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If three light pulses interact in a second-order nonlinear-optical process with a phase mismatch,

the pulses may acquire a significant phase modulation. This phase modulation leads to a

modification of the spectrum of the pulses and may offer the possibility of compressing the pulses.

In this paper we discuss the effects of the ratio of intensities of the interacting pulses and the

amount of phase mismatch on the phase modulation using analytical and numerical results. When

the phase mismatch is small, it turns out that the modulation is also strongly influenced by the ini-

tial phase difference between the fields. Finally, we study the combined effects of a phase mismatch

and a difference in group velocity on the spectrum and intensity profile of the interacting pulses.

I. INTRODUCTION

A very interesting aspect of nonlinear optics is that it
offers a way to modify the frequency spectrum and the
time profile of optical pulses. A standard technique to
modify the frequency of the light is the application of
second-order nonlinear-optical processes such as sum-

frequency generation' (second-harmonic generation) or
difference-frequency generation.

In order to shorten an optical pulse that is not phase
modulated, it is necessary to generate additional frequen-
cy components in the spectrum of the pulse. If these new
frequency components constitute a linear frequency
modulation (linear chirp) over the pulse, this modulation
can be compensated by a linear dispersive element and a
shortened optical pulse results.

A possible way to generate new frequency components
is the application of third-order nonlinear-optical pro-
cesses such as self-phase modulation (SPM),
induced-phase modulation (IPM), ' ' or cross-phase
modulation (XPM). " In all these processes, the re-
fractive index of the medium depends on the intensity of
the light. Because the intensity varies over the pulse, the
phase velocity varies over the pulse and the pulse ac-
quires a phase modulation while it propagates through
the nonlinear medium.

In SPM the phase modulation is caused by the intensi-

ty profile of the phase-modulated pulse itself, while in
IPM it is caused by the intensity profile of a second
copropagating pulse. In IPM the central frequency of the
phase-modulated pulse changes if the pulses have a cer-
tain delay or if the group velocities are different. XPM is
the result of the interference between SPM and some oth-
er nonlinear-optical process such as stimulated Raman
scattering or second-harmonic generation. It leads to a
phase modulation of both the input pulse and the pulse
generated by the nonlinear optical process.

A lot of literature deals with the phase modulation that
arises as a consequence of third-order nonlinear optical
processes. In contrast, very little is known about the
phase modulation due to second-order nonlinear-optical
processes.

A primary condition for the generation of a phase
modulation in second-order nonlinear-optica1 processes is
that the interaction takes place with a certain amount of
phase mismatch. In SPM, IPM, and XPM this is not a
necessary condition. In fact, these processes are usually
supposed to take place without phase mismatch and are
in that aspect simple processes.

The interaction between the electromagnetic fields in
second-order processes can be described by three coupled
differential equations. These can be solved analytically if
the group-velocity differences are negligible. In this
description, the amplitudes of the field and the phase
difference between the fields are expressed in Jacobi ellip-
tic functions. However, the evolution of the phases of
each of the fields individually can only be evaluated by
solving an incomplete Jacobi integral of the third kind,
which can only be evaluated numerically.

In this paper we discuss the phase modulation occur-
ring in second-order nonlinear-optical processes. In Sec.
II we discuss it under the assumption that the interacting
pulses have equal group velocities. Section II consists of
three subsections. In Sec. IIA we derive relations be-
tween the phases of the interacting fields. These relations
can be graphically depicted and may serve as a qualita-
tive explanation of the phase modulation discussed in
Secs. II B, II C, and III.

Sections IIB and IIC deal with a description of the
phase modulation in two limiting cases. In these cases it
is assumed that the phase and the amplitude of one of the
fields will not be affected by the interaction.

In Sec. III we use a modified Runge-Kutta method in
order to evaluate the phase modulation. This section is
divided into six subsections. Sections IIIA —IIIC are
connected with the cases of Sec. II, but no longer use the
assumption that one of the fields is unaffected by the in-
teraction. It turns out that the phases of all the fields get
modulated and that the modulation is very much depen-
dent on the amount of phase mismatch and the initial ra-
tio of intensities.

Section III D illustrates that if the interaction takes
place with a small phase mismatch, the modulation de-
pends on the initial phase difference between the fields.
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Subsections III E and III F deal with the combined effects
of phase mismatch and differences in group velocity of
the pulses. It turns out that these effects may induce a
change in the central frequency and the intensity profile
of the pulses.

In Sec. IV we evaluate how the phase modulation that
we have calculated in the Secs. II and III is influenced by
a change of the parameters of the interaction. We also
discuss the differences between the phase modulation
generated in second-order processes and the modulation
generated in third-order processes.

II. ANALYTICAL

1 0 ~11 ff+ —E, = E2 E3exp(ihkz),
Bz Usi Bt 2n, c

(2)

The description of the second-order nonlinear interac-
tion can be greatly simplified if the three interacting fields
are assumed to be monochromatic. This is a useful ap-
proximation if the spectral bandwidth of the pulses is
small compared to their central frequency. The electric
component of the three 8; (i = 1,2,3) fields propagating
along the z axis can be represented by a product of a field
amplitude and a plane wave

6';(z, t) =E;(z, t)exp[i(k;z co, t)],—

where E, is the complex amplitude, k, the wave vector,
and co, the angular frequency of field 6, .

The interaction results in an energy transfer between
the fields. Therefore the field amplitudes are expected to
change while they propagate through the nonlinear ma-
terial ~ This change in amplitude can be described by
three coupled differential equations. These equations are
derived from Maxwell's equations and can be simplified
to first-order differential equations if the slowly varying
amplitude approximation is used. This approximation is
valid if the change in amplitude of the fields is significant
only after the fields traveled over a distance much longer
than their wavelength. The following set of equations re-
sults:

8 1 1 8
Bz Uf Uf Bri

ea

2712C

Bz Uf Uf dpi 2tt2C

The value of g', z' is determined by the directions of polar-
ization of the fields and the nonzero elements of the
second-rank tensor y' '.

When the differences between the group velocities are
vanishing, definite relationships between the phases of the
complex amp1itudes and the phases of the differentials in
the complex amplitudes can be derived from the three
coupled equations. The following relations hold:

arg(dE, ) =——arg(E2)+arg(E& ), (8)

arg(dE2 ) = ——arg(Ei )+arg(E3 ), (9)

arg(dEi ) = —+arg(E, )+arg(E& ),

arg(dE~& ) =—+arg(E& ),
with arg(E, ) the phase of the complex number E, . The
differential in E3 consists of two contributions: one as a
result of the nonlinear interaction (dE3 ) and the other as
a result of the phase mismatch (dE( ). If there is no in-
teraction, dE„dE2, and dE3 vanish.

The phase difference between the differential in com-
plex amplitude and the complex amplitude itself deter-
mines whether the amplitude and phase at distance z and
time q will increase or decrease. If
~arg(dE; )

—arg(E, )~ & n /2, the amplitude of the complex
number E, will increase, in the case
~arg(dE;) —arg(E;)~ )n/2 it will d. ecrease. In the case
0 & [arg(dE, )

—arg(E, )] & n the phase of E, will increase;
in the case n&[arg(dE;) .—arg(E, )] &2' the phase will
decrease. It follows from Eqs. (8) and (9) that

a i a+ —E =
Bz U$ dt

l &+of E;E,exp(ihkz),
271 pC

(3)
[arg(dE, )

—arg(E; ) ]

() & 3Xeg+ —E3 = E,E2exp( i hkz), (4)—
Bz qf Bt 2n3c

=——arg(E, )
—arg(Ei)+arg(E3), i =1,2 .

(12)

with U,
~ the group velocity of field @,, n,. the refractive in-

dex of field @;,y', iri the effective nonlinear susceptibility,
and hk the phase mismatch (b k =k3 —k2 —k i ).

In order to simplify the interpretation and the numeri-
cal evaluation of these equations, the variable t is
transformed to i): rt= t —z /U f,E, (z, t)~E, (z, rt)
[i =1,2j and E (z, t3)exp(ihkz)~E&(z, g):

~ (2)'~]Yea
Bz '

2n&c

The amount of change in amplitude and phase not only
depends on parameters that are independent of g such as
the phase mismatch, the value of y', z, and the frequen-
cies, but also depends on the amplitudes and phases of
the E, themselves. This implies that the E, at different
time points q in the pulse can acquire different phases,
with the consequence that the phase over the pulse be-
comes modulated. This results in a modification of the
spectral bandwidth of the interacting pulses.

If the nonlinear optical process takes place leaving one
or two of the fields practically unchanged during the in-



PHASE MODULATION IN SECOND-ORDER NONLINEAR- . ~ .

teraction, the set of coupled equations can be solved rath-
er easily. In the following we will discuss two examples
of these processes. We will derive analytical expressions
for the phase modulation as a function of the interaction
length. The phase relations between the fields and the
differentials of the fields may serve as a qualitative ex-
planation for these expressions.

because of the relative weakness of signal and idler com-
pared to the pump and the amplitude of E3 is assumed to
be constant. The remaining two equations for E, and E2
can be easily solved. The solution depends on whether
the gain factor gp of the parametric amplification process
is larger or smaller than the phase mismatch Ak.

