packet. Coherence times for the joint
single-photon wave packet can now be defined

t =~ '"f" ~y(r, +r)~'dr, (28) III. FOURTH-ORDER INTERFERENCE
OF JOINT SINGLE-PHOTON WAVE PACKETS

such as to accentuate the joint nature of this wave-packet
mode.

To illustrate the above, we consider a joint single-
photon wave packet described by the complex amplitude

Fourth-order interference properties can be measured
with a pair of photodetectors working in coincidence.
The response of these detectors is given by correlation
functions in the form of Eq. (26), evaluated at zero lag
times ~o']~

Consider a joint single-photon wave packet presented
to a lossless optical system with two input ports, such as
a beam splitter or an interferometer (see Fig. 1). The
coincidence rates at input ports 1 and 2 are then given by

g(co, co')=(2ma2) '~ (1 —r) )
' exp[ —Q(co, co')/2]

X exp( i cot
&

)exp( i co—'t2 ), — (29a)

{co ci)i ) +(M cop) 2'g(co cubi )(~ cop)
Q(co, co') =-

2o (1—r) )

These joint coherence times depend on the inverse band-
width o. of the photon wave packets, as well as on their
degree g of spectral correlation. Consequently, for com-
plete spectral anticorrelation or correlation (g= —1 and
+1), t+ and t become infinite, respectively, whatever
the value of the finite coherence time t, =1/cr [Eq. (15)].
We will show in Sec. III that the coincidence detection of
joint single-photon wave packets is governed by the joint
coherence times, and therefore reflects the entangled na-
ture of two photons emerging from a common source.

(29b)

and possessing the joint Gaussian probability density'

G', i'(t, t')= Tr[pEI '(t)EI (t')EI+'(—t')EI (t)]

(34a)
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cl (I)
(0 - -- 8

= a, (co)

GI,", (t, t')—:Tr[pE', '(t)E,' '(t')g', +'(t')E', +'(t)]
=

I v, (t, t')I'+
I v. (t', t)l'

3, (cn)
+2 Re[ V.*(t,t') V, (t', t)], (37a)

FIG. 1. A four-port lossless optical device can be represented
by a unitary transformation of two fields at each frequency co.

The transformation is governed by the complex transmission
coefficient a(co) and reflection coefficient p{co), which are relat-

«by I
a{~ }I'+Ip{~}I'=l.

G,",'(t, t') =Tr[pE, '(t)P', (t')E,+'(t')E', +'(t)]

=0,
G",,'(t, t')—=Tr[}cEI '(t)E', '(t')E& '(t')EI (t)l

=
I v(t, t')I',

(34b)

(34c)

where p=
I
l „12,() ( l &, l2, (l, and V(t, t') is the temporal

profile of the joint single-photon wave packet, as indicat-
ed in Eq. (25). This result ensures that coincidence
counts are not registered at either input port alone, be-
cause the input photon pair is divided between them.

A lossless optical system effects an SU(2) unitary trans-
formation on the input fields, as shown schematically in

Fig. 1. The fields at the output ports 3 and 4 are given
b 15—17

EJ+'(t) =(2n }
' f a, (co)e ' 'dco, j =3,4,

0

ct3(co) a(co) p(co) a i(~)
—p*(co) a"(co) a, (co)

(35b)
a4(co)

l«~) I'+ IP(co) I'= l . (36)

The coincidence rates at the output ports are then found
to be

where a(co) and p(co) are complex field transmission and
reAection coefficients specific to the device under con-
sideration, and are related by

G44'(t, t'):Tr—[pE4 '(t)E4 '(t')E4+'(t')E4 '(t)]
=

I v, (t, t')I'+ I v, (t', t)l'

+2Re[V; (t, t')Vb(t', t)], (37b)

G' '(t t')= Tr[—E '(t)E' '(t )E' '(t')E '(t)]
=

I v, (t, t')I'+ I v, (t', t)l'

—2 Re[ V; (t, t') Vo(t', t)],
where Re denotes the real part, and we have defined

V, (t, t') = (2n )
' f—f a(co)p(co')g(co, co')

0 0

Xe '"'+ "dcodm'

Vb(t, t')—:(2n )
' f f p'( co) a*( co')g( co, co')

0 0

(37c)

(38a)

V, (t, t')=(2~) ' f f a(co)a*(co')g(co, co')
0 0

X i(~t+ ~'t')d d

Vg(t, t') = (2rr—) 'f "-f "P'(co)P(co )@co,co )
0 0

—
t (a)t +N't')y

(38b)

(38c)

(38d)

These functions represent transformations of the input
wave packet's temporal profile [Eq. (25)] by the device.
Coincidence counts can now be observed not only be-
tween the two ouput ports, but also at either output port
alone.

Practical coincidence detectors register integrations of
Eq. (37) over a coincidence counting time for the dura-
tion of the experiment. When these times are very much
larger than the temporal spread of the photons after
path-length time shifts are imposed by the optical system,
Eq. (37) is twice integrated from (

—0o, Oo ) to obtain the
coincidence probabilities

P.„,(2,0)= ,
' f f G—",,'(t, t')dt dt'

co' P co, co' dcodco'+ a co o.' cu' '
co co' co, co' ' co', co d~d~',

0 0 0 0
(39)

p.„,({),2) =,' f f G,",'(t, t')dt dt'

= f "f "Ip(co)l' Ia(co')I P(co, co')d~ dco'+ f "f "[a(co)a*(co')p"(co)p(co')]g(co, co')g*(co', co)dco d~',
0 0 0 0

(40)

p.„,(l, l)= f" f" G",,'(t, t')dtdt'

=f "f [la(~)l'I a~(' I')+Ip(~)l'Ip(~')I']P(~, ~')d~d~'
0 0

—2f "f [ ( a) co(a)pro*( )pco( )c]og( , co)ego*( ', co) coddcoco'

0 0
(41)



42 FOURTH-ORDER INTERFERENCE OF JOINT SINGLE-PHOTON. . . 4131

The factor of —,
' in Eqs. (39}and (40) removes the doubling

that accompanies the second-order correlation function
of the field in a two-photon state. The first integral on
the right-hand side of each of these probabilities de-
scribes the appropriate transmission and reflection com-
binations that take the photons from input to output,
spectrally averaged over the joint probability density
P(co, co') of the input wave packet. For instance, in Eq.
(41) coincidences between the output ports occur when
the input photons are either both transmitted or both
reflected. The last term in Eq. (41) expresses interference
between these two possibilities in an integral containing
the phase-sensitive overlap of the joint amplitudes
g(a), co') and g'(co', co).

The above results are applicable to any lossless optical
device with two input ports, such as a beam splitter or a
Mach-Zehnder interferometer. We illustrate the theory
by considering these two devices in turn.

A. Beam splitter

The lossless beam splitter shown in Fig. 2 is represent-
ed by Eq. (35) with the transmission and reflection
coefficients'

a(~) = T' '(co), P(co) =R ' (~0), (42)

where T(co) and R(co)=1—T(cu) are the transmittance
and reflectance of a dispersive beam splitter. Without
loss of generality, we have assumed that no phase shift is
imparted to the input beams by the beam splitter. In
practice, beam splitters are often nondispersive over the
spectral range of interest, in which case

T(cu)=T, R(co)=R =1—T .

