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Continuum fields in quantum optics
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We formulate the quantum theory of optical wave propagation without recourse to cavity quanti-
zation. This approach avoids the introduction of a box-related mode spacing and enables us to use a
continuum frequency space description. We introduce a complete orthonormal set of operators that
can describe states of finite energy. The set is countable and the operators have all the usual proper-
ties of the single-mode frequency operators. With use of these operators a generalization of the
single-mode normal-ordering theorem is proved. We discuss the inclusion of material dispersion
and pulse propagation in an optical fiber. Finally, we consider the process of photodetection in free

space, concluding with a discussion of homodyne detection with both local oscillator and signal
fields pulsed.

I. INTRODUCTION

Calculations in quantum optics have traditionally
made use of a form of quantum electrodynamics in which
the field is assumed to be confined within an optical cavi-
ty. The field is quantized in terms of a complete set of
discrete eigenmodes of the cavity. When appropriate
boundary conditions are applied at the cavity walls, the
modes may have the form of a standing or running wave.
The results of calculations are often independent of the
size and shape of the assumed cavity, so that the discrete
mode theory can sometimes be used to interpret experi-
ments that are not contained within any real cavity.

There are, however, other experiments for which the

assumption of some notional cavity produces quite spuri-
ous dependence of calculated quantities on the size or
even the mere existence of the optical cavity. Thus, for
example, in nonlinear optical processes such as self-phase
modulation, the magnitudes of those effects by which the
quantum theory differs from a classical calculation de-
pend on the dimensions of the quantization cavity,
which has no real existence in the corresponding experi-
ments. Again, in the theory of photodetection of an opti-
cal field in a closed cavity, it is necessary to take account
of the depletion of the field caused by the destruction of
photons in the photodetection process itself. It is
awkward to apply this theory to photodetection in free
space and there has been some controversy over the
reconciliation of photodetection theories in these two en-
vironments.

Some optical experiments do, of course, employ a
confined region of space, often in the form of a Fabry-
Perot cavity, and for these it is appropriate to use the
discrete-mode formalism. However, the vast majority of
optical experiments have no identifiable cavity, but rather
the optical energy flows from sources through some kind
of interaction region to a set of detectors. The positions
of sources and detectors do not themselves define an opti-

cal cavity since they are part of a continuous unidirec-
tional flow of optical energy with no significant reflection
or recycling. The detection process does not deplete the
photon number but rather acts as a sink that balances the
optical energy production by the light sources. For sys-
tems of this nature, it is preferable to quantize the elec-
tromagnetic field in free space with a set of eigenmodes
characterized by a continuous wave vector. The aims of
this and a subsequent publication are to set up and apply
a continuous-mode quantum theory of the electromagnet-
ic field.

It is, of course, possible to formulate field theories in
three-dimensional infinite space, as is done in standard
relativistic quantum field theory. However, the arrange-
ment of a typical optical experiment makes it feasible to
introduce quite drastic simplifications while retaining a
realistic model of the physical system. Most importantly,
with a single light beam traveling in a straight line,
perhaps in an optical fiber, when transverse effects are
unimportant it is advantageous to take a quantization
axis of infinite extent parallel to the beam direction and
to retain a finite cross-sectional area A which is deter-
mined by the fiber mode or the geometry of the experi-
ment. Also, since most optical experiments use a
narrow-band source, in the sense that

B ((coo,

where coo is the central frequency of the bandwidth B,
then further sirnplifications of the theoretical model can
be made.

Previous authors '' have presented quantum treat-
ments of propagation in one-dimensional optical systems
where the formulation has been in terms of the spatial
evolution of temporal modes. Kennedy and wright' ex-
amined a quasi-one-dimensional treatment via the paraxi-
al wave equation. Caves and Crouch studied a one-
dimensional parametric oscillator using a traveling wave
formalism on a continuous frequency domain. In this pa-
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per we examine the properties of such a one-dimensional
formalism. We derive the necessary operators and states
which enable a complete description of transient phe-
nomena.

E +(z, t)=i f des
4~v.oc 3

]/2

II. FORMALISM and

z
X a (co)exp —i co t ——

c
(2.8)

A. Continuous-mode operators

We begin by establishing the correspondence between
the discrete modes of a one-dimensional cavity and the
continuous modes in the absence of a cavity. This en-
ables us to obtain expressions for the continuous-field
operators and for important quantities in a propagation
theory such as the Poynting vector and the photon flux.
Fourier transforms can then be used to obtain these
operators in time rather than frequency.

Consider an empty optical cavity of length L parallel
to the z axis. For plane waves that propagate parallel to
the axis, the eigenmodes are separated by wave vector

2%

L

and frequency

2&CAco-
L

(2. 1)

(2.2)

[a„a,]=5„. (2.3)

The mode spectrum becomes continuous as L~~ and
Aco~O, and in the limit it is convenient to transform to
continuous-mode operators according to

where periodic-boundary conditions have been used to
provide running waves. Different modes of the cavity, la-
beled by i and j, have frequencies given by different in-

teger multiples of the mode spacing (2.2). The field in the
cavity is quantized by associating independent quantum
harmonic oscillators with the different modes. Their
creation and destruction operators satisfy the usual in-

dependent boson commutation relations

B +(z, t)=i f des

1/2

4~&oc'W

Xa(co)exp ic—o t ——
c

(2.9)

where the field operators have been divided into their
creation and destruction operator parts,

E(z, t)=E +(z, t)+E (z, t),
B(z, t)=B +(z, t)+B (z, t),

(2.10)

S(z, t) = [E (z, t)B +(z, t)+B (z, t)E +(z, t)]

and the —superscript operators are the Hermitian conju-
gates of the + superscript operators given in (2.8) and
(2.9). Only the parts of the field that correspond to prop-
agation in the positive z direction are included in (2.8)
and (2.9), and the ranges of integration are from 0 to co

(see the Appendix for details of the relation to standard
three dimensional quantum field theory). The electric
and magnetic fields are, of course, vectors with two in-

dependent polarization directions for E in the xy plane
and B also lies in the plane at right angles to E. The elec-
tric and magnetic fields are generally taken to be oriented
in the x and y directions, respectively, and the field opera-
tors will be written as scalars, as in the above equations.