A. Parametric amplification

In this process an intense field at co3 (pump) amplifies
two very weak fields at co, and co& (signal and idler). The
interaction term in the equation for dE3 can be neglected

I

1 go) bk

If co, =co2 (and E, =Ez },and assuming that at z=O the
phase difFerence b,g=arg(E3) —arg(E, ) —arg(Ez) equals
—

m /2, the solution takes the following form:

2

gp hk
E, (z, )7)

= E, (0, g) cosh( —'gz)+ sinh( —'gz) + sinh( —,'gz)
2

g
2

2 ]/2

Xexp i arctan
—b, k sinh( —,'gz)

+ —,'i hkz
g cosh( —,'gz)+gosinh( —,'gz)

with go(ri)=co, y, tr' ~E3(ri)~ /n, n2c and g(ri)=[go(r))
—hk 2]'~~. In this equation the solution for E, (z, g) is
written as a complex number with an amplitude and a
phase. The amplitude of E, is assumed to remain con-
stant so dE3 is zero and the solution for E3(z, ri) becomes
trivial:

2- go=6k

When b, k is equal to go(ri) for a certain value of g,
g (g} equals zero and the terms exp( —

—,'gz) in the expres-

sion for the phase of E, (z, ri) can no longer be neglected.
In this special case the expression for E, (z, ri) becomes

E3(z, ri) =E (O3, g)exp(i b kz) . (14) lim E&(z, ri)= E, ( 0, ri)[(1 +g Oz+ —,'goz )]'
g~p

In the case gz)&1 the terms sinh( —,'gz) and cosh( —,gz)
can both be approximated with exp( —,'gz). The expression

for the phase of E, becomes

gpZ
X exp —,'ig pz +i arctan

2+gpZ
(17)

lim arg[E, (z, g ) ]= arctan
g2' —+ oc

—hk
g+gp

+ 2bkz+arg[E, (O, ri)] . (15)

—hk
arg[dE, (z, ri) ]= —arctan + —,

' hkz
g +gp

+ —+arg[E3 (0, g ) ]—arg[E
&
(0, ri ) ] .

(16)

In this limit the phase only depends on z via —,'hkz,
which implies that the phase modulation that is generat-
ed at the beginning of the process [when exp( —

—,'gz) can
not be neglected] will remain constant for the rest of the
process. It is clear that in this case the phase of E, which
is equal to 2 arg(E, ) has the same dependence on z as E3.
This implies that E, and E3 rotate through the complex
plane with a permanent phase difference equal to
vr/2+2arctan[ —bk/(g +go)] [Fig. 1(a)]. In this figure

dE3, E, , and dE, are also presented. The phase of dE,
equals [using Eq. (8)]

It follows from this expression that for large gpz the
amplitude of E, increases linearly with z. The amplitude
of dE, also grows linearly with z for large gpz because the
amplitude of E3 was assumed to be independent of z.
When z varies from 0 to 00, the phase of E, (z, ri) changes
from 0 to —~/4+ —,'goz+arg[E, (O, rl)] [Eq. (17)] and the

phase difference between dE, and E, changes from 0 to
n. /2 [Eqs. (12) and (17)], so the orientation of dE, with
respect to E, in the complex plane changes gradually
from parallel to perpendicular. The parallel part of dE,
that changes the amplitude of E& is independent of z for
large gpz and remains constant, while the perpendicular
part that changes the phase of E& increases linearly with
z.

In the limit of infinite z the phases of E] and E3 be-
come equal to each other [Fig. 1(b)] and E~ becomes
infinitely large. In reality E3 would deplete if z increases,
thus making the assumption that the amplitude of E3
does not change during the process no longer valid.

3- go(hk

If b, k is larger than go(ri) the amplification factor g (q)
becomes imaginary and the amplitude of E, will show an
oscillatory behavior. Replacing g(g) by ih (g) in Eq. (7)
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FIG. 1. Orientation of the field amplitudes and differentials in the field amplitudes in the complex plane. The vectors have an arbi-
trary length.

with h (rl)=[6k —gQ(g)]', the following expression
for the phase of E, (z, g) results:

—hk sin( —,
' hz)

arg[E, (z, rl )]= arctan
h cos —,'hz +gQsin —,'hz

+ —,'bkz+ rga[E, (O, g)] .

The phase of El shows a complicated oscillatory be-
havior. The phase difference between E, and E3 is no
longer constant for large z but changes as a function of z.
If Ak is positive, the phase of E, decreases with respect
to E3, when Ak is negative the phase of E, increases
compared to E3.

The phase difference does not accumulate constantly
with z. If Ak is positive, z has to increase with
(2'/h)+(2/h)arctan( —h/gQ) in order to decrease the
phase of E, from 0 to —m. /2 with respect to —,'bkz. To
decrease the phase further with respect to —,Ihkz from
—m /2 to —~, z has to increase an additional
—(2/h )arctan( —h /gQ ).

If gQ(q) approaches zero, which is the case in the
wings of the E3 pulse, (2/h)arctan( —h /gQ) approaches
—m/4k. In that case, the distance z needed for each of
the two decreases in phase equals n /b, k. When gQ(g) ap-

proaches Ak, which is most likely to happen in the center
of the E& pulse, h(g) approaches zero and the distance
needed for the first decrease becomes infinitely large. In
the same limit —(2/h)arctan( —h/gQ) approaches 2/gQ
( =2/b k), and the distance z needed for the first decrease
in phase is thus much larger than the one needed for the
second decrease in phase. The distances needed to de-
crease the phase further from —~ to —3m/2 and from
—3a/2 to 2n are exactly —equal to those of the first and
second decrease, respectively.

The difference in the rate of change in phase in the
phase intervals can easily be understood if the complex
amplitudes and the differentials in the complex amplitude
are plotted in the complex plane. It follows from Eq. (12)
that if El =E2 and Ak & 0, the accumulation is delayed if
—m/2 & [arg(E3) —arg(E, )] & vr/2, which is the case
during the first decrease [Figs. 1(a)—1(c), and accelerated
if vr/2& [arg{E3)—arg{E, )] & 3~/2, which is the case
during the second decrease [Figs. 1{d)and 1(e)].

The accumulated phase difference depends on g be-
cause h (g) depends on g. In the center of the pulse of
E3 gQ( I) ) has its maximum value and h ( g ) its minimum.
When we compare the rates of change in phase of E] in
the center and the wings of the E3 pulse, it can be con-
cluded that in the case 4k & 0, it takes a much longer in-
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teraction length in the center to decrease the phase of E,
from 0 to —m/2, with respect to —,'Akz, than in the wings.

For the second decrease from —vr/2 to —~ it is the other
way around, but the difference in distance is much small-
er than for the first decrease. The result is that E, ac-
quires a higher phase in the center of the E3 pulse than in

the wings. If Ak is negative, it takes a much longer in-

teraction length in the center than in the wings to in-

crease the phase from 0 to ~/2 with respect to —,'Akz, so
I

in that case E, acquires a lower phase in the center than
in the wings.

An expression for the frequency modulation of the E,
pulse can be derived by differentiating the expression for
the phase with respect to —g because the frequency is
defined as a negative quantity in Eq. (1). If we assume the
pump pulse to be a Gaussian in time
( ~Ei(il) ~

-exp[ —(4 In2)il /w ]), the following expres-
sion results:

( "2)'Igo( I) z —[1/h (71)]sin[h (rj)z]
b,vi(z, il) =

1 —[go(il)/bk ]cos[h(vp) z] +[go(rl)h(rj)/bk ]sin[h(vl)z]

bv, (z, g)=
(In2)ilgo(rl )

z
re'b k

(20)

If go/b, k ((1 and h (i)) )) 1 for all i) (which implies that
b, k should be large), the expression simplifies to

the pulse contains intervals in which the phase changes
rapidly as a function of z and intervals in which the phase
changes slowly as a function of z. This behavior leads to
peaks in the derivative of the phase of the pulse with
respect to g.

It follows from this expression that the frequency rnodu-

lation takes the form of a linear chirp if go(g) does not

vary too much with g, which is the case for the central
part of the E, pulse. " It also follows that the amount of
frequency modulation grows linearly with z and that the
sign depends on the sign of hk.

If go(i)) is not much smaller than hk, it follows from

Eq. (19) that there will be peaks in the frequency modula-

tion of the E~ pulse. These peaks are caused by the fact
that if go(t)) approaches b, k, the rate of change in phase
of E, is very dependent on the phase difference between

E, and E3. The consequence is that the time profile of
I

B. Second-harmonic generation

In this process a field at co3 is generated or amplified
with twice the frequency of an intense fundamental field
at cc), . If Ei does not change in amplitude or phase as a
function of z, the first two of the three coupled
differential equations can be neglected and the third can
be solved quite easily. In this evaluation we take E, ( ))i
and E&(O, i)) real and not phase modulated. Writing the
field E3 as a complex number, the following expression
results for the phase:

arg[E, (z, t) ) ]= arctan
[E3(O,i))+C,E, ( ))i]sin(Akz)

[E,(0, ))+iC,E, (i))]cos(bkz) C,E,(i))— (21)

with C3 =co&g',f /2n3c.
If Ak is positive, the phase of E3 increases from 0 to

7r/2 if z increases from 0 to (I/bk)arccos[C, E&(il)/
[E,(O, i))+C,E, (71)](. This distance can vary between 0
if E, (O, i))=0 and 7r/26k if E, (0, )) iis infinite. The dis-
tance that is needed to further increase the phase from
rr/2 to rr is equal to 7r/b, k —(I/Ak)arccos[C, E~(i))
/[E3(O, il)+C3E&(i))] ) and varies between ir/Ak in the
case when Ei(O, il) is zero and ~/26k when E,(0, )) iis

infinite, so this distance is always larger than the one
needed for the first increase in phase.

This difference in distance needed becomes understand-
able when the fields and the differentials in the fields are
plotted in the complex plane. The differential in E3 con-
sists of two contributions: dE3 due to the interaction and
dE 3 due to the phase mismatch. The orientation of dE 3

is such that it accelerates the first increase in phase due to
dE~~ [Fig. 1(c)] while it delays the second increase in

phase [Fig. 1(d)]. If E, ( )) twould be small compared to
E, (O, i)), dE', would be very small compared to dE~i and

E, (z, i)) and would have little effect on the rate of change
in phase. In order to increase the phase further to 3ir/2
[Fig. 1(e)] would take an additional distance of
~/hk —(1/hk)arccos( C,E, (il)/[Ei(0, i))+ C,E, (i))]].
This distance is exactly equal to the one needed to in-

crease the phase from ~/2 to ~. In order to increase the
phase from 37r/2 to 2' [Fig. 1(a)], the same distance is
needed as the one needed to increase the phase from 0 to
~/2.

The distances are determined by the argument of the
arccos function, which depends on the amplitudes of
E

&
( g ) and E,(0, g ). These amplitudes depend on g, so in

principle the argument of the arccos function can be a
function of g. If this is the case, the second-harmonic
pulse will become phase modulated if b, k&0. The phase
difference between the center and the wings of the pulse,
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pulse where the amplitudes are large, the interaction is

larger than in the wings, so that in case of a small b, k, the
amplitude dift'erence for E3 between the intervals can be-
come so large that the net effect on the interaction will be
a phase decrease of E&.

Figure 5(c) shows that the phase of E3 is also modulat-

ed. The phase of the center of the E3 pulse is larger than
the phase of the wings, because for large interaction the
interval where dE3 increases the phase of E3 [Figs.
1(a)—1(c)] lasts for a larger interaction length than the in-
terval in which dE3 decreases the phase [Figs. 1(d) and
1(e)]. Also the amplitude of dE3 is larger (because of the
larger E, ) in the first interval and has a larger effect be-
cause E3 is smaller in this interval.

It should be noted that there can only be a net accumu-
lation of phase difference between the center and the
wings of the E3 pulse, in case the amplitude and phase of
the E] pulse change during the interaction. If E] would
remain unchanged, it was skown in Sec. II that there will

be no net effect.
The profiles of the phases and chirps of the pulses at co,

and co3 are presented in Fig. 6 for three values of Ak. If
the phase mismatch is rather large ( b, k & go ), the interac-
tion between the fields is similar to the case in which the
amplitude of the field at co3 is much larger than the one of
the field at co, . The accumulated phase difference be-
tween the center and the wings of the pulse at co, is some-
what smaller than in Sec. IIIA. The reason for this is
given with the description of Fig. 5(a). The frequency
chirps on the pulses are of comparable size and are linear
for a large part of the pulse, so that compression of the
pulse using a dispersive element should be possible.

C. E3 ((E, and equal group velocities
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FIG. 4. Calculated phase, chirp, and intensity profile at 1064
nm for three values of phase mismatch after an interaction
length of 5 cm LiNbO&. The pulse duration of the initially
Gaussian-shaped pulses is 10 ps for both pulses and the initial
intensities in the centers of the pulses are 1 W/cm' for the pulse
at 1064 nm and 1 GW/cm for the pulse at 532 nm. The initial
phase difference between the fields is —m. /2.

This case is similar to second-harmonic generation.
However, in Sec. II 8 it was assumed that the field at co&

does not change during the interaction. If E3 becomes
large during the interaction, due to a large E, (0, l) d'or a
small phase mismatch, this is not a good assumption as il-
lustrated in Fig. 7. The initial phase difference is set
equa1 to —m /2.

It this case dE3 is very large compared to E, so that
the phase of E3 increases rapidly in the phase interval in
which the phase of E, is increased [Figs. 1(a)—1(c)] and
slowly in the interval in which the phase of E] is de-
creased [Figs. 1(d) and 1(e)]. The consequence is that the
phase of E& increases stepwise as a function of the in-

teraction distance [Fig. 7(b)].
Because the rate of change in phase of E3 is much

larger in the first interval than in the second, the interac-
tion distance for the first interval is shorter than for the
second, despite the fact that the first interval is
lengthened by the increase of the phase of E, that takes
place in this interval. In addition, the amplitude of E3
and thus dE, is much smaller in the first interval than in
the second. This results in a net decrease of the phase of
E, for all points in the pulse [Fig. 7(a)].