Substituting this result in Eqs. (39)—(41), we obtain

P,„,(2, 0)=P,„,(0, 2) = TR [ I+4(0,0)],
P,„,( 1, 1)= T2+ R 2 —2TR 4(0,0),

(43)

(44a)

(44b)

where 4(0,0) is a special case of the general integral

4(Y, Y') = f"f"g(~,Cu')g" (CO', CO)e""'+ "'dCO d CO' .
0 0

(45)

P,„,(1, 1)=T +R 2TR exp—( comdt /2)—

X exp( Y,„/2t )—, (46)

where t is the joint coherence time given by Eq. (33), cod

is the difference ~co,
—

co&~ between the center frequencies
of the photons Gaussian spectral distributions, and ~;„ is
the path-length time difference of the photons in entering
the beam splitter. It is clear from Eq. (46) that the pho-
tons will not exhibit fourth-order interference if they are
distinguishable by color [exp(

comdt

/2) «—1], or if they
are temporally distinguishable [exp( Y;„/2t )

—« 1].
We evaluate Eq. (46) for different degrees of spectral

correlation Yi given a 50-50 beam splitter (T=R =
—,').

For completely anticorrelated and uncorrelated photons
(Yi= —1 and 0, respectively), we find

—,'[1—exp( comdr, /8)exp( —2Y;„/t, )], —

—,
' [1—exp( cod t, /—4)exp( Y,„/t, )], —

(47a)

Yi
=0, (47b)

This integral, which is evaluated in Appendix A for a
wave packet with a joint Gaussian spectrum, will be used
in the study of the Mach-Zehnder interferometer. The
fact that Y=Y'=0 in Eq. (44) reflects the fact that the
beam splitter was assumed not to impart any phase shifts
to the fields at its inputs. However, 4(0,0) does account
for any path-length time difference the photons may have
at the input of the device, which is contained in the am-
plitude g(co, co').

The transmission and reflection terms in Eq. (44) that
do not depend on 4(0,0) are consistent with the binomial
statistics that result from independent Bernoulli trials for
two distinguishable classical particles. The terms con-
taining 4(0,0) depend explicitly on the joint spectral
character of the input state and represent quantum in-
terference that arises from our inability to determine how
the photons are distributed into the output ports of the
beam splitter. As a result, there is generally an increased
probability of observing both photons at either output
port, and a corresponding decrease in the probability of
observing one photon at each output port. When the
photons are totally indistinguishable, P,„,(2,0)
=P,„,(0, 2) =2TR while P,„,(1,1)=(T—R) .

Substituting Eq. (A7} with i=Y'=0 into Eq. (44b), we
obtain a coincidence probability given by

a, (rn) a (to)

a (m)

FIG. 2. The lossless beam splitter is an optical device
governed by its transmittance T(co).

where t, = 1/o. is the coherence time of the individual
photons. These coincidence probabilities approach zero
when the photons have the same center frequency
(cod =0) and when they suffer the same time delay to the
input ports of the beam splitter (Y;„=0),as shown in Fig.
3(a). As the two photons become increasingly separated
in time at the input, the coincidence probability between
the output ports rises and eventually saturates to a con-
stant level (classical-particle behavior) when Y,„greatly
exceeds t, . At this point they are temporally distinguish-
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terference of completely anticorrelated photons at a sin-

gle beam splitter has been verified experimentally by
Hong, Ou, and Mandel, and by Rarity and Tapster,
with twin photons from a parametric down-converter.
Both groups permitted a center-frequency difference no
greater than the spectral width of the photons
(used =c7=10' rad/sec), corresponding to a wavelength
difference of the order of a few nanotneters (A.d = 5 nm).

Completely correlated photons ( rI = 1 ) behave like
monochromatic ones (tr =0) at the beam splitter because
the joint coherence time t becomes infinite [see Eq.
(33)]. Thus using Eq. (46) with T =R =

—,
' we obtain
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q=1
g=l . (48)
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As shown in Fig. 3, the coincidence probability can only
be reduced (in fact, canceled) when nil =0, and it is then
independent of ~;„.

B. Mach-Zehnder interferometer

0 1 2 3

INPUT PHASE DIFFERENCE IN NUMBER OF OPTICAL CYCLES

FIG. 3. The coincidence probability P,„,(1,1) at the output
ports of a 50-50 (T =

—,
'

) lossless nondispersive beam splitter is

shown when a wave packet described by a joint Gaussian proba-
bility density is incident on it, with one photon impinging on
each of its ports [Eqs. (47) and (48)]. The result is plotted vs the
input path-length difference !7,„!of the two photons, expressed
in terms of the number of optical cycles of the center frequency
of the first photon's spectral distribution (co, !7;„!/21r}.(a) The
center frequency of the second photon is the same as that of the
first (coz=ro1 so that rod =!co1—cu2! =0},and the spectral width
o. of both photons was chosen to be o. =co&/8m. For completely
anticorrelated and uncorrelated photons (g= —1 and 0, respec-
tively) the coincidence probability is zero at ~,„=0and rises to a
constant value of

z
when the photons are temporally well

separated at the inputs. However, for completely correlated
(1)=1) photons, this probability is zero for all !7,„!. (b) The
center frequenccy of the second photon cu, =0.95col, so that
cod=0. 05co[. Again, o. =col/8m. The 5% spectral mismatch
significantly reduces the cancellation of the coincidence proba-
bility for g= —1 and 0. For completely correlated photons
(g =1),no reduction is observed for all time differences.

able and no longer manifest fourth-order interference.
When codWO, completely anticorrelated photons pro-

duce a larger reduction in the coincidence probability
than uncorrelated photons, but the effect occurs within a
shorter range of 7;„[see Fig. 3(b)]. The fourth-order in-

a(co) = T'
, (cu)R 2 (ro)exp(icorMZ/2)

+R', (ui)Tz (ui)exP( ic07MZ—/2),

P(ui) =R'
, (co)R 2 (ui)exp(iuirMZ/2)

—T1 (ui) T2~ (co)exp( i corMZ—/2)

(49)

where R, ( o)c=1—T, (co) and R2(cu)=1 —T2(cu) are the
reAectances of the two lossless beam split ters, and
&Mz =b I, /c. %e assume that the input beams maintain
perfect spatial alignment through the device. The coin-
cidence probabilities at the output of the MZI have a
greater range of behavior than those at the output of the
beam splitter because of the additional degree of freedom
provided by the variable time delay 7Mz.

To calculate the coincidence probability between the
output ports, we assume that the beam splitters of the
MZI are nondispersive, as in Eq. (43). Substituting Eq.
(49) into Eq. (41) yields

A lossless Mach-Zehnder interferometer (MZI) is illus-
trated schematically in Fig. 4. The first beam splitter of
transmittance T, ( c)uapportions the input light into the
interferometer. A path-length difference AI. may be in-
troduced between the arms of the interferometer, prior to
the recombination of the two optical beams at the second
beam splitter of transmittance T2(ci}. As shown in Ap-
pendix B, the MZI is represented by Eq. (35) with

out( ~ } TMz(7Mz~ )TMz(0~7Mz}+RMz(rMz~ } Mz( ~rMz}

+4TIR1T2R2«[r(rMZ 7MZ} Y(rMZ'0)Y(0 7MZ}+ Y(7MZ 7MZ} Y(rMZ 0}Y(0 7MZ}]

—2(T, —R, ) T, R, 4(0,0)—4(T2 —R2)(T, R, T2R, )' Re[T1@(rMZ,O) —R, 4( ,07M)Z]

—2T2R2T14 (7Mz 7Mz}—2T2R2R14&( rMz rMZ)+4T, R, T2R2Re[4(7MZ 7MZ)] (50}
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a,(m)

a, (to)

a2(to)

FIG. 4. The lossless Mach-Zehnder interferometer (MZI) has
beam splitters with transmittances T&(co) and T2(co) and a
path-length phase shift /{co)=c07Mz where TMz=b L /c depends
on the path-length difference hL between the two arms of the
device. The MZI is a special case of the transformation shown
in Fig. l.

where y(r, r') and 4(r, r') are given by Eqs. (27) and (45),
resPectively, and the functions TMz( ) and Ritz( ) are
defined as

TMZ(rMZ, O)—:T,R2+R, T2

+2(T,R, T2R2)' Re[y(rMZ

R Mz(1 Mz, o)—:T1 T2+ R1R 2

—2( T1 R1 T2R2 )' Re[y(TMz, O)], (51b)

TMZ{0 rMZ) T1R2+R1T2

+2(T,R, T2R2)' Re[y(O, TMz)]

could take at the device if it were to behave as a classical
distinguishable particle. Consider, for example, the first
of these equations: a particle at the first input port of the
MZI (port 1) can be transmitted to the first ouput port
(port 3) either by being transmitted at the first beam split-
ter and refiected at the second (T,R2), or by being
reflected at the first beam splitter and transmitted at the
second (R1T2). The additional term represents the usual
second-order interference resulting from the uncertainty
of which of these two paths is followed by the photon.

The first two terms in Eq. (50) therefore represent
products of second-order interference patterns that
would give rise to coincidences between the output ports
if the photons were to behave independently at the input.
However, for jointly distributed photons, the correlation
function y(r, r') need not factorize into the product
y(r, 0)y(0, % ) of the marginal correlation functions, so
that the joint behavior in the coincidence probability is
accounted for in the third term. The function 4(r, r'),
which appears in the remainder of the equation, provides
fourth-order interference effects that depend on the indis-
tinguishability of the photons. It is sensitive to the rela-
tive time delay of the photons at the input to the inter-
ferometer ~r;„~, as we have seen in the case of the beam
splitter [Eq. (44)], as well as to the path-length time
difference imparted by the interferometer ~rMZ~.

If the MZI has 50-50 beam splitters
( T, =R, = T2 =R 2

=
—,
' ), the coincidence probability be-

tween the output ports simplifies considerably,

+ Re[y(rMz rMz)

) (rMz~ +Mz)+@(rMz~rMz)]

RMZ(0&~MZ) —T1 T2+R1R2 g@(rMZ& rMZ) g+( rMZ&rMZ) (52)

—2(T,R, T2R2)' Re[y(0, rMZ)] (51d)

The quantities in Eq. (51) represent the global transmit-
tance and reflectance for each photon of the joint wave
packet passing through the interferometer. The first two
terms of these functions outline the two paths the photon

I

exhibiting only joint functions. As an illustration, we
consider the joint single-photon wave packet described by
Eq. (29). Substituting Eqs. (32) and (A7) into Eq. (52),
and employing Eq. (33) together with the definitions in
Eqs. (A6) and (AS), we obtain

P,„,(1,1)=—,'+ —,'[exP( —H~z/2t'+ )cos(m, rMZ)+exP( rMZ/2t —)cos(co„rMZ)]

+ —,exp( cod t /2)exp( —2„/2t )[exp( —rMZ/2t + )cos(co, rMZ )
—exp(—rMZ/2t )cosh(—7 MZ7& lt ) ]

(53)

This coincidence probability depends on both of the joint
coherence times t+ and t, and on the sum frequency
co„unlike that between the output ports of a single beam
splitter given in Eq. {46).

When the photons are distinguishable by color
[exp{ cod t l2) « 1], o—r by nonoverlap in time
[exp( —r;„/2t ) «1], the last term in Eq. (53) vanishes,
in which case

P,„,(1,1)= —,'+ —,'[exp( H~z/2t+ )cos(co,rMz)—
+exp( rMzl2t )cos(co„rMZ)] . —(54)

In the former case, the correlation function y(r, 7') re-
sults in beats in the coincidence probability for inter-
ferometer path-length differences within the coherence
time t„as shown in Fig. 5.
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we find that for uncorrelated photonsUsing Eq. (33), we n a
and t are equal

'
t coherence times t+ an

balanced superposi-t =t =t, /2' ), giving rise to a a ance
'ff rence-frequency oscillations,tion of sum- and difference- re

2P,„,(1, I ) = —,'+ —,'exp( —7Mz/t,
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For uncorrelated photons, the coincidence probabrhty ex-
oscillations with increas-hibits decaying sum-frequency osci ations wi

terferometer path-length difference above the con-
stant level —', as shown in Fig. 6(a). On the other han,27

completely anticorrelated photons produce undampm ed
sum-frequency osci a ion11 tions about a level that decays from

for small path-length differences to —,
' at large pat-

length differences. The visibility increases from 33% to
50% as the path-length difference is increased. Figure
6(b) illustrates this behavior.

