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Parametric motion of energy levels: Curvature distribution
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We study the statistical properties of the distortions of irregular energy spectra when a perturba-
tion parameter is varied; for example, the strength of an external field acting on the bounded quan-
tum system. Three kinds of generalized Calogero-Moser (GCM) classical Hamiltonians are shown

to rule the parametric motion of the energy levels in orthogonal, unitary, and symplectic systems.

Using these GCM Hamiltonians, we construct a Newtonian theory of ensembles where irregular
spectra are correlated with the properties of infinite gases of GCM particles. In this dynamical ap-
proach, the results of random matrix theory are recovered. Furthermore, we are able to study para-
metric properties of irregular spectra such as the level curvature defined by the second derivative of
a level energy with respect to the perturbation parameter. We prove that the level curvature density
of the orthogonal, unitary, and symplectic systems decreases, respectively, as K~ ', ~K~, and

~K~
' for large curvature ~K~. We present numerical results supporting our theoretical analysis and

suggesting the universality of the curvature distribution. The relationship of the curvature distribu-
tion to the spacing distribution, as well as the possible experimental observation of the curvature
distribution, is discussed.

I. INTRODUCTION

Several recent experiments have been concerned with
the motion of the energy levels of bounded quantum sys-
tems when a parameter is varied. The observed systems
are, for instance, atoms or molecules in an external static
electric or magnetic field. '

In the absence of the perturbation the Hilbert space of
the quantum system is often separated into one-
dimensional linear manifolds labeled by the quantum
numbers of the constants of motion. However, these
manifolds become intermixed when the perturbation is
switched on, and categorization of the energy levels with
a complete set of constants of motion is not possible.
Then, the energy spectrum is characterized by a multi-
tude of avoided-level crossings or repulsions of adjacent
energy levels. (If the perturbed system retains some sym-
metries, the desymmetrized spectra should be considered
so as to suppress the true crossings. ) These avoided
crossings lead to an irregular spectrum whose description
requires a statistical study of the energy levels.

Irregular spectra have been the subject of many recent
studies, the results of which show that they usually arise
in classically nonintegrable and chaotic systems. Such
spectra are characterized by several statistical quantities:
the spacing distribution, the static correlation function,
the spectral rigidity, all of which are suggested by ran-

dom matrix theory and which have been measured ex-
perimentally. The studies cited concern systems where
the perturbation parameter is fixed once and for all.

However, there have been only a few studies of the
parametric properties of irregular spectra such as can be
observed in diagrams where the energy spectrum is plot-
ted versus the perturbation parameter. Several authors
have used the second difference of the eigenvalues with

respect to the perturbation parameter ~,

AE,
K, =E,(r)= lim

~.--O g&'
(1.2)

In fact, the curvature in (1.2) takes particularly large
values for a pair of levels at avoided crossings and consti-
tutes a nice hallmark of the quantum analog of classical
nonintegrability. This paper develops a statistical theory
of such parametric properties for irregular spectra in or-
der to reveal general laws of wide applicability. In this
approach, we shall derive the tail of the probability distri-
bution of the curvature and give arguments suggesting its

b, E; =E;(r+b, r) 2—Ei(r)+E,—(r hr), —

to characterize the effect of classical nonintegrability on
the corresponding quantum spectrum; in particular, for
the Henon-Heiles system. We shall call this parametric
quantity the curvature, after taking the appropriate limit:
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universality. The statistical theory we develop is a gen-
eralization of the random matrix theory to systems de-
pending on a perturbation parameter. Accordingly, we
recover from our analysis the results of random matrix
theory.

In Sec. II we define the curvature distribution and we
give one example of it. In Sec. III we display the equa-
tions of motion of the eigenvalues IE, (r)) when the pa-
rameter ~ is varied. In Sec. IV we define the ensembles
of our statistical theory. We confirm that the spacing dis-
tributions for our ensembles are the universal distribu-
tions of Mehta, Gaudin, and Dyson' ' