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If three light pulses interact in a second-order nonlinear-optical process with a phase mismatch,

the pulses may acquire a significant phase modulation.

This phase modulation leads to a

modification of the spectrum of the pulses and may offer the possibility of compressing the pulses.
In this paper we discuss the effects of the ratio of intensities of the interacting pulses and the
amount of phase mismatch on the phase modulation using analytical and numerical results. When
the phase mismatch is small, it turns out that the modulation is also strongly influenced by the ini-
tial phase difference between the fields. Finally, we study the combined effects of a phase mismatch
and a difference in group velocity on the spectrum and intensity profile of the interacting pulses.

I. INTRODUCTION

A very interesting aspect of nonlinear optics is that it
offers a way to modify the frequency spectrum and the
time profile of optical pulses. A standard technique to
modify the frequency of the light is the application of
second-order nonlinear-optical processes such as sum-
frequency generation' ~* (second-harmonic generation) or
difference-frequency generation.* ®

In order to shorten an optical pulse that is not phase
modulated, it is necessary to generate additional frequen-
cy components in the spectrum of the pulse. If these new
frequency components constitute a linear frequency
modulation (linear chirp) over the pulse, this modulation
can be compensated by a linear dispersive element and a
shortened optical pulse results.

A possible way to generate new frequency components
is the application of third-order nonlinear-optical pro-
cesses such as self-phase modulation (SPM),’ !
induced-phase modulation (IPM),'*!* or cross-phase
modulation (XPM).'>~23 1In all these processes, the re-
fractive index of the medium depends on the intensity of
the light. Because the intensity varies over the pulse, the
phase velocity varies over the pulse and the pulse ac-
quires a phase modulation while it propagates through
the nonlinear medium.

In SPM the phase modulation is caused by the intensi-
ty profile of the phase-modulated pulse itself, while in
IPM it is caused by the intensity profile of a second
copropagating pulse. In IPM the central frequency of the
phase-modulated pulse changes if the pulses have a cer-
tain delay or if the group velocities are different. XPM is
the result of the interference between SPM and some oth-
er nonlinear-optical process such as stimulated Raman
scattering or second-harmonic generation. It leads to a
phase modulation of both the input pulse and the pulse
generated by the nonlinear optical process.

A lot of literature deals with the phase modulation that
arises as a consequence of third-order nonlinear optical
processes.’ 2> In contrast, very little is known about the
phase modulation due to second-order nonlinear-optical
processes. 242

A primary condition for the generation of a phase
modulation in second-order nonlinear-optical processes is
that the interaction takes place with a certain amount of
phase mismatch. In SPM, IPM, and XPM this is not a
necessary condition. In fact, these processes are usually
supposed to take place without phase mismatch and are
in that aspect simple processes.

The interaction between the electromagnetic fields in
second-order processes can be described by three coupled
differential equations. These can be solved analytically if
the group-velocity differences are negligible. In this
description, the amplitudes of the field and the phase
difference between the fields are expressed in Jacobi ellip-
tic functions. However, the evolution of the phases of
each of the fields individually can only be evaluated by
solving an incomplete Jacobi integral of the third kind,
which can only be evaluated numerically.

In this paper we discuss the phase modulation occur-
ring in second-order nonlinear-optical processes. In Sec.
II we discuss it under the assumption that the interacting
pulses have equal group velocities. Section II consists of
three subsections. In Sec. Il A we derive relations be-
tween the phases of the interacting fields. These relations
can be graphically depicted and may serve as a qualita-
tive explanation of the phase modulation discussed in
Secs. II B, II C, and III.

Sections II B and II C deal with a description of the
phase modulation in two limiting cases. In these cases it
is assumed that the phase and the amplitude of one of the
fields will not be affected by the interaction.

In Sec. III we use a modified Runge-Kutta method?®® in
order to evaluate the phase modulation. This section is
divided into six subsections. Sections IIIA-IIIC are
connected with the cases of Sec. II, but no longer use the
assumption that one of the fields is unaffected by the in-
teraction. It turns out that the phases of all the fields get
modulated and that the modulation is very much depen-
dent on the amount of phase mismatch and the initial ra-
tio of intensities.

Section IIID illustrates that if the interaction takes
place with a small phase mismatch, the modulation de-
pends on the initial phase difference between the fields.
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Subsections III E and IITF deal with the combined effects
of phase mismatch and differences in group velocity of
the pulses. It turns out that these effects may induce a
change in the central frequency and the intensity profile
of the pulses.

In Sec. IV we evaluate how the phase modulation that
we have calculated in the Secs. II and III is influenced by
a change of the parameters of the interaction. We also
discuss the differences between the phase modulation
generated in second-order processes and the modulation
generated in third-order processes.

II. ANALYTICAL

The description of the second-order nonlinear interac-
tion can be greatly simplified if the three interacting fields
are assumed to be monochromatic. This is a useful ap-
proximation if the spectral bandwidth of the pulses is
small compared to their central frequency. The electric
component of the three &; (i=1,2,3) fields propagating
along the z axis can be represented by a product of a field
amplitude and a plane wave

G (z,t)=E(z,t)expli(k;z —w,1)], (1

where E; is the complex amplitude, k; the wave vector,
and o, the angular frequency of field &,.

The interaction results in an energy transfer between
the fields. Therefore the field amplitudes are expected to
change while they propagate through the nonlinear ma-
terial. This change in amplitude can be described by
three coupled differential equations. These equations are
derived from Maxwell’s equations and can be simplified
to first-order differential equations if the slowly varying
amplitude approximation is used. This approximation is
valid if the change in amplitude of the fields is significant
only after the fields traveled over a distance much longer
than their wavelength. The following set of equations re-
sults:?’