The color and time distinguishability of the photons in
the above two regimes of MZI operation forbids a total
cancellation of the coincidence probability, as seen in
Figs. 5 and 6. As in the case of the single 50-50 beam
splitter shown in Fig. 3, complete quenching is permitted
only when the photons have the same center frequency

rod =0) and arrive together at the interferometer
(r =0). In this case Eq. (53) reduces to+in

(I I)=-'[I+exp( rMz—/2t )cos(co, rMz)] .2 2 )1 . 59)OUt

For uncorrelated and completely correlated photons, the
coincidence probability is given by

P,„,(1,1)= '

—,
' [ ]+exp( —r Mz/t, )cos(to, rMz)],

g=0
2 2

—,
' [ I+exp( 2r—Mz/t, )cos(co, rMz)]

(60b)

(60a)
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FIG. 6. Same as Fig. 5, except that 07d =0 aud
exp —u'r, '„(1—

7) )]« 1 [Eq. (58)]. Spectrally correlated (7) = 1)
photons cannot satisfy this condition. (a) For uncorrelated pho-
tons (g=0), the coincidence probability exhibits decaying sum-
frequency oscillations (at cu, =2'&) about the constant level

2
as

d. (b) Forthe interferometer's path-length difference is increase .
completely anticorrelated photons (g=-= —1) these oscillations
are undamped, but the level about which they appear gradually
decreases. In both cases the probability of coincidence never
reaches zero.

FIG. 7. Same as Fig. 5, but the photons have equal center
frequencies cod = and =0) d are coincident in time at the input to
the interferometer (r,„=0)[Eqs. (60) and (61)]. (a) For uncorre-
lated photons (g=0) and (c) for completely correlated photons
( =1), the sum-frequency oscillations are damped out as the
path-length difference of the device is increased, whi e
completely anticorrelated photons (g=-= —1) these oscillations
have 100% visibility and manifest a periodic cancellation of the
coincidence probability for values of I7MzI exceeding thc coher-
ence time t, = 1/o. of either photon.
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the path-length time difference of the interferometer is in-
creased from zero.

However, completely anticorrelated photons obey

P,„,(1, 1)= —,
' [1+cos(co, rMz) ], (61}

which provides a periodic cancellation of the coincidence
probability for arbitrarily large values of the path-length
difference, as can be seen in Fig. 7(b). P,„,(1, 1) therefore
exhibits oscillations at the sum frequency co, =2'&, with a
constant visibility of 100%. Since Eq. (61) is independent
of the photons' bandwidth, the same result can be ob-
tained directly from a single-mode theory for the interfer-
ence of two, two-photon probability amplitudes. '

IV. DISCUSSION
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We have obtained the coincidence probabilities at the
output of am. arbitrary four-port lossless optical device
when a joint single-photon wave packet is incident at its
inputs, one photon at each port. We have explicitly eval-
uated the coincidence probability between the output
ports when a wave packet described by a joint Gaussian
spectral distribution is incident on a beam splitter [Eq.
(46)] and on a Mach-Zehnder interferometer [Eq. (53)].
In both cases this coincidence probability is governed by
joint coherence times that depend on the spectral rela-
tionship of the input photons. For complete spectral
correlation or anticorrelation the joint coherence times
can be infinite, even if the photons have a finite coherence
time.

The parametric down-converter is a source of spectral-
ly anticorrelated photon pairs. Experiments with down-
converted photons at a single Mach-Zehnder interferom-
eter have confirmed the existence of fourth-order oscilla-
tions in the coincidence probability at the pump frequen-

cy, with =60% visibility, for interferometer path-length
time differences exceeding the coherence time of either
photon. ' Similar interference effects have been observed
(but with visibilities (50%) in experiments where each
photon of the down-converted pair was sent to separate
Michelson interferometers prior to coincidence detec-
tion. ' ' Fourth-order interference effects like these are
unequivocal demonstrations of the entangled nature of
joint single-photon wave packets.