In Fig. 8 the phase, chirp, and intensity profile over the
pulse at co, and the phase profile of E, are presented for
three dift'erent values of Ak. The phase profiles and the
chirp are rather erratic, especially for small Ak. This is
caused by the stepwise phase modu1ation of E3, which in

turn has its effects on the phase modulation of E, . The
chirp of E, has approximately the same value as in Sec.
III B, but it is not linear and it has the opposite sign be-
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30- bg= -m/2
bIt =0

(a)

The consequence is that E3 catches up with E, and again
the situation of Fig. 1(b) arises. Now dE, is large and

dE, small, so that E3 overtakes E, and the situatioo of
Fig. 1(c) arises. In this situation the amplitude of Ei is

attenuated and the amplitude of E3 is amplified so that
gradually dE, becomes larger and the phases of E, and

E3 become equal again. In this manner E, and E3 are
constantly overtaking each other and their phases remain
approximately equal for the whole interaction distance.

This phenomenon takes place independently of the arn-

plitude of E, . It did not occur in the first case (Fig. 5) be-

cause the initial phase difference causes E& to be very
small at the point where the phases of E, and E, become
equal to each other. The consequence is that dE, cannot
become large enough to let the phase of E, increase with

respect to E3. In this situation the phase of E3 increases

compared to E i during the whole interaction.
When g0 & b k, which is the case for the point

represented by the dotted line, dE, is never large enough
to keep the phase of E i up with the phase of E3, regard-
less of the initial phase difference. In the case the evolu-

tion of the phase is very similar to that of Figs. 3(a) and
S(a).

In Figs. 10(a) and 10(b) the phase profiles of E, and E3
are presented for the two initial phase differences. Spe-
cial points in these profiles are the points where g0 is ex-

actly equal to Ak. The phase of E3 is higher for b,P=O
than for bP= —m. /2 because in the first case, the orienta-
tion of dE, is always such that it increases the phase of
E3, while in the second case there are intervals in which
it decreases the phase of E3.

If b,P=O, the phase difference between the center and
the wings is large for both interacting pulses and thus
gives rise to a large frequency chirp. This chirp, howev-

er, contains large frequency peaks because the phase
profile is not very smooth.

When the phase mismatch and the initial phase
difference are such that the phase of E, is increased with

respect to E3 at the beginning of the process, the phases
of E i and E3 will remain approximately equal during the
whole process as described above. It can happen, howev-
er, that the phase mismatch and the initial phase
difference are such that the phase of E, would increase
with respect to E, if only dE, and dE3 would be taken
into account, but if dE3 is also taken into account the
phase of E, decreases with respect to E3. In this case the
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crated in the front wing of the pulse at m& destructively
interferes with the light that is generated in the rear
wing. The final pulse will thus mainly consist of light
that is generated in the rear wing at the beginning of the
process and light that is generated in the front wing at
the end. In Fig. 13 the phase profiles of E& and E3, and
the intensity profile and the spectrum of the pulse at co3,

are presented for three values of phase mismatch. The
phase of E3 increases rapidly over the two-peak struc-
ture. This increase is caused by the fact that the light in
the rear part of the pulse was generated at the beginning
of the process and has accumulated a higher phase due to
the positive phase mismatch than the light that has just
been generated at the front part of the pulse.

For higher values of phase mismatch this accumulated
phase difference is also higher. The phase difference and
the delay between the two peaks can be set by varying the
phase mismatch and the interaction length. This implies
that the two-peak structure might be used in phase-
sensitive pump-probe experiments.

The phase modulation of the pulse at co, is a direct
consequence of the phase modulation of E3. The phase
difference between E3 and E, determines whether the

phase of E, is increased or decreased. For higher values

of phase mismatch, the phase of E3 passes through more
phase intervals and the phase profile of E, acquires more
oscillations. The central frequency of the pulse at co3 is

shifted because the phase of E3 increases over the pulse.
The spectrum of this pulse consists of fringes (Ramsey
fringes), which is caused by the fact that the pulse mainly
consists of two peaks. The spacing of the fringes is
defined by the inverse of the time delay between the two
peaks.

IV. DISCUSSION

The analytical and numerical results show that the
phase modulation in second-order nonlinear-optical pro-
cesses depends on the phase mismatch, the initial phase
difference, and the parameters of the incoming fields. Of
these parameters, the intensities of the pulses co, and co3,

and especially the ratio of these intensities, are very im-
portant for the character of the modulation. The pulse
duration is only important for the phase modulation if
there is a significant difference in group velocity between
the interacting fields. If the group velocities are equal,
the phase difference between the center and the wings of
the pulse is independent of the pulse duration. The
consequence is that the factor by which the bandwidth is
increased does not depend on the pulse duration, in spite
of the fact that the chirp and the spectral bandwidth of
the pulses are both inversely proportional to the pulse
duration.

If the group velocities are equal, the phase modulation
can easily be scaled by multiplying the coupling terms of
the fields on the right-hand side of Eqs. (5)—(7) with the
same factor. This implies that all electric fields and the
phase mismatch should be multiplied with the same
value. If the interaction distance is multiplied with the
inverse of this scaling factor, the same phase modulation
results as before sealing.

~n 2ILd$=
24&E'oc n o

(23)

with n2 the nonlinear refractive index, I the intensity, I-
the interaction length, 1/4m. eo=9X10, c the velocity of
light in vacuum, and no the extraordinary refractive in-

If the group velocities are different, the phase modula-
tion is no longer independent of the pulse duration and
the pulse duration should also be multiplied with the in-
verse of the scaling factor in order to obtain the same rel-
ative delay between the pulses during the interaction as
before scaling. Like the ratio of intensities, the influence
of the initial phase difference on the phase modulation
cannot be scaled. However, this phase difference is only
crucial for the character of the modulation if the phase
mismatch is smaller than the exponential gain factor go
defined for parametric amplification.

The phase modulation generated in second-order
nonlinear-optical processes differs in many aspects from
that generated with third-order processes. In the first
place, the amount of phase modulation in a second-order
process like parametric amplification scales with the
square root of the intensity of the strongest pulse, while
in SPM and IPM it scales linearly with intensity.

Second, the amount and sign of the modulation can
very easily be tuned in second-order processes by rotating
the nonlinear crystal. In a third-order process, the
amount of modulation can only be tuned by varying the
intensity or the interaction length and a positive modula-
tion can only be changed in a negative one by replacing
the nonlinear material for an absorbing medium in which
the nonlinear refractive index can be negative.

In the third place the pulse modulates its own phase in
SPM whereas in IPM and in second-order processes the
phase is modulated by the interaction with another pulse.
The advantage of SPM is that the modulation is not
influenced by a difference in group velocity between the
pulses, so that even for very short pulses the phase can be
modulated over a long interaction length. %e showed in
Sec. II E that this problem can partly be circumvented by
giving the fastest pulse an initial delay so that this pulse
is an equal amount of time ahead of the slowest pulse at
the end of the crystal as it was behind in the beginning.
However, the difference in group velocity between the
pulses limits the interaction length in which the pulses
overlap and thus poses an upper limit to the amount of
phase modulation.

In the fourth place, second-order processes can be
eScient in generating a phase modulation with relatively
low intensities and short interaction lengths because the
y' ' of nonlinear crystals is in general much higher than
the nonlinear refractive index. For LiNb03, the value of
g, tt is equal to 1.16X10 " m/V (Ref. 27) when the po-
larization is taken parallel to the optical axis. The non-
linear refractive index of LiNb03 is estimated to be
1 X 10 esu = 1.39 X 10 m /V . In order to com-
pare the third-order modulation with the second-order
modulation, we calculate the phase modulation of a 1-
G%' pulse at 532 nm in a 5-cm LiNb03 crystal due to the
nonlinear refractive index with the following equation:
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dex of LiNb03 (equal to 2.2345). It follows that the
phase is modulated with 0.11 rad, which is in general
negligible to the modulation of the phase in a phase-
mismatched second-order process.

Considering these differences between second-order
and third-order processes, we conclude that second-order
processes are very useful in experiments in which the gen-
erated phase modulation should be tunable and in experi-
ments in which the intensity is rather low. For very short
pulses and high intensities, SPM is more useful because
this process is not influenced by group velocity effects
and the phase modulation increases linearly with intensi-
ty.

V. CONCLUSION

In this paper we have shown that second-order
nonlinear-optical processes may lead to a phase modula-
tion of the interacting pulses. This phase modulation can
be qualitatively explained when the fields and the
differentials in the fields are plotted in the complex plane.

It turns out that if the processes take place with a
phase mismatch, the interaction leads in almost any case
to an accumulation of phase difference between different
parts of the pulse. Only in the case where the field at an-
gular frequency co, does not change due to the interac-
tion, no accumulation of phase difference occurs. When
the field at ~, is more intense than the one at co„ the in-

teraction leads to a linear chirp on both pulses.
If the phase mismatch is smaller than the exponential

gain factor go defined for parametric amplification and
the initial phase difference between the fields is small, the
phase modulation can become very large and the amount
of phase modulation of the field at n, is approximately

half the amount of the field at co3. This implies that in
the center of the pulse the phase mismatch is fully com-
pensated by the interaction.