. (2)
iwX
1 1
3 1 9 io X
oz ;55? E2= 2n,c ETEexplidkz) , ®
2
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.52_4.1}_%5; EjowElEzexp(—zAkz), 4)

with vf the group velocity of field &;, n; the refractive in-
dex of field &;, ¥\¥ the effective nonlinear susceptibility,
and Ak the phase mismatch (Ak =k;—k,—k ).

In order to simplify the interpretation and the numeri-
cal evaluation of these equations, the variable ¢ is
transformed to : n=t —z/v},E (z,t)>E;(z,7)
{i =1,2} and E;(z,t)expliAkz)—E;(z,7):

: (2)
d _ Lo Xefr

9z ! 2n,c

EE,, (5)
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The value of '3 is determined by the directions of polar-
ization of the fields and the nonzero elements of the
second-rank tensor y'?.

When the differences between the group velocities are
vanishing, definite relationships between the phases of the
complex amplitudes and the phases of the differentials in
the complex amplitudes can be derived from the three
coupled equations. The following relations hold:

—.7T__

arg(dE ) 5 arg(E,)+arg(E,) , (8)
arg(dE, )=127-—arg(E1 )+arg(E;) , 9)
arg(d}zg)=-’21+arg(E1 )+arg(E,) , (10)
arg(dEg)=§+arg<E3> , (11)

with arg(E;) the phase of the complex number E;. The
differential in E; consists of two contributions: one as a
result of the nonlinear interaction (dE%) and the other as
a result of the phase mismatch (dE%). If there is no in-
teraction, dE,, dE,, and dE! vanish.

The phase difference between the differential in com-
plex amplitude and the complex amplitude itself deter-
mines whether the amplitude and phase at distance z and
time n will increase or decrease. If
|arg(dE;)—arg(E,)| < /2, the amplitude of the complex
number E; will increase, in the case
larg(dE;)—arg(E;)| > /2 it will decrease. In the case
0 <[arg(dE;)—arg(E,)] < the phase of E, will increase;
in the case 7 <[arg(dE;)—arg(E;)] <2w the phase will
decrease. It follows from Egs. (8) and (9) that

[arg(dE;)—arg(E;)]
=%—arg(E1 )—arg(E,)+arg(E;), i=1,2.

(12)

The amount of change in amplitude and phase not only
depends on parameters that are independent of 7 such as
the phase mismatch, the value of x\%, and the frequen-
cies, but also depends on the amplitudes and phases of
the E, themselves. This implies that the E; at different
time points 7 in the pulse can acquire different phases,
with the consequence that the phase over the pulse be-
comes modulated. This results in a modification of the
spectral bandwidth of the interacting pulses.

If the nonlinear optical process takes place leaving one
or two of the fields practically unchanged during the in-



42 PHASE MODULATION IN SECOND-ORDER NONLINEAR- . ..

teraction, the set of coupled equations can be solved rath-
er easily. In the following we will discuss two examples
of these processes. We will derive analytical expressions
for the phase modulation as a function of the interaction
length. The phase relations between the fields and the
differentials of the fields may serve as a qualitative ex-
planation for these expressions.

A. Parametric amplification

In this process an intense field at w; (pump) amplifies
two very weak fields at w, and w, (signal and idler). The
interaction term in the equation for dE, can be neglected
J

2

E (z,m)= E(0,7) cosh(%gz)-i”%)sinh(%gz) +

— Ak sinh(1gz)
g cosh(1gz)+g,sinh(1gz)

Xexp |i arctan

with ga(m)=w VX E;()|*/n nyc? and g(n)=[gi(n)
/2

—Ak?]'%. In this equation the solution for E,(z,7) is
written as a complex number with an amplitude and a
phase. The amplitude of E, is assumed to remain con-
stant so dE}, is zero and the solution for E(z,77) becomes
trivial:

E;(z,m)=E;(0,n)expliAkz) . (14)
In the case gz >>1 the terms sinh(1gz) and cosh({gz)

can both be approximated with exp(1gz). The expression
for the phase of E | becomes

—Ak
g +8&o

lim arg[E,(z,)]= arctan

8Z —» ¢

+1Akz +arg[E (0,m)] . (15)

In this limit the phase only depends on z via Akz,
which implies that the phase modulation that is generat-
ed at the beginning of the process [when exp(—1gz) can
not be neglected] will remain constant for the rest of the
process. It is clear that in this case the phase of E? which
is equal to 2 arg(E, ) has the same dependence on z as Ej.
This implies that E? and E; rotate through the complex
plane with a permanent phase difference equal to
m/2+2arctan[ —Ak /(g +g,)] [Fig. 1(a)]. In this figure
dE?%, E,, and dE, are also presented. The phase of dE
equals [using Eq. (8)]

arg[dE(z,m)]= —arctan +1Akz

8o
+%+arg[E3(0,n)]—arg[El(O,n)] .

(16)

-%sinh( 1gz)
g 7

+1idkz
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because of the relative weakness of signal and idler com-
pared to the pump and the amplitude of E; is assumed to
be constant. The remaining two equations for E,; and E,
can be easily solved. The solution depends on whether
the gain factor g, of the parametric amplification process
is larger or smaller than the phase mismatch Ak.