APPENDIX A: INTEGRAL OF THK JOINT-GAUSSIAN
%AVE-PACKET AMPLITUDE

We calculate the integral

4(~, r') = f f g(co, co')g'(co', co)
0 0

Xexp[i(toe+co'r')]dred'', (Al)

Xexp[ i(cot—, +to't2)],
(A2)

(~—co, ) +(co' —a)2) —2rt(co —co, )(co' —co2)
Q (co, to') =

2o (1—rt )

Substituting Eq. (A2) in Eq. (Al), we obtain

(p( r1 ) = (21TtT2)
—I( 1 ri2)

—1/2

X f f exp[ —[Q(co,co')+Q(co', co)]/2]

X exp[ice(r —r;„)]

Xexp[ice'( r'+ r;„)]d co d co',

where we have defined the input time lag

(A3)

(A4)

Expanding the function Q and collecting terms, we can
rewrite Eq. (A3) as

4(r, v') =y(r, r') exp[ r;„(r,„+—r' ~)/2t ]

X exp[iced(icodt +r' —r)/2], (A5)

where cod is the absolute value of the difference in the
center frequencies of the two jointly distributed Gaussian
wave packets,

rod = co
~

co~ ~
(A6)

and y(r, ~') is the second-order correlation function of
Eq. (32). Substituting y(r, r') and employing Eqs. (15)
and (33), we finally obtain

4(r, r') =exp[ cod t l2—]exp[ —2„/2t ]

X exp[ —(r+r') /2t, ]exp[ r;„(v' w)—/2t ]—
X e p[rx'/2' ]exp[iso(w +w') 2/] . (A7)

This function exhibits exponential scaling factors, a de-
caying Gaussian envelope in ~ and ~', and oscillations at
the sum frequency

67~ =CO]+CO~ . (A8)

APPENDIX 8: FIELD TRANSFORMATIONS
OF THE MACH-ZKHNDER INTERFEROMETER

The transmission and reflection coefficients of the loss-
less Mach-Zehnder interferometer (Fig. 4) can be ob-
tained by using the following SU(2} unitary transforma-

where g(to, co'} is the joint Gaussian complex amplitude in
Eq. (29), which is given by

g(to, co')=(2mo )
' (1—g )

' exp[ —Q(co, to')/2]
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tions of the input boson operators d1(co) and a2(co) at the
angular frequency co

T1/2( ) R 1/2( ) Q (~)
—R ' (co) T' (cu) & (co)

(Bl}

exp[i P(cu)/2]
0

0
expl te(~)/2] 1 ( )

(B2)

Equation (Bl) represents the field transformation of a
lossless beam splitter with transmittance T(co) and
reflectance R (co)=1—T(e2), whereas Eq. (B2) represents
the effects of a phase shift P(co). The Mach-Zehnder in-
terferometer may be constructed by cascading a beam
splitter of transmittance T, (co), a linear path-length-
difFerence phase shift p(co) =corMz, where rMz= b,L/c, —a
mirror reAection, and another beam splitter of transmit-
tance T2(co). Using the corresponding matrices in suc-
cession, we find that this interferometer is represented by
the field transformation matrix

T1/2( ) R 1/2( )

—R 2 (co) T2 (ro)

exp(i corMz/2)

0 exp( cor Mz/2)

T' (co) R ' (co)

—R ' (co} T' (co)

c2(co) P(co)
—13'(~) cr'(~)

provided

a(co) = T,'/ (co)R 2 (cu)exp(icorMz/2)

+R ', (co)T2 (co)exp( i~&Mz/2),

P(co)=R1 (co)R2 (co)exp(icorMz/2)

—T', (co)T2 (co)exp( i curMz—/2) .

(B3)
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