The energy content of a propagating field is con-
veniently expressed by its intensity, rather than the ener-

gy density used for standing wave fields in cavities. We
accordingly define a normally ordered Poynting vector
operator

a, ~(b,co)' a(ai) . (2.4)
—f des f dpi'(coai')' a (co)a(ai')2' A

The Kronecker and Dirac 5 functions are corresponding-
ly related by

5,i ~b,co 6(co —co' ), (2.5)

and the commutation relation (2.3) is converted to the
usual continuous-mode form

[a(co),a "(~')]=6(co—co') . (2.6)

Sums over discrete quantities are converted to integrals
over continuous frequency according to

f ddt
I

(2.7)

The continuous-mode quantized electric and magnetic
field operators are obtained from their discrete-mode
counterparts by this procedure, with the respective re-
sults

z
X exp i (co —ai') t ——

C

(2.1 1)

oriented parallel to the z axis. This somewhat complicat-
ed operator takes a very simple form upon integration
over all time, to give the total energy flowing through a
plane of constant z in the form

A f dt S(z, t)= f dcoficoa (co)a(co) . (2.12)

A f dz S(z, t)=c f dcoficua (co)a(co), (2.1 3)

The physical interpretation of this result is that over the
span of all time, all of the energy contained in the field
must pass each point on the z axis. Similarly, at a given
instant of time, the total-energy flow over the entire
length of the z axis is
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[&(t),a (t')]=5(t t') . — (2.15)

The narrow bandwidth approximation can be taken
further by removing the square-root frequencies from the
integrand of the Poynting operator (2.11). Then with coo

defined as for (1.1),

with a similarly transparent physical interpretation.
The range of integration over co in the above expres-

sions strictly extends only from 0 to ~, since the frequen-
cies are defined to be positive. However, the range can be
extended from —~ to ~ without significant errors when
the excitation bandwidths of the states of the radiation
field to which the operators are applied satisfy the in-
equality (1.1). The need to satisfy (1.1) should be kept in
mind when applying the theory that follows; for example,
narrow bandwidth approximations cannot be made in
formulating theories of the intrinsic lack of exact locali-
zation in the photodetection of individual photons. ' If
the range of integration is extended however, it is useful
to define Fourier transformed operators

a(t)=(2ir) ' f dc@a(cu)exp( ice—t) . (2.14)

Their commutation relation obtained with the use of (2.6}
1S

B. Noncontinuous basis functions

It will be convenient to express the operators a(cu),
defined on a one-dimensional continuous frequency space,
in terms of a linear superposition of operators associated
with an arbitrary noncontinuous set of basis func-
tions, "' which are not necessarily modes of the system.
Thus, let P;(co) be a complete orthonormal set of func-
tions on cu,

f den P; (co)PJ*(co)=5;J,

CO; N =
CO N

(2.22)

(2.23)

where i and j label the members of the denumerably
infinite set. For our purposes the set need only be com-
plete for square integrable functions and can be chosen to
take advantage of the features of any particular applica-
tion of the theory.

Each function in the orthonormal set is assigned a de-
struction operator defined by

c; = f des P;(co)d(co) . (2.24)

The inverse relation obtained with the use of (2.23) is

Z Z
AS(z, t)=fico,a t —— a

C C
(2.16)

a(co) =g P, (a~)c, (2.25)

f(t)=8 (t)a(t) .

The mean Aux is

(2.17)

The operator on the right-hand side of this equation
clearly represents the Aux of the light beam in units of
photons per unit time and it is convenient to define a Aux
operator

and the commutator obtained with the use of (2.6) and
(2.22} is

[c, , c, ]=5,, (2.26)

The operators defined by (2.24) therefore represent a set
of independent bosons. It is likewise straightforward to
obtain the commutators

f (t) = (f(t))— [ct(co),(c; )"]=nP;(co)(c; )"

[(c;)",a (co)]=nf;(co)(c;)"

(2.27)

(2.28}

2m f dc@ f des(a (co)a(co'))exp[i(cu co')t] . —

(2.18)

In the case of stationary light beams, the frequency corre-
lation function can be written in the form

between the continuous and noncontinuous operators.
The above relations can be converted to equivalent

time-dependent forms in cases where the narrow band-
width assumption is a valid approximation. Thus the
Fourier transformed basis functions defined by

(a (co)a(cu') ) =2m.h(co)h *(co')5(co—cu'), (2.19) P; (t ) =(2~) ' f dc@ $, (co)exp( i cut )—(2.29)

and the mean fiux is time independent with the value

(2.20)

where f (~)= lh(~) l' is the dimensionless mean fiux per
unit angular frequency bandwidth at angular frequency
~. In general, the total number of photons that pass each
point on the z axis over the whole of time is represented
by the dirnensionless operator

N= f dt a (t)a(t)= f dc@a (co)a(cu) . (2.21)

Note that N=(N) is infinite for any stationary light
beam, as would be expected for a state with a nonzero
Aux for all time.

c, = f dt P,*(t)a(t),

with the inverse relation

a(t)=g P, (t)c,

(2.30)

(2.31)

where a(t) is defined by (2.14).
The fiux operator (2.17) is expressed in terms of the

noncontinuous operators according to

f(t) =g g P,'(t)P, (t)c; ~, ,
/ j

satisfy relations identical to (2.22) and (2.23) but with cu

replaced by t The destruction .operator (2.24) then takes
the form
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and the total number operator (2.21) becomes

(2.33)

where a(co) is an arbitrary complex function of co. It is
not difficult to show with the use of the commutator (2.6)
that this definition can be written in the equivalent form

The number states of the noncontinuous operators are
defined in the usual way by operation on the vacuum
state {O&,

{ {a(cu) I ) =exp ——f ice~a(cu)~
1

2

{n, ) =(n, !) ' (c, ) '~0), n, =0, 1,2, . . . (2.34) + dc&7 cx co & cc) 0 (3.2)

and they have the standard properties

c, ~!n, &=n, '"{n,—1&,

c, {n, &=(n, +1)'"jn, +1& .

(2.35)

(2.36)

The {n, ) form a complete set of states on the space of the
operator c, , and the product states

(2.37)

form a complete set of the one-dimensional continuous
frequency space of co.

A state in which the component associated with the
operator c; is in a number state and all the other corn-

ponents are in their vacuum states is denoted
~ {0],n; ).

The properties of this state with respect to the continuous
operators are

where the vacuum state has the usual property

it(co) ~0) =0 . (3.3)

It can similarly be shown that the coherent state (3.1} is
an eigenstate of the destruction operator,

a(~)
~
{a(co)]) =a(~)l {a(~)]) . (3.4)

These relations can all be written equivalently in terms
of time-dependent functions. Thus with

a(t) =(2vr) 'c f deva(co)exp( idiot)—, (3.&)

the basic definition (3.1) can be written

{{a(~)):—{{a(t){)

=exp f dt[a(t)& (t) —a'(t)a(t}] {0), (3.6)

and

a(co)~ {OI,n; ) =P, (co)n, '
~ {OI,n; —1) (2.38) and the eigenvalue equation is

a(t){{a(t)) ) =a(t){{a(t)I ) . (3.7)

a(t)[{0{,n, ) =cp, (t)n, 'c2/ {oj,n, —1) . (2.39) The photon flux (2.18) associated with the continuum
coherent state is

It follows from (2.17) and (2.18) that the mean photon
flux is f (t) = ( {a(t) I {f(t)I {a(t)j) = {a(t){' (3.8)

f (t) = {P;(t) n, . (2.40)

and the total number of photons is, therefore, well
defined, as would be expected. More generally, the state

~ {n, ] ) in which all the noncontinuous components are in

number states satisfies the eigenvalue equation

(2.42)

III. SPECIFIC STATES OF THE FIELD

A. Coherent states

Continuum coherent states
~ {a(cu) ) ) are generated

from the vacuum state ~0& by a generalization of the usu-
al displacement operator,

~ {a(co) { & =exp f dao[a(co)a (co) —a*(cu)a(co)] ~0),

The noncontinuous number state is not an eigenstate of
the flux operator f(t) and the time-dependent flux ac-
cordingly has a nonzero variance. However, the number
operator (2.33) has the eigenvalue equation

(2.41)

a(co) =(2mF)' 'exp(i 8)5(co coo), —

a(t)=F' exp( i a)ot +i 8}, —
(3.10)

(3.1 1)

where F is the time-independent mean flux of photons per
unit time, 0 is its phase, and ~0 is its frequency. The state
represented by (3.10) has stationary statistics and is a cw
light beam so that, as mentioned previously, the total
number of photons is, of course, infinite.

The general coherent state (3.1) or (3.6) is readily ex-
pressed in terms of the noncontinuous set by means of
(2.25). The exponent in the displacement operator from
(3.1) thus takes the form

f dc@[a(co)a (co) —a*(co)a(co)]=+(y,c, —y,*c,},

and the mean total number of photons from (2.21) is

N=(X) = f dtla(t) = f deal!a(c0)~ . (3.9)

It is sometimes the case that an experiment is per-
formed with the light beam from a single-mode laser
whose bandwidth is much smaller than that of any other
components of the optical system. Such a "single-mode"
coherent light beam can be represented by the above
theory with complex functions



4106 BLOW, LOUDON, PHOENIX, AND SHEPHERD 42

where

y, = f des a(co)Q,*(co) . (3.13)

(3.14)

In view of the independence of different noncontinuous
operators expressed by (2.26), the general coherent state
(3.1) or (3.6) becomes

l
[a(~) l

&—:
l [a(t) l &

= Q exp(y, c, —y,
*

c, )l0&

izable function g(co) to construct a complete set P, (co) of
orthonormal basis functions of which g(co) is a member.
This can be seen by considering the functions co"g(co) and
using a Gram-Schmidt orthogonalization procedure to
construct the set. ' For example, if ((co) is a Gaussian
pulse the orthonorrnal set is the set of harmonic oscillator
wave functions. The number states ln (g) & then become
equivalent to one of the sets of number states

l n, & associ-
ated with the appropriate noncontinuous basis function,
and the various results given in Sec. II B apply.

c, ly, &
=y, ly, & . (3.15)

The eigenvalue a(co) of the continuum operator a(co) is
expressed in terms of the individual noncontinuous con-
tributions in accordance with the inverse of (3.13),

where the ly, & are coherent states associated with the
operators c, . These have all the usual properties of
Glauber coherent states, including the eigenvalue relation

C. Noise

White noise is represented by a correlation function
(2.19) in which the mean fiux f (co) per unit angular fre-
quency bandwidth is a constant, fo say, so that

(a t(co)&(co'}& =2m fo5(co —co') (3.25)

and the corresponding time-dependent correlation func-
tion is

a(~)=g P, (co)y, , (3.16) (3.26)

and the mean total number from (2.33) or (3.9) breaks
down into individual contributions as

(3.17)

The mean Aux f (t) and the mean total number N are
both infinite. If the noise is restricted to an angular fre-
quency bandwidth B, the time-independent mean flux is

I' =Bfo . (3.27}

The variance of the total photon number is

(bN) =N . (3.18)

A Lorentzian noise spectrum is represented by a corre-
lation function (2.19) in which

B. Number states (cdo co) +y
(3.28)

Define an operator

A(g)= f dcog'(co)a(co), (3.19)

The time-dependent correlation function in this case is

(a (t)a(t') & =F exp[ice (to—t') —ylt —t'l] . (3.29)

where g(co) is an arbitrary normalized complex function
with

The total number N is again infinite.

cfco co = 1

The operator so defined has a commutator

[A(g), A (()]=1

(3.20)

(3.21)

D. Squeezed states

Continuum squeezed vacuum states
l [ ri(co ) ] & can be

generated from the vacuum by a generalization of the
usual discrete multimode squeezing operator,

and it can be used to construct number states in the usual
way,

(3.22)

This generalized number state can be expressed as a su-
perposition of the number states

l n, & of the noncontinu-
ous basis set discussed in Sec. II B. Thus with the use of
(2.25),

l [r)(co) l & =5([q(~)l ) 0&

=exp f dco[r)*(co)a(co)a(2Q —co)

—g(co)a (co)a (20 —co)]

(3.30)

A(g)=g g; c, (3.23)

where

g,
= f dco g(~)P,*(~) . (3.24)

Indeed, it is, in general, possible for an arbitrary normal-

where q(co) is an arbitrary dimensionless complex func-
tion of cu. The state given by (3.30) represents a field in
which pairs of continuum modes are correlated about
some central frequency A. The continuum creation and
destruction operators transform under the continuum
squeezing operator as follows:
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Q(co)~cosh[r(co)]8(co) —e'z' 'sinh[r(co)]cI (2Q —co),

(3.31}d(2Q —co) ~cosh[r (co)]a(2Q —co)

—e'r' 'sinh[r (co)]c} (co),
where we have written the squeezing parameter i)(co}as

i)(co)=r(co)exp[i'(co)] . (3.32)

F= f dcosinh [r(co)] .
1

2' (3.34)

The state represented by (3.30) is a stationary light beam.
The transformation of the continuum squeezing opera-

tor given in (3.30) to the noncontinuous basis set proceeds
in a similar fashion to that already described in Sec. III A
for the transformation of continuum coherent states. Us-
ing (2.25) we find that the continuum squeezing operator
eV( [ il(co) ) ) can be written in the noncontinuous basis as

4( t ri(co) }) =exp g +[1,'J (Q )c,c, I,, (Q—)c; c, ]
j

(3.35)

The frequency correlation function (2.19) can now be
easily calculated with the help of these transformations
and we find

( & (co)&(co') ) =exp t i[y(co') —y(co)]]

Xsinh[r (co)]sinh[r (co') ]5(co—co') (3.33)

with the time-independent mean flux

The pairwise correlations are retained upon transforma-
tion to the noncontinuous basis; the matrix elements
K„(Q}containing the relevant information.

The continuum squeezing operator considered above
correlates field modes around a central frequency A. In
practice there will exist a distribution of such frequencies
so that each mode is correlated with infinitely many
modes. The squeezing operator in this case can be gen-
eralized to

I( [ri(co)] ) =exp f f dco dco'[i)" ( co, co') a( co) ct( co')

—ri(co, co')a (co)& (co')]

(3.40)

This operator will, in general, produce a nonstationary
field from the vacuum and an example of such a field
state is considered in Sec. VI C where homodyne detec-
tion with pulsed fields is discussed.

IV. NORMAL-ORDERING THEOREM

It is often necessary to evaluate expectation values of
operators of the form exp(O) where

0= drag co a co a co (4.1)

and g(co) is an arbitrary function. It is straightforward
with the use of the basic commutator (2.6) to prove the
relation

where we have written a(co)O "=[O+g (co)]"a(co),

and it follows that3.36
(4.2)

The matrix I with elements given by (3.36) now contains
the information concerning the pairwise correlation of
modes implicit in the form of the continuum squeezing
operator. Consider a unitary transformation labeled 7
which converts the matrix I to a diagonal matrix K. The
elements of K are, of course, the eigenvalues of the ma-
trix I . Applying this unitary transformation to the
squeezing operator (3.35) we find that S transforms ac-
cording to

+( [i}(co)]) g exp[K;;*(Q)d, d; —K,;(Q)d; d; ], (3.37)

where we have defined the new vector d=7c. It should
be noted that the noncontinuous basis functions are also
transformed under this procedure. This transformation
shows that, in principle, the continuous-mode squeezing
operator can be written as a product of independent
noncontinuous-mode squeezing operators. The individu-
al squeezing operators in (3.37) act on the noncontinuous
operators according to the prescription

a(co)exp(O ) =exp[O+g (co)]&(co) . (4.3)

Equivalent relations hold for the corresponding time-
dependent operators.

It is useful to have a normally ordered form of the
operator exp(O ) and we here prove the relation

where the colons denote normal ordering. The discrete
mode version of this normal-ordering theorem is, of
course, well known, '-' and we adopt a similar method of
proof in the continuous-mode case, by showing that arbi-
trary coherent state matrix elements of the two sides of
(4.4) are identical. Consider

( f a{co } { [ exp{0 }[ [ a( co }f ) = ( t y, { /
exp(O ) I [ y, f ),

(4.5)

exp f dcog(co)a (co)&(co)

:exp f dco(e —1)d (co}d(co): (4.4)

B, ~p, d, v, d;
where we have written the squeezing parameters as

p, =cosh[~K„(Q}~],

v, =exp[i arg[K;, (Q)]]sinh[~K, , (Q)~] .

{3.38)

(3.39) O=gg, ,c, c, ,
I& J

(4.6)

where the conversion to noncontinuous coherent states is
made in accordance with (3.14). The operator 0 is also
converted to noncontinuous form with the use of {2.25),
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where

(4.7)g, = d g

Let 0' be the unitary transformation that converts g to a
diagonal matrix G, and define the new vectors

d=Vlc and 5=y . (4.8)

The expressions (2.8) and (2.9) for the electric and mag-
netic field operators need to be modified in the presence
of a dielectric, where the expression for the energy densi-
ty involves the displacement field D, and the relation be-
tween 8 and E involves the refractive index. ' The
Poynting vector S(z, t) defined in (2.11) satisfies an equa-
tion of continuity

The matrix element (4.5) thus becomes

Q(5, lexp[G„d,'d, ]l5, )
S(z, t}=——U(z, t),

Bz Bt
(5.4)

= g(&; l:exp(e "—1)d,'d, :l&, ), (4.9)
I

where the standard discrete normal-ordering theorem'
can be used since the unitary transformation ensures that
the d, operators satisfy independent boson commutation
relations and the lfi, ) are coherent states with respect to
these operators. Use of the inverse unitary transforma-
tion together with the orthogonality property (2.23) and
the definition (4.7) now converts (4.9) to the coherent
state

l Ict(co) I ) matrix element of the right-hand side of
(4.4). The validity of the normal-ordering theorem (4.4)
is thus established.