1. g0>Ak

If o,=w, (and E, =E,), and assuming that at z=0 the
phase difference A¢p=arg(E;)—arg(E,)—arg(E,) equals
— /2, the solution takes the following form:

2’l/2

) (13)

2. g0=Ak

When Ak is equal to go(7) for a certain value of 7,
g (1) equals zero and the terms exp(—1gz) in the expres-
sion for the phase of E(z,7) can no longer be neglected.
In this special case the expression for E,(z,7) becomes

lim E,(z,7)= E,(0,m[(1+goz +1g85zM)1'?
g-—>

2+goz

Xexp |4igoz +1 arctan

} . amn

It follows from this expression that for large g,z the
amplitude of E, increases linearly with z. The amplitude
of dE | also grows linearly with z for large g,z because the
amplitude of E; was assumed to be independent of z.
When z varies from O to o, the phase of E,(z,17) changes
from 0 to —m/4+1goz +arg[E,(0,1)] [Eq. (17)] and the
phase difference between dE,; and E, changes from O to
/2 [Egs. (12) and (17)], so the orientation of dE, with
respect to E, in the complex plane changes gradually
from parallel to perpendicular. The parallel part of dE,
that changes the amplitude of E, is independent of z for
large gyz and remains constant, while the perpendicular
part that changes the phase of E, increases linearly with
z.

In the limit of infinite z the phases of E? and E; be-
come equal to each other [Fig. 1(b)] and E, becomes
infinitely large. In reality E; would deplete if z increases,
thus making the assumption that the amplitude of E;
does not change during the process no longer valid.

3. go <Ak

If Ak is larger than g,(7) the amplification factor g (7)
becomes imaginary and the amplitude of £, will show an
oscillatory behavior. Replacing g (%) by ik (%) in Eq. (7)
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FIG. 1. Orientation of the field amplitudes and differentials in the field amplitudes in the complex plane. The vectors have an arbi-

trary length.

with h(n)=[Ak?>—g3(n)]'/%, the following expression
for the phase of E(z,7) results:

— Ak sin(}hz)
h cos(Lhz)+ggsin(+hz)

arg[E,(z,m)]= arctan

+1Akz +arg[E,(0,7)] . (18)

The phase of E; shows a complicated oscillatory be-
havior. The phase difference between E? and E; is no
longer constant for large z but changes as a function of z.
If Ak is positive, the phase of E? decreases with respect
to E;, when Ak is negative the phase of E? increases
compared to E;.

The phase difference does not accumulate constantly
with z. If Ak is positive, z has to increase with
(2w /h)+(2/h)arctan( —h /g,) in order to decrease the
phase of E| from O to —m/2 with respect to yAkz. To
decrease the phase further with respect to JAkz from
—m7/2 to —mw, z has to increase an additional
—(2/h)arctan(—h /g,).

If g¢(n) approaches zero, which is the case in the
wings of the E; pulse, (2/h)arctan(—h /g,) approaches
—a/Ak. In that case, the distance z needed for each of
the two decreases in phase equals m/Ak. When g,(7) ap-

proaches Ak, which is most likely to happen in the center
of the E; pulse, (%) approaches zero and the distance
needed for the first decrease becomes infinitely large. In
the same limit —(2/h)arctan(—h /g,) approaches 2/g,
(=2/Ak), and the distance z needed for the first decrease
in phase is thus much larger than the one needed for the
second decrease in phase. The distances needed to de-
crease the phase further from —# to —37/2 and from
—3m/2 to — 2 are exactly equal to those of the first and
second decrease, respectively.

The difference in the rate of change in phase in the
phase intervals can easily be understood if the complex
amplitudes and the differentials in the complex amplitude
are plotted in the complex plane. It follows from Eq. (12)
that if £, =FE, and Ak >0, the accumulation is delayed if
—m/2<[arg(E;)—arg(E2)]<w/2, which is the case
during the first decrease [Figs. 1(a)-1(c), and accelerated
if m/2<[arg(E,)—arg(E?)]<37/2, which is the case
during the second decrease [Figs. 1(d) and 1(e)].

The accumulated phase difference depends on 7 be-
cause h(n) depends on 7. In the center of the pulse of
E;, g¢(7) has its maximum value and 4 (%) its minimum.
When we compare the rates of change in phase of E, in
the center and the wings of the E; pulse, it can be con-
cluded that in the case Ak >0, it takes a much longer in-
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teraction length in the center to decrease the phase of E|
from 0 to — /2, with respect to +Akz, than in the wings.
For the second decrease from — /2 to — it is the other
way around, but the difference in distance is much small-
er than for the first decrease. The result is that E, ac-
quires a higher phase in the center of the E; pulse than in
the wings. If Ak is negative, it takes a much longer in-
teraction length in the center than in the wings to in-
crease the phase from O to 7 /2 with respect to +Akz, so

J

_ (In2)mg§(n)

z —[1/h(n)]sin[A (n)z]
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in that case E, acquires a lower phase in the center than
in the wings.

An expression for the frequency modulation of the E,
pulse can be derived by differentiating the expression for
the phase with respect to — because the frequency is
defined as a negative quantity in Eq. (1). If we assume the
pump pulse to be a Gaussian in time
(|E;(n)|*~exp[ —(41n2)n?/7*]), the following expres-
sion results:

Avi(z,m)=
Vi 72 Ak

If g, /Ak <<1 and k (n)>>1 for all 5 (which implies that
Ak should be large), the expression simplifies to

(In2)ngd(n)

(20)
2 Ak

Av(z,m)=

It follows from this expression that the frequency modu-
lation takes the form of a linear chirp if g§(n) does not
vary too much with 7, which is the case for the central
part of the E; pulse.? It also follows that the amount of
frequency modulation grows linearly with z and that the
sign depends on the sign of Ak.

If go(n) is not much smaller than Ak, it follows from
Eq. (19) that there will be peaks in the frequency modula-
tion of the E, pulse. These peaks are caused by the fact
that if g,(n) approaches Ak, the rate of change in phase
of E, is very dependent on the phase difference between
E? and E,. The consequence is that the time profile of
J

1—[g3(n)/Ak*]cos[h (n)z]+[go()h (1) /Ak*]sin[h ()z] '

(19)

f

the pulse contains intervals in which the phase changes
rapidly as a function of z and intervals in which the phase
changes slowly as a function of z. This behavior leads to
peaks in the derivative of the phase of the pulse with
respect to 7.

B. Second-harmonic generation

In this process a field at w; is generated or amplified
with twice the frequency of an intense fundamental field
at ,. If E, does not change in amplitude or phase as a
function of z, the first two of the three coupled
differential equations can be neglected and the third can
be solved quite easily. In this evaluation we take E (7))
and E;(0,7) real and not phase modulated. Writing the
field E; as a complex number, the following expression
results for the phase:

[E;(0,7)+ C,E}(n)]sin(Akz)

arg[ E;(z,m)]=arctan

with Cy = w35 /2nc.

If Ak is positive, the phase of E; increases from O to
7/2 if z increases from O to (1/Ak)arccos{C,E(7n)/
[E;(0,7)+C,E%(n)]}. This distance can vary between O
if E5(0,7)=0 and w/2Ak if E;(0,7) is infinite. The dis-
tance that is needed to further increase the phase from
7/2 to 7 is equal to m/Ak —(1/Ak)arccos{CiE}(n)
/LE4(0,m)+C1E3}(7)]} and varies between 7/Ak in the
case when E(0,7) is zero and w/2Ak when E;(0,7) is
infinite, so this distance is always larger than the one
needed for the first increase in phase.

This difference in distance needed becomes understand-
able when the fields and the differentials in the fields are
plotted in the complex plane. The differential in E; con-
sists of two contributions: dE'; due to the interaction and
dE? due to the phase mismatch. The orientation of dE}
is such that it accelerates the first increase in phase due to
dE?% [Fig. 1(c)] while it delays the second increase in

[E;(0,7)+CyE}(7)]cos(Akz)— CE}(n)

f

phase [Fig. 1(d)]. If E,(n) would be small compared to
E(0,m), dE* would be very small compared to dE% and
E(z,m) and would have little effect on the rate of change
in phase. In order to increase the phase further to 37 /2
[Fig. 1(e)] would take an additional distance of
7/Ak —(1/Ak)arccos{ C;E2(n)/[E;(0,7)+CE3(m)]].
This distance is exactly equal to the one needed to in-
crease the phase from 7/2 to 7. In order to increase the
phase from 37/2 to 2w [Fig. 1(a)], the same distance is
needed as the one needed to increase the phase from O to
m/2.

The distances are determined by the argument of the
arccos function, which depends on the amplitudes of
E$(n) and E4(0,m). These amplitudes depend on 7, so in
principle the argument of the arccos function can be a
function of 7. If this is the case, the second-harmonic
pulse will become phase modulated if Ak0. The phase
difference between the center and the wings of the pulse,
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however, does not accumulate; it oscillates with a period
of 2m/Ak. Whether the phase of the center will be
higher or lower than that of the wings at a certain dis-
tance z depends on the amount and the sign of the phase
mismatch and the amplitudes and phases of E? and E; at
the beginning of the process.

III. NUMERICAL

In this section we will deal with the phase modulation
in parametric amplification and second-harmonic genera-
tion when all the present field amplitudes and phases are
allowed to change as a result of the interaction. If all the
interacting fields are intense, it can be expected that the
amount of nonlinear interaction, and thus the effect on
the phases and the amplitudes of the fields, becomes
large. We discuss in this section the influence on the
phase modulation of the ratio of the intensities of the in-
teracting fields. We also discuss the effects of the initial
phase difference between the fields and the effects of
differences in group velocity. The results are obtained
numerically using a new modified Runge-Kutta method.
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The accuracy of this method is of fourth order in both
time and distance. %

In all examples we assume that the interacting pulses
are initially Gaussian shaped and unmodulated and that
Ak is positive. We take for the nonlinear material
LiNbO;. In all examples, the angular frequency w, is
equal to w; and corresponds with a wavelength of 1064
nm. The wavelength corresponding with w5 is 532 nm.

A. E; >>E,| and equal group velocities

When the initial phase difference between E, and E3
equals —/2, the field at w; amplifies the field at w; op-
timally in the beginning of the process. If this is the case
and the phase mismatch is smaller than gq(n), it was
shown that the phase difference between E; and E? be-
comes independent of z.

This is only true under the assumption that the field at
w3 does not change during the interaction. When the
field at w5 is initially much more intense than the field at
w,, this assumption remains valid for a substantial in-
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FIG. 2. Calculated phase and amplitude of the field E, at fundamental wavelength 1064 nm and the field E; at second-harmonic
wavelength 532 nm as a function of the interaction length in LiNbO; for three points in the pulse. The pulse duration of the initially
Gaussian-shaped pulses is 10 ps for both pulses and the phase mismatch is 7.5 cm ™~ '. The initial intensities in the centers of the pulses
are 1 W/cm? for the pulse at 1064 nm and 1 GW/cm? for the pulse at 532 nm (corresponding with an exponential gain factor g, in

parametric amplification of 17.7 cm ~!). The initial phase difference between the fields is —7/2.
-, at 10 ps from the center of the pulse.

— — —, at 5 ps from the center of the pulse; - -

, at the center of the pulse;
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teraction length. After a certain distance, however, th¢
field at w, will get significantly depleted. In that case dE}
becomes large with respect to dE£ and the phase of E;
will experience a more rapid increase than the one due to
the phase mismatch only. The phase of E; becomes
larger than that of E %, with the consequence that the
orientation of dE, with respect to E, is such that the am-
plitude of E, is attenuated [Fig. 1(c)]. The phase of E, is
still increased by dE,. However, when the phase
difference between E; and E? gets larger than 7/2,dE,
will start to decrease the phase of E, [Fig. 1(d)]. The
phase of E, will now decrease until the phase difference
between E; and E? equals 37/2. At this point the in-
teraction has become similar to the one at the beginning
of the process because the phase of E; has changed 2w
with respect to EZ.

The changes in phase and amplitude of the fields E,
and E; as a function of the interaction length are illus-
trated in Figs. 2(a)-2(d) for three different time points in
the pulse. The solid line and the dash-dotted line
represent points for which g,(7) > Ak and the dotted line
represents a point for which gy(n) <Ak. For the first two
points the phase difference between E? and E; only
changes because of the depletion of E;. For the third
point the change of the amplitude of E; is negligible, but
dE, is too small to keep the phase difference between E3
and E; constant.

In Figs. 3(a) and 3(b) the phase and amplitude of E, are
presented in the case of g,(7) < Ak for all three points in
the pulse. It is shown in Fig. 3(a) that in the central point
the phase increases for a much longer distance than it de-
creases. The increases in this figure correspond with the
intervals where the phase of E, diminishes slowly com-
pared to +Akz [Figs. 1(a)-(1c)] and the decreases corre-
spond to intervals where the phase diminishes fast com-
pared to +Akz [Figs. 1(d) and 1(e)]. The rates of change
in phase of the increases and decreases have approximate-
ly the same absolute value because the amplitude of E;
and thus dE, /E| hardly changes during the process.

In Figs. 4(a)-4(c) the phases, chirps, and intensities of
the field at o, are presented as a function of the time over
the pulse for three different values of phase mismatch.
For all three values of mismatch, the phase in the center
is larger than in the wings. The phase over the pulse
changes more smoothly as Ak increases. This is caused
by the fact that for larger Ak the difference in rate of
change in phase at a certain time point 7 in the pulse be-
tween the phase decreases and increases becomes smaller.

The rapid phase changes in the phase profile of the
pulse for small Ak lead to peaks in the derivative of the
phase with respect to —n [Fig. 4(b)]. These frequency
peaks, however, will hardly contribute to the spectrum of
the pulse because they coincide with points in the pulse
with low intensities.

B. E; > E, and equal group velocities

When the intensity of the field at w, is not small at the
beginning of the process, the interaction between the
fields will be large and the phases and amplitudes of the

4091

fields will change rapidly as a function of the interaction
distance. In Fig. 5 the evolution of the amplitudes and
phases of E, and E; are presented as a function of in-
teraction length, taking the initial phase difference equal
to —m/2.

We note in Fig. 5(a) that the phase increases much
slower in the wings of the pulse than in the situation of
Sec. IIT A. In the center of the pulse the phase of E,| even
decreases. This is caused by the fact that E; and thus
dE, are smaller in the interval in which the phase of E,
is increased [Figs. 1(a)-1(c)] than in the interval in which
the phase of E, is decreased [Figs. 1(d) and 1(e)]. In addi-
tion, because of the orientation of dE;, the phase velocity
of E; is larger in the first interval than in the second, so
that this first interval lasts for a shorter distance com-
pared with the situation of Sec. III A, while the second
interval lasts for a longer distance. In the center of the
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FIG. 3. Calculated phase and amplitude of the field E, at
1064 nm as a function of the interaction length in LiNbO; for
three points in the pulse. The pulse duration of the initially
Gaussian-shaped pulses is 10 ps for both pulses and the phase
mismatch is 25 cm ~'. The initial intensities in the centers of the
pulses are 1 W/cm? for the pulse at 1064 nm and 1 GW/cm? for
the pulse at 532 nm. The initial phase difference between the
fields is —7/2.
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pulse where the amplitudes are large, the interaction is
larger than in the wings, so that in case of a small Ak, the
amplitude difference for E; between the intervals can be-
come so large that the net effect on the interaction will be
a phase decrease of E;.

Figure 5(c) shows that the phase of E; is also modulat-
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FIG. 4. Calculated phase, chirp, and intensity profile at 1064
nm for three values of phase mismatch after an interaction
length of 5 cm LiNbO;. The pulse duration of the initially
Gaussian-shaped pulses is 10 ps for both pulses and the initial
intensities in the centers of the pulses are 1 W/cm? for the pulse
at 1064 nm and | GW/cm? for the pulse at 532 nm. The initial
phase difference between the fields is — /2.
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ed. The phase of the center of the E; pulse is larger than
the phase of the wings, because for large interaction the
interval where dE! increases the phase of E; [Figs.
1(a)-1(c)] lasts for a larger interaction length than the in-
terval in which dE} decreases the phase [Figs. 1(d) and
1(e)]. Also the amplitude of dE} is larger (because of the
larger E7) in the first interval and has a larger effect be-
cause E; is smaller in this interval.

It should be noted that there can only be a net accumu-
lation of phase difference between the center and the
wings of the E; pulse, in case the amplitude and phase of
the E, pulse change during the interaction. If E, would
remain unchanged, it was shown in Sec. II that there will
be no net effect.

The profiles of the phases and chirps of the pulses at o,
and w; are presented in Fig. 6 for three values of Ak. If
the phase mismatch is rather large (Ak > g ), the interac-
tion between the fields is similar to the case in which the
amplitude of the field at w; is much larger than the one of
the field at ;. The accumulated phase difference be-
tween the center and the wings of the pulse at w, is some-
what smaller than in Sec. III A. The reason for this is
given with the description of Fig. 5(a). The frequency
chirps on the pulses are of comparable size and are linear
for a large part of the pulse, so that compression of the
pulse using a dispersive element should be possible.

C. E; << E, and equal group velocities

This case is similar to second-harmonic generation.
However, in Sec. II B it was assumed that the field at o,
does not change during the interaction. If E; becomes
large during the interaction, due to a large E,(0,n) or a
small phase mismatch, this is not a good assumption as il-
lustrated in Fig. 7. The initial phase difference is set
equal to —7/2.

It this case dE! is very large compared to E; so that
the phase of E; increases rapidly in the phase interval in
which the phase of E, is increased [Figs. 1(a)-1(c)] and
slowly in the interval in which the phase of E,| is de-
creased [Figs. 1(d) and 1(e)]. The consequence is that the
phase of E; increases stepwise as a function of the in-
teraction distance [Fig. 7(b)].

Because the rate of change in phase of E; is much
larger in the first interval than in the second, the interac-
tion distance for the first interval is shorter than for the
second, despite the fact that the first interval is
lengthened by the increase of the phase of E, that takes
place in this interval. In addition, the amplitude of E,
and thus dE, is much smaller in the first interval than in
the second. This results in a net decrease of the phase of
E, for all points in the pulse [Fig. 7(a)].

In Fig. 8 the phase, chirp, and intensity profile over the
pulse at w, and the phase profile of E; are presented for
three different values of Ak. The phase profiles and the
chirp are rather erratic, especially for small Ak. This is
caused by the stepwise phase modulation of E;, which in
turn has its effects on the phase modulation of E,. The
chirp of E, has approximately the same value as in Sec.
III B, but it is not linear and it has the opposite sign be-
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cause the center of the pulse now acquires a lower phase
than the wings.

When E; is zero at the beginning of the process,
Eckardt and Reintjes®* showed that for the phase of E; a
rather simple expression results:

%+%Akz +2arg[E,(0,7)]. (22)
This expression is only valid when the amplitude of E,
does not become equal to zero during the interaction.
However, at certain distances the amplitude of E; is
equal to zero and the phase at E; makes a discontinuous
jump of 7. These distances become smaller as the phase
of E, decreases. This implies that the phase profile of the
pulse at w; will contain several phase jumps of 7, depen-
dent on how much the phase of the center of the pulse at
, is lowered compared with that in the wings.

arg[Es(z,m)]=

D. Effects of the initial phase difference between E; and E,

In Sec. II it was shown that the initial phase difference
between the fields determines whether the energy will
flow initially from E; to E,; or vice versa. If the phase
mismatch is small, the initial phase difference can have
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large effects on the evolution of the phase and the ampli-
tude of the pulses. It becomes less important in case of
large Ak, because in this case the phase difference be-
tween the fields varies rapidly, independent of the in-
teraction.

The effect of changing the initial phase difference is il-
lustrated by comparing Fig. 5 with Fig. 9. In Fig. 5 the
initial phase difference is — /2, so that at the beginning
of the process the field at w; optimally amplifies the field
at w,. In Fig. 9 the initial phase difference is zero, so that
at the beginning of the process neither of the fields is
amplified or attenuated and the phase of the fields is max-
imally changed [Fig. 1(b)].

In this second case (Fig. 9) something special happens:
the phase of E, increases with approximately half the
rate of change in phase of E; if go(n)> Ak. This can be
explained in the following way. The interaction starts
with the situation as depicted in Fig. 1(b). In the case
when g,(7) is substantially larger than Ak, the phase of
E? will increase more rapidly due to dE, than the phase
of E; due to dE§ and dE'. This leads to the situation as
depicted in Fig. 1(a). In this situation the amplitude of
E, increases and the amplitude of E; decreases with the
result that dE | becomes smaller and dE; becomes larger.
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The consequence is that E, catches up with E? and again
the situation of Fig. 1(b) arises. Now dE; is large and
dE, small, so that E; overtakes E? and the situation of
Fig. 1(c) arises. In this situation the amplitude of E| is
attenuated and the amplitude of E; is amplified so that
gradually dE, becomes larger and the phases of E{ and
E, become equal again. In this manner E? and E; are
constantly overtaking each other and their phases remain
approximately equal for the whole interaction distance.

This phenomenon takes place independently of the am-
plitude of E,. It did not occur in the first case (Fig. 5) be-
cause the initial phase difference causes E; to be very
small at the point where the phases of E} and E; become
equal to each other. The consequence is that dE| cannot
become large enough to let the phase of E? increase with
respect to E4. In this situation the phase of E; increases
compared to E? during the whole interaction.

When g, <Ak, which is the case for the point
represented by the dotted line, dE | is never large enough
to keep the phase of E? up with the phase of E;, regard-
less of the initial phase difference. In the case the evolu-
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FIG. 10. Calculated phase profiles of the pulses at 1064 and
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Gaussian-shaped pulses is 10 ps for both pulses and the phase
mismatch is 7.5 cm~'. The initial intensities in the centers of
the pulses are 100 MW/cm? for the pulse at 1064 nm and 1
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tion of the phase is very similar to that of Figs. 3(a) and
5(a).

In Figs. 10(a) and 10(b) the phase profiles of E; and E;
are presented for the two initial phase differences. Spe-
cial points in these profiles are the points where g, is ex-
actly equal to Ak. The phase of E; is higher for A¢=0
than for A¢= — /2 because in the first case, the orienta-
tion of dE; is always such that it increases the phase of
E,, while in the second case there are intervals in which
it decreases the phase of Ej;.

If Ap=0, the phase difference between the center and
the wings is large for both interacting pulses and thus
gives rise to a large frequency chirp. This chirp, howev-
er, contains large frequency peaks because the phase
profile is not very smooth.

When the phase mismatch and the initial phase
difference are such that the phase of E? is increased with
respect to E; at the beginning of the process, the phases
of E% and E, will remain approximately equal during the
whole process as described above. It can happen, howev-
er, that the phase mismatch and the initial phase
difference are such that the phase of E? would increase
with respect to E, if only dE, and dE4 would be taken
into account, but if dEY is also taken into account the
phase of E$ decreases with respect to E;. In this case the
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phases of E? and E still remain approximately equal, but
the process takes place in the opposite direction. If the  change in phase of E; due to the phase mismatch and the
initial phase difference is zero and Ak is only slightly interaction is exactly equal due to the change in phase of
smaller than g,(7), the phase of E} will now become ini-  E? due to the interaction. If the initial phase difference is
tially smaller than E; due to the large dE} [Fig. 11(a)],  zero, the amplitudes in these points do not change and
with the result that the amplitude of E, initially de- the phases of E2 and E; remain exactly equal to each
creases [Fig. 11(b)]. other during the whole process.

There can be two points in the pulse for which the
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FIG. 12. Calculated phase and intensity profiles and spectra of the pulses at 1064 and 532 nm after an interaction length of 2.5 cm
LiNbO;. The initial delay of the pulse at 1064 nm is 6.535 ps in the case represented by the dotted line. The pulse duration of the ini-
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pulses are 100 MW /cm? for the pulse at 1064 nm and 1 GW/cm? for the pulse at 532 nm. The initial phase difference between the
fields is —7/2.
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E. E; > E, and different group velocities

The phase modulation of the pulses is the result of
their interaction. It can be expected that this interaction
and thus the modulation changes if the group velocities
of the pulses are different. In Fig. 12 the phase and inten-
sity profiles and the spectrum of the interacting pulses are
presented if there would be no difference in group veloci-
ty, if there are group velocity differences, and if there are
group velocity differences and the pulse at w, is initially
delayed with exactly half the difference in time the pulses
need to travel through 2.5 cm LiNbO;.

In the second case the modulation mainly takes place
in the front wing of the slower pulse at w; and the rear
wing of the faster pulse at w,. This leads to a shift in cen-
tral frequency of both pulses. The frequency of the pulse
at w, will shift to lower frequencies because the phase is
higher in the rear wing than in the center and the front
wing of the pulse. The frequency of the pulse at w; will
shift to higher frequencies because the phase in the front
wing is higher than in the rest of the pulse.

In the third case the pulse at w, travels along the pulse
at o, during the interaction and is an exactly equal
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amount of time behind the pulse at w, in the end of the
interaction as it was ahead of this pulse in the beginning
of the interaction. In this case the phase of E, is modu-
lated mostly in the beginning in the front wing, in the end
in the rear wing. For the phase of E; it is just the other
way around. The net effect is that the pulses are mostly
modulated in the center and the total phase profiles of the
pulses are somewhat broadened compared with the first
case in which there is no initial delay and no difference in
group velocity. The maxima of the phase modulations
will also be lower than in case without group-velocity
differences [Figs. 12(a) and 12(d)], so the pulses will be
less spectrally broadened [Figs. 12(c) and 12(f)].

F. E; << E, and different group velocities

This process has been studied previously by several au-
thors. 19262939 1t has been shown that if the difference in
time the pulses need to travel through the nonlinear ma-
terial exceeds the pulse duration of the pulse at w, and
the process takes place with a significant phase mismatch,
a two-peak structure for the pulse at w; results. This
structure is the result of the fact that the light that is gen-
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FIG. 13. Calculated phase profiles of the pulses at 1064 and 532 nm and intensity profile and spectrum of the pulse at 532 nm for
three values of phase mismatch after an interaction length of 1 cm LiNbO;. The pulse duration of the initially Gaussian-shaped pulse
at 1064 nm is 1 ps and the initial intensities in the center of the pulses are 4 MW/cm? for the pulse at 1064 nm and 0 W/cm? for the
pulse at 532 nm. The initial phase difference between the fields is equal to —7/2.
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erated in the front wing of the pulse at o, destructively
interferes with the light that is generated in the rear
wing. The final pulse will thus mainly consist of light
that is generated in the rear wing at the beginning of the
process and light that is generated in the front wing at
the end. In Fig. 13 the phase profiles of E, and E;, and
the intensity profile and the spectrum of the pulse at w;,
are presented for three values of phase mismatch. The
phase of E; increases rapidly over the two-peak struc-
ture. This increase is caused by the fact that the light in
the rear part of the pulse was generated at the beginning
of the process and has accumulated a higher phase due to
the positive phase mismatch than the light that has just
been generated at the front part of the pulse.

For higher values of phase mismatch this accumulated
phase difference is also higher. The phase difference and
the delay between the two peaks can be set by varying the
phase mismatch and the interaction length. This implies
that the two-peak structure might be used in phase-
sensitive pump-probe experiments.

The phase modulation of the pulse at o, is a direct
consequence of the phase modulation of E;. The phase
difference between E; and E, determines whether the
phase of E, is increased or decreased. For higher values
of phase mismatch, the phase of E; passes through more
phase intervals and the phase profile of E, acquires more
oscillations. The central frequency of the pulse at w; is
shifted because the phase of E; increases over the pulse.
The spectrum of this pulse consists of fringes (Ramsey
fringes), which is caused by the fact that the pulse mainly
consists of two peaks. The spacing of the fringes is
defined by the inverse of the time delay between the two
peaks.

IV. DISCUSSION

The analytical and numerical results show that the
phase modulation in second-order nonlinear-optical pro-
cesses depends on the phase mismatch, the initial phase
difference, and the parameters of the incoming fields. Of
these parameters, the intensities of the pulses w, and w;,
and especially the ratio of these intensities, are very im-
portant for the character of the modulation. The pulse
duration is only important for the phase modulation if
there is a significant difference in group velocity between
the interacting fields. If the group velocities are equal,
the phase difference between the center and the wings of
the pulse is independent of the pulse duration. The
consequence is that the factor by which the bandwidth is
increased does not depend on the pulse duration, in spite
of the fact that the chirp and the spectral bandwidth of
the pulses are both inversely proportional to the pulse
duration.