If the group velocities of the interacting pulses are
different, the phase modulation leads to a change in cen-
tral frequency. This shift can be avoided by giving the
pulses an initial delay. If the intensity of the field at co3 is
initially small and the difference in group velocity is
large, the combined effects of phase mismatch and
difference in group velocity lead to the generation of a
two peak structure for the field at co3. The phase
difference between the two peaks depends on the phase
mismatch and the interaction length. The sign and
amount of the phase modulation in second-order optical
processes can be easily tuned by rotating the nonlinear
crystal and the modulation can be generated with rela-
tively low intensities and short interaction lengths com-
pared to third-order processes.

Finally, we conclude that second-order nonlinear opti-
cal processes offer a useful tool to modulate the phase of
short optical pulses. This modulation may be used for ex-
perimental applications in pulse compression, frequency
conversion, and phase-sensitive pump-probe experiments.

ACKNOWLEDGMENTS

The work in this paper is part of the research program
of the Stichting voor Fundamenteel Onderzoek van de
Materie (Foundation for Fundamental Research on
Matter) and was made possible by financial support from
the Nederlandse Organisatie voor Wetenschappelijk On-
derzoek (Netherlands Organization for the Advancement
of Research).

'K. Kato, IEEE J. Quantum Electron. QE-22, 1013 (1986).
2D. C. Edelstein, E. S. Wachman, L. K. Cheng, %'. R. Bosen-

berg, and C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
3G. C. Bhar, S. Das, and U. Chatterjee, Appl. Phys. Lett. 54,

1383 (1989),
4L. Mannik and S. K. Brown, Opt. Commun. 47, 62 (1983).
- T. Elsaesser, H. Lobentanzer, and A. Seilmeier, Opt ~ Commun.

52, 355 {1985).
6K. G. Spears, X. Zhu, X. Yang, and L. Wang, Opt. Commun.

66, 167 (1988).
7R. R. Alfano, L. L. Hope, and S. L. Shapiro, Phys. Rev. A 6,

433 (1972).
~G. Yang and Y. R. Shen, Opt. Lett. 9, 510 (1984).
9%'. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc.

Am. B 1, 139 (1984).
'OW. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, and C.

V. Shank, Appl. Phys. Lett. 46, 1120 (1985).
''W. J. Tomlinson and W. H. Knox, J. Opt. Soc. Am. B 4, 1404

{1987).
'-C. Rolland and P. B. Corkum, J. Opt. Soe. Am. 8 5, 641

(1988).
'3R. R. Alfano, Q. Li, T. Jimbo, J. T. Manassak, and P. P. Ho,

Opt. Lett. 11, 626 (1986).

' P. L. Baldeck, R. R. Alfano, and G. P. Agrawal, Appl. Phys.
Lett. 52, 1939 (1988).

' J. I ~ Gersten, R. R. Alfano, and M. Belie, Phys. Rev. A 21,
1222 (1980)~

' M. N. Islam, L. F. Mollenauer, R. H. Stolen, J. R. Simpson,
and H. T. Shang, Opt. Lett. 12, 625 (1987).

' R. R. Alfano, P. L. Baldeck, F. Raccah, and P. P. Ho, Appl.
Opt. 26, 3491 (1987).

'~J. T. Manassah, Appl. Opt. 26, 3747 (1987).
'9J. T. Manassah and O. R. Cockings, Opt. Lett. 12, 1005

(1987)~

~oP. P. Ho, Q. Z. Wang, D. Ji, T. Jimbo, and R. R. Alfano,
Appl. Phys. Lett. 54, 111 (1989).

'R. R. Alfano, P. L. Baldeck, P. P. Ho, and G. P. Agrawal, J.
Opt. Soc. Am. 8 6, 824 (1989).

22R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, R. N. Bharga-
va, and B.J. Fitzpatrick, Phys. Rev. A 35, 459 (1987).

23R. R. Alfano and P. P. Ho, IEEE J. Quantum Electron.
QE-24, 351 (1988).

24R. C. Eckardt and J. Reintjes, IEEE J. Quantum Electron.
QE-20, 178 (1984).

J. T. Manassah, J. Opt. Soc. Am. B 4, 1235 (1987).
H. J. Bakker, P. C. M. Planken, and H. G. Muller, J. Opt. Soc.



42 PHASE MODULATION IN SECOND-ORDER NONLINEAR- ~ . . 4101

Am. B 6, 1665 (1989).
27Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New

York, 1984).
P. C. M. Planken, H. J. Bakker, L. Kuipers, and A. Lagendijk,
J. Opt. Soc. Am. (to be published).

29A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276

(1983).
J. T. Manassah, Appl. Opt. 27, 4365 (1988).
J. Gazengel, J.-L. Ferrier, and G. Rivoire, Euorphys. Lett. 2,
593 (1986).
T. Y. Chang, Opt. Eng. 20, 220 (1981).