V. MATERIAL DISPERSION

where

(5.5)

The normalization of the field operators is fixed by insist-
ing that the normally ordered energy density operator
U(z, t) should satisfy the requirement

A f dz U(z, t)= f daiAa~a (co)a(cu) . (5.6)

The continuous-mode quantized field operators then take
the forms

A. Field quantization in a dielectric

Consider the fields in a lossless dielectric material with
real dielectric function e(co) and refractive index n (co) re-
lated by

' 1/2

n (co)z
X a ( co )exp —i co t—

Ac0E (z t) =i des
4rreoc An (co)

(5.7)

6( co ) = n ( co ) (5.1)
and

CO C
vF(m) =—=

k n (co)

and group velocity va(co) defined by

1 Bk r}[con (cu) /c]
vG(co) Bco Ba~

(5.2)

(5.3)

It is a consequence of general causality requirements'
that a dielectric function whose value differs from unity
for some range of frequencies cannot be real for all fre-
quencies. The assumption made here is that the imagi-
nary part of e(co) is negligible over the narrow band of
frequencies to which the present theory is restricted. The
optical excitations within this bandwidth have
frequency-dependent phase velocity

1/2
irtco n (co)

477E,pC c4

X &(ai)exp ice t ——n (co)z

C
(5.8)

where the total operators are still given by (2.10), the po-
larization directions are as described after this equation,
and only the positive-z propagation parts (co) 0) are in-
cluded (see the Appendix for further details). The expres-
sion (5.7) and (5.8) differ from quantized field results re-
cently derived.

The Poynting vector operator defined in the first line of
(2.11) now takes the form

S(z, t)= f da~ f dry'
4m. 3

I

n (co)n(ai')

' 1/2

[n ( o)+ tn (co') ]a (co)a (co')exp i (co ro' }t i—[con (to) co'n (co')]———
c

(5.9)

A f dtS(z, t)= f dcoAcoa (cu)a(co) . (5.10)

The Poynting vector operator is substantially more com-
plicated than in a vacuum, but it has appealing properties
upon integration. Thus the total energy flowing through
a plane of constant z over all time is

This is unchanged from (2.12) and it retains the physical
significance that all of the energy contained in the field

must, in the fullness of time, pass each point on the z axis.
Similarly, the total-energy flow over the entire length of
the z axis at a given instant of time is

A f dz S(z, t)= f dcofico vG(m)a (co)a(cu) . (5.11)
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The contribution of each frequency component to the
flow is now correctly weighted by the appropriate group
velocity, instead of the uniform velocity c that appears in
the free-space result (2.13).

B. Pulse propagation

In the preceding section expressions (5.7) and (5.8) de-
scribe the propagation in a linear dispersive medium of
the electric and magnetic field operators, respectively. In
this section we adopt an alternative approach where we
start with the partial differential equation obtained by ex-
panding the propagation constant to second order in fre-
quency. The two treatments are equivalent to this order
of approximation when the narrow-bandwidth assump-
tion is taken. Representing (to within a constant factor)
the slowly varying field envelope by the operator a(z, t)
and assuming a narrow bandwidth then it is easily shown
that the equation of motion for the field envelope in a
frame moving with the group velocity can be written as

i a(z, t)+ a(z, t)=0,. a u- a'
9z 2

(5.12)

where k" is the second derivative, with respect to fre-
quency, of the propagation constant, evaluated at the
central frequency. The solution can be obtained by
Fourier transformation and we find that

1

a(z, co) =a(O, co)exp ——k "co'z (5.13)

—a*(co)a(z, co)] IO)

(5.14)

We therefore find, using (5.13) in the above expression,
that the propagated field state remains a coherent state
with a z-dependent amplitude given by

r

E

a(z, co) =a(co)exp —k "co z
2

(5. 1 5)

The spectral intensity profile ~a(z, co)~ is unchanged on
propagation, but the temporal intensity profile broadens.
As expected, the propagation of a continuum coherent
state in a linear dispersive medium reproduces the classi-
cal result.

The solution for the propagation of a continuum
squeezed vacuum state, as given by (3.30), shows that the
propagated field state remains a squeezed state but with a
z-dependent squeezing parameter given by

q(z, co)=q(co)exp[ik "z[0'+(0—co) ]) . (5.16)

If we now specialize to the case of a discrete two-mode
squeezed vacuum state we find the dispersion does not
affect the magnitude of the squeezing but rotates the er-

Let us assume, initially, that our input pulse is a continu-
um coherent state with a temporal intensity profile given
by ~a(t)

~

. In frequency space the propagated field state
1s

~ [g(z, co) ) ) =exp j dco[cc(co)a (z, co)

ror contour in the phase plane through an angle 0 given
by

0=k "($1—co)'z/2 . (5.17)

The treatment of this problem in the noncontinuous basis
proceeds from the replacement

a(z, t)=gP, (z, t)c, . (5.18)

The advantage of this treatment is that the functional
dependence on z and t is contained in the c-number non-
continuous basis functions rather than the operators as is
(5.12), for example. The propagation equation (5.12) now
yields the following c-number differential equation for the
noncontinuous basis functions,

. c) k" c}
i P, (z,t)+, P, (z, t) =0 .Bz' 2

(5.19)

The solution is obtained, as before, by Fourier transfor-
mation and the frequency space solution is given by

E

P (z, co) =P (O, co)exp ——k "co z (5.20)

A state in which the component associated with the
operator c„, is in a coherent state and all the other com-
ponents are in the vacuum is denoted by ~ (0],y,„). A
classical input with a normalized temporal intensity
profile of

~ $,„(z,t) ~

can be modeled by such a state. Us-

ing the relation

&1„, lOl

we find that the mean photon flux f (z, t) is given by

f (z, t) = &a (z, t)a(z, t)) =
~&,„(z,t)~'~y„,

~

(5.21)

(5.22)

The temporal intensity profile is broadened in accordance
with (5.20). Note that here the coherent state amplitude

y,„determines the peak intensity of the pulse

VI. PHOTODETECTION THEORY

A. Direct detection

M=J '
dta (t)a(t)= J dt f(t).

T j (6.1)

Here ~ is the start time of the measurements, the detector
is placed at z =0, the entire cross section 3 of the light
beam is assumed to be detected, and the Poynting opera-
tor (2.16) has been divided by A'coo so that M represents
the number of photons that arrive at the detector during

Consider an arrangement in which an optical signal
falls directly on to an infinitely fast photodetector (in
practice, this requires a detector response time much
shorter than the characteristic fluctuation time of the op-
tical signal). The photocurrent operator is proportional
to Poynting's vector, which can be taken in the form
(2.16) for a narrow bandwidth excitation. The results of
sets of measurements in which the photocurrent is in-
tegrated for periods T can be predicted by the use of an
operator
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M =M .+M (6.2)

where the colons again denote normal ordering.
In practice detectors respond with a quantum

efficiency of less than unity and there may be some mode
mismatch between the detector and the system area A.
These effects can be modeled by introducing an effective
quantum efficiency q, where 0(q ~ 1 is the probability
that a photon is indeed detected and thus registered as a
photocount. It can be inserted in the above theory by
means of the replacement'

a(t) rt'" a(t)+i (1—g)'" v(t), (6.3)

where v(t) represents a vacuum-state mode that is intro-
duced to preserve the commutator (2.15). Equivalently,
the effective quantum efficiency enters as a factor of g
that must be attached to M in expectation values ex-
pressed in normally ordered form. Thus

&~rid and M ~rt:9:+rtM . (6.4)

The mean and the variance of the photocount obtained
by this procedure are, respectively,

the integration time. It is easily shown with the use of
(2.15) that

The statistical properties of a field are conveniently
characterized by Mandel's Q parameter

Q =[((bM) ) —(M)]/(M), (6.7)

which has the value 0 for a Poisson distribution. The
analogous detected parameter is

QD =[(bm )
—(m )]/(m ) =riQ . (6.8)

These parameters are readily evaluated for the various
field excitations treated in Sec. III. Thus for the continu-
um coherent state defined in (3.6), use of the property
(3.7) gives

and

&m &=g f 'dtla(t)l' (6.9)

QD =0 (6.10)

corresponding to the usual Poisson statistics of coherent
light. Similarly for the continuum number state defined

by (3.22), use of the property analogous to (2.38) gives

(m ) =rin(g) f '
dtlg(t)l' (6.1 1)

T

and

and

(m ) =q(M)

(bm)'=g ((AM) &+g(1 —g)(M),

(6.5)

(6.6)

(6.12)

corresponding to sub-Poissonian statistics. Finally, for
the chaotic light described by (3.29),

where the angular brackets on the right denote
quantum-mechanical expectation values with respect to
the continuous-mode excitation.

(m ) =rtFT . (6.13)

The photocount variance is evaluated with use of the fac-
torization property for chaotic light,

(6.14)

and the resulting Q parameter is

QD =elF[exp( 2y T) —1+2@—T]/2y T,

corresponding to super-Poissonian statistics.

B. Homodyne detection

(6.15)

where the commutator (2.15) is satisfied by both the in-
dependent local oscillator and signal operators.

The effective quantum efficiencies, assumed to be the
same for the two detectors are introduced by transforma-
tions analogous to (6.3), and they lead to the replace-
ments

O~gO (6.18)

Consider a balanced homodyne detector in which the
light beam of interest is superposed on a local oscillator
by combining them at a 50-50 beam splitter. The mea-
sured quantity is the difference in the photocurrents of
two detectors placed in the output arms of the beam spli-
tter, and it can be represented by the operator'

0 =i f dt[a (t)aL(t) —a t (t)a(t)], (6.16)

where a L and aI are the continuum creation and de-
struction operators of the local oscillator field and 8 and
a correspondingly for the signal field. The relation analo-
gous to (6.2) is

0 =:0:+f dt[a L(t)a~(t)+a (t)a(t)], (6.17)
T

and

0~ q~:0~:+ri f dt[a L(t)aL(t)+a (t)a(t)] .
j

(6.19)
The mean and the variance of the difference photocount
are, respectively,

(m &=g&0& (6.20)

and

(bm )'=ri'((bO)')+q(1 q) f dt( ttL(t)t—tL(t)
T

+a' (t)1(t)) .

(6.21)
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a~(t) =(FL )' exp( it—sot+i 0~ ), (6.22)

similar to (3.11), with a flux FL. No assumptions are
made about the nature of the signal light, except that it
incorporates a coherentlike amplitude variation described
by

Note that the detection noise represented by the integral
term involves the sum of the two beam fluxes despite the
differencing in the detection process.

The above results apply for the arbitrary signal and lo-
cal oscillator. The local oscillator is now assumed to be a
single mode coherent light beam represented by a com-
plex amplitude

0=(F, )'" f '+'dt's(X, t)
7

where

(6.25)

X(X,t)=a (t)exp(iX ic—u„t)

+a(t)exp( iX—+i coot ) (6.26)

is the quadrature operator' of the signal beam for phase
angle

the various expectation values, the measurement operator
0 from (6.16) can be written in the form

(a(t) & =[f,(t)]' 'exp( i~ot
—+i 0), (6.23)

7Ty= —+0L (6.27)

f, (t) «FL . (6.24)

where the coherent component of the flux is much small-
er than the local oscillator flux,

(6.28)

The mean and the variance of the difference photocount
obtained with the use of (6.19)—(6.21) are, respectively,

( m &
= t)(F, )

'" f +
dt (X(X,t) &

7

If only the terms of highest order in FL are retained in and

(bm)'=g'FL f dt f dt'(:X(X, t), X(X,t'):&+riFLT, (6.29)

where the short-hand notation

(6.30)

be such as to squeeze one member of the input signal
operators and to leave the others unchanged so that we
have

(bm }'=r)FLT . (6.31)

has been used and the inequality (6.24) has been assumed.
The integral contribution to the variance (6.29) van-

ishes for the continuum vacuum state and for a coherent
state signal where (3.7) holds, and consequently

~p PCp+ Vg p,

d, =c, , i)0.
The initial state is defined by

I[a I,o&=I}a )&lo&

(6.33)

(6.34)

The continuum state shows squeezing if its photocount
variance is smaller than the vacuum state value for some
phase angles g. The squeezing criterion is, therefore,

f dt f dt'(:X(X, t},X(X,t'):& &0
7 7

with respect to homodyne detection with integration time
T and local oscillator phase OL =g —~/2.

C. Homodyne detection with pulsed fields

The results of the preceding section apply to hornodyne
detection with a stationary, single-mode, local oscillator
field. For homodyne detection of pulsed signals it is ad-
vantageous to use a pulsed local oscillator. Accordingly,
we now consider the homodyne detection of a pulsed sig-
nal, described by the noncontinuous basis function $0(t),
with a pulsed local oscillator described by PL(t), where
the local oscillator field is in a continuum coherent state
as described in Sec. III A. The signal field is assumed to
be described by a set of noncontinuous operators d; at the
output of a nonlinear system and the signal field at the in-
put to the system is described by a similar set of opera-
tors c, . The action of the nonlinear system is defined to

which would give a squeezed vacuum state after the
transformation (6.33). The input coherent local oscillator
field can be expressed as

ct, (t) =(N„)'"-exp(t 8, )P, (t), (6.35)

where PL is a normalized function which gives the com-
plex local oscillator pulse shape, XL is the mean total
number of photons in the pulse, and OL is the externally
controlled local oscillator phase. We also define the com-
plex overlap integral of the signal and local oscillator
pulses

I exp(iO„)= f dt Po(t)gt (t) .
J

(6.36)

The calculation of the variance of the measured signal us-
ing (6.17) and (6.33}—(6.36) proceeds by expanding the
signal continuum operators in the discrete basis. The
problem for the signal field reduces to calculating expec-
tation values of operators quadratic in d, . Since the input
field is a vacuum state only the diagonal parts of these ex-
pectation values contribute and these are easily calculat-
ed using (6.35), (2.35), and (2.36). We then obtain the fol-
lowing expression for the variance of the measured signal:
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( O ' ) =f"'«[&, ly, (t)l'+ lvl'ly, (t)l']
j

+&~I'[ I@I'+ lvl' —
I v exp[2i(i)g —|)r)1

—p*v*exp[ —2i(6)L —Or ) ]—1 J . (6.37)

i@i'+ fvi' pv p—'v' —(1 (6.38)

is retained but the magnitude of the effect is reduced by a
factor I due to the overlap integral (6.36). We can also
conclude that optimum detected squeezing will occur
when I takes its maximum value which occurs when

Note that we could have included a term in (6.37) to
represent the response function of the detector but this
can easily be included by using an effective local oscilla-
tor field. We can see that the phase 8& of the overlap in-

tegral simply redefines the relative phase between signal
and local oscillator at which maximum squeezing will
occur. The usual squeezing criterion, in the limit of large
NL,

$L(t) "p, (t) (6.39)

and the result is

X [a (t)aL(t) a~(t—)a(t)], (6.40)

within the detection window and zero outside.
Remembering the property that any complete orthonor-
mal set can be constructed from an arbitrary normaliz-
able function, we can see that (6.39) establishes the gen-
eral result that the optimum condition for squeezing is
that the signal and local oscillator pulses have the same
shape and coherent phase structure within the detection
window. The constant of proportionality is unity when
the detection window encompasses the signal pulse. This
is independent of the generation process and similar con-
clusions have been drawn for pulsed squeezing in a
parametic oscillator.

Finally we consider the squeezing spectrum for a
pulsed signal which can be obtained from an operator
similar to (6.16)

O(co, r) =i f dt exp(idiot)

(0(~)o( —~) ) = f «[&L I yL(t) I'+ lvl'lko(t) I']
T

+NL I (co)[ ~p~ + ~v~
—pvexp[i(28t —

tP+
—tit )]—p*v*exp[ i (29L —f+ —P )—]—I ), (6.41)

where the frequency-dependent overlap integral is defined
as

I (co)exp[i&+(co)]= f dt exp(+inst)&0(t)gt (t) .

(6.42)

The squeezing spectrum is thus proportional to the
modulus squared of the overlap integral which gives a
simple interpretation in two limits, we will also assume
that the optimum local oscillator pulse (6.39) has been
used. First, when the signal is entirely within the range
of detection the squeezing spectrum is given by the
Fourier transform of the signal intensity. Second, when
the integration time is small compared with the signal
duration the overlap integral becomes

I (co)exp[i/+(co)]= ~$0(r)~ f dt exp(icot) (6.43)
7

which is the simple adiabatic turning on and turning off
of the source. Thus, (6.41) contains the squeezing spec-
trum from the adiabatic regime where a quasi-cw signal is
observed to the averaging regime where the properties of
a pulse are observed as a whole.

VII. CONCLUSIONS

The formalism presented in this paper is suited to the
treatment of quantum optical systems where the propaga-
tion effectively takes place in one dimension, as in an op-
tical fiber, with no restrictions on the optical length of

the one-dimensional axis. The notional optical cavity
traditionally used in the theories of such systems is thus
dispensed with, and the allowed optical wave vectors
form a continuum. The traditional field energy is re-
placed by Poynting's vector, which remains well defined
for stationary field excitations whose total-energy content
must be infinite.

Stationary field excitations, such as Lorentzian noise or
the squeezed vacuum state, are conveniently handled by
the continuum formalism of Sec. II A, but pulsed or tran-
sient excitations are more readily treated in terms of the
noncontinuous basis functions of Sec. II B. Thus, for ex-

ample, the amplitude spectrum of a pulse of a number
state or coherent state light can generally be taken as one
member of a complete set of noncontinuous basis func-
tions, with much reduction in the complexity of subse-
quent calculations. The discrete nature of the noncon-
tinuous basis function also simplifies the derivations of
certain general properties of the infinite one-dimensional
field theory, as illustrated by the proof of the normal-
ordering theorem in Sec. IV.

The usefulness of the formalism has been illustrated by
application to some basic problems in quantum optics.
Thus in Sec. VI it has been shown that photodetection
theory is more straightforwardly treated in the continu-
um formalism, with none of the difficulties sometimes en-
countered in theories that are quantized in a cavity of
finite length. The homodyne detection of pulsed signals
is also conveniently handled in terms of the noncontinu-
ous basis functions. The calculation presented in Sec.



42 CONTINUUM FIELDS IN QUANTUM OPTICS 4113

VIC demonstrates the manner in which the quantum-
optical operator properties of the signal-local oscillator
superposition are separated from the c-number pulse-
shape overlap integral. In a subsequent publication' we
sha11 apply the methods developed here to the theory of
quantum effects in self-phase modulation, where spurious
length dependences can appear in calculations that em-

ploy quantization in a finite cavity.
Finally, it should be emphasized that the continuum

approach applies to the majority of optical experiments,
where the overall flow of electromagnetic energy through
the apparatus is not subject to longitudinal discrete-mode
structure, and that the removal of the notional cavity is
accomplished without any increase in the mathematical
complexity of the formalism.

5 (k —k')~ 5(k —k'),
(2ir )

~ 1/2

a(k, A. )~ a(k, A. ) .
2~

The field operator (A2) thus becomes
' 1/2

A+(z, t)= f dk

(A8)

X g e(k, l. )&(k, A. }
1=1,2

Only field excitations with k =k =0 are used in the pa-
per. The summation in (A6) can, therefore, be removed,
and putting k =k, the other required conversions are
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X exp[ icI k
I

—t +ikz],
and the commutator (A5) becomes

[a(k, A, ), a (k', A. ')]=5&&5(k —k') .

(A9)

(A10)

APPENDIX

A(r, t)= A+(r, t)+ A (r, t)
where

' 1/2

(Al)

A+(r, t)= f dk
16~'eoc

I k I

X g e(k, i, )8(k, A, )

A, =1,2

We show in this appendix how the quantized field ex-
pressions (2.8} and (2.9) are related to the standard ex-
pressions of quantum field theory. The vector potential
operator in the Coulomb gauge derived by Bjorken and
Drell ' can be written

The field operators (2.8) and (2.9), with ai=cIkI, are ob-

tained from (A9) in accordance with

(Al 1)

A+(r, t)= f dk
Siva(co)

16' eoccon (ai)

where in (2.8) and (2.9) we have chosen the polarization
vector to be parallel to the x axis and we have restricted
the propagation to the positive z direction.

The above expressions are valid in free space. In the
presence of a dielectric with frequency-dependent refrac-
tive index n (ai), the vector potential operator (A2) is re-
placed by

Xexp( ic IkIt
—+ik r) (A2)

X g e(k, A, )a(k, k)
A, =1,2

e(k, A. ) k=0, (A3)

and A (r, t) is the Hermitian conjugate of this expres-
sion. Here k denotes the two transverse polarizations,
with

X exp( i cot +i k r ), —

where the group velocity is defined in (5.3) and

co=cIkI/n(co) .

(A12)

(A13)

the unit polarization vectors satisfy

e(k, A, ) e(k, A.')=5ii

e(k, A. ).e( —k, A.')=( —1) 5i„,
and the creation-destruction operator commutator is

[a(k, A, ), a (k', A. ')]=5ii 5 (k —k') .

(A4)

(A5)

This expression is consistent with field operators for
dispersive dielectric media derived previously. ' The
conversion to one dimension proceeds in accordance with
(A6) —(A8), and the resulting replacement for (A9) is

' 1/2
irivG(co)

A +(z t)= dk
4~eoceon (co)A

X g e(kA)a(kl)
The fields considered in the present paper are defined

in a spatial region of infinite extent parallel to the z axis
but of finite cross-sectional area A in the xy plane. The x
and y wave-vector components are thus restricted to
discrete values and the three-dimensional integral in (A2)
is converted according to

1=1,2

X exp( i cot +ikz) .— (A14)

dk ~der/v~(e)), a(k, A, ) vG (co)a(co) (A15)

When the wave-vector variable is converted to frequency
in accordance with (5.2) so that

fdk- y fdk, .
x' y

(A6) and the polarization is again taken to be paralle1 to the x
axis, the fields (5.7) and (5.8) now follow from (Al 1).



4114 BLOW, LOUDON, PHOENIX, AND SHEPHERD

*Permanent address: Physics Department, Essex University,
Colchester, CO4 3SQ, United Kingdom.

K. J. Blow, R. Loudon, and S. J. D. Phoenix (unpublished).

B.R. Mollow, Phys. Rev. 168, 1896 (1968).
M. O. Scully and W. E. Lamb, Phys. Rev. 179, 368 (1969).

4T. J. Shepherd, Opt. Acta 28, 567 (1981).
~M. D. Srinivas and E. B.Davies, Opt. Acta 29, 981 (1981).
L. Mandel, Opt. Acta 28, 1447 (1981).

7M. D. Srinivas and E. B. Davies, Opt. Acta 29, 235 (1982).
SI. Abram, Phys. Rev. A 35, 4661 (1987).
9C. M. Caves and D. D. Crouch, J. Opt. Soc. Am. B 4, 1553

(1987).
T. A. B. Kennedy and E. M. Wright, Phys. Rev. A 38, 212
(1988).

"N. Imoto (unpublished).
' See, for example, E. R. Pike and S. Sarkar, Phys. Rev. A 35,

926 (1987), and earlier references therein.
' P. Kumar, O. Aytur, and J. Huang, Phys. Rev. Lett. 64, 1015

(1990).
'~p. M. Morse and H. Feshbach, Methods of Theoretical Physics

(McGraw-Hill, New York, 1953).
~sW. H. Louisell, Quantum Statistical Properties of Radiation

(Wiley, New York, 1973).
'6L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu

ous Media (Pergamon, Oxford, 1977).
' H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory TI-26,

78 (1980}.
' M. J. Co/lett, R. Loudon, and C. W. Gardiner, J. Mod. Opt.

34, 881 (1987).
' R. Loudon and P. L. Knight, J. Mod. Opt. 34, 709 (1987).
2oB. Yurke, P. Grangier, R. E. Slusher, and M, J. Potasek, Phys.

Rev. A 35, 3586 (1987).
2'J. D. Bjorken and S. D. Drell, Relatiuistic Quantum Fields

(McGraw-Hill, New York, 1965).
R. Loudon, Proc. Phys. Soc. 82, 393 (1963).

23P. D. Drummond (unpublished).