If the group velocities are equal, the phase modulation
can easily be scaled by multiplying the coupling terms of
the fields on the right-hand side of Egs. (5)-(7) with the
same factor. This implies that all electric fields and the
phase mismatch should be multiplied with the same
value. If the interaction distance is multiplied with the
inverse of this scaling factor, the same phase modulation
results as before scaling.
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If the group velocities are different, the phase modula-
tion is no longer independent of the pulse duration and
the pulse duration should also be multiplied with the in-
verse of the scaling factor in order to obtain the same rel-
ative delay between the pulses during the interaction as
before scaling. Like the ratio of intensities, the influence
of the initial phase difference on the phase modulation
cannot be scaled. However, this phase difference is only
crucial for the character of the modulation if the phase
mismatch is smaller than the exponential gain factor g
defined for parametric amplification.

The phase modulation generated in second-order
nonlinear-optical processes differs in many aspects from
that generated with third-order processes. In the first
place, the amount of phase modulation in a second-order
process like parametric amplification scales with the
square root of the intensity of the strongest pulse, while
in SPM and IPM it scales linearly with intensity.

Second, the amount and sign of the modulation can
very easily be tuned in second-order processes by rotating
the nonlinear crystal. In a third-order process, the
amount of modulation can only be tuned by varying the
intensity or the interaction length and a positive modula-
tion can only be changed in a negative one by replacing
the nonlinear material for an absorbing medium in which
the nonlinear refractive index can be negative.

In the third place the pulse modulates its own phase in
SPM whereas in IPM and in second-order processes the
phase is modulated by the interaction with another pulse.
The advantage of SPM is that the modulation is not
influenced by a difference in group velocity between the
pulses, so that even for very short pulses the phase can be
modulated over a long interaction length. We showed in
Sec. I1 E that this problem can partly be circumvented by
giving the fastest pulse an initial delay so that this pulse
is an equal amount of time ahead of the slowest pulse at
the end of the crystal as it was behind in the beginning.
However, the difference in group velocity between the
pulses limits the interaction length in which the pulses
overlap and thus poses an upper limit to the amount of
phase modulation.

In the fourth place, second-order processes can be
efficient in generating a phase modulation with relatively
low intensities and short interaction lengths because the
x'% of nonlinear crystals is in general much higher than
the nonlinear refractive index. For LiNbO;, the value of

2) is equal to 1.16 X 10~ !! m/V (Ref. 27) when the po-
larization is taken parallel to the optical axis. The non-
linear refractive index of LiNbO; is estimated to be
1X107" esu=1.39X1072' m*/V23' In order to com-
pare the third-order modulation with the second-order
modulation, we calculate the phase modulation of a 1-
GW pulse at 532 nm in a 5-cm LiNbO; crystal due to the
nonlinear refractive index with the following equation:*?

(UnzIL

—, (23)
4meycny

with n, the nonlinear refractive index, I the intensity, L
the interaction length, 1/47me,=9X 10%, ¢ the velocity of
light in vacuum, and n, the extraordinary refractive in-
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dex of LiNbO; (equal to 2.2345). It follows that the
phase is modulated with 0.11 rad, which is in general
negligible to the modulation of the phase in a phase-
mismatched second-order process.

Considering these differences between second-order
and third-order processes, we conclude that second-order
processes are very useful in experiments in which the gen-
erated phase modulation should be tunable and in experi-
ments in which the intensity is rather low. For very short
pulses and high intensities, SPM is more useful because
this process is not influenced by group velocity effects
and the phase modulation increases linearly with intensi-
ty.

V. CONCLUSION

In this paper we have shown that second-order
nonlinear-optical processes may lead to a phase modula-
tion of the interacting pulses. This phase modulation can
be qualitatively explained when the fields and the
differentials in the fields are plotted in the complex plane.

It turns out that if the processes take place with a
phase mismatch, the interaction leads in almost any case
to an accumulation of phase difference between different
parts of the pulse. Only in the case where the field at an-
gular frequency w,; does not change due to the interac-
tion, no accumulation of phase difference occurs. When
the field at w; is more intense than the one at »;, the in-
teraction leads to a linear chirp on both pulses.

If the phase mismatch is smaller than the exponential
gain factor g, defined for parametric amplification and
the initial phase difference between the fields is small, the
phase modulation can become very large and the amount
of phase modulation of the field at », is approximately
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half the amount of the field at w;. This implies that in
the center of the pulse the phase mismatch is fully com-
pensated by the interaction.

If the group velocities of the interacting pulses are
different, the phase modulation leads to a change in cen-
tral frequency. This shift can be avoided by giving the
pulses an initial delay. If the intensity of the field at w; is
initially small and the difference in group velocity is
large, the combined effects of phase mismatch and
difference in group velocity lead to the generation of a
two peak structure for the field at w;. The phase
difference between the two peaks depends on the phase
mismatch and the interaction length. The sign and
amount of the phase modulation in second-order optical
processes can be easily tuned by rotating the nonlinear
crystal and the modulation can be generated with rela-
tively low intensities and short interaction lengths com-
pared to third-order processes.

Finally, we conclude that second-order nonlinear opti-
cal processes offer a useful tool to modulate the phase of
short optical pulses. This modulation may be used for ex-
perimental applications in pulse compression, frequency
conversion, and phase-sensitive pump-probe experiments.
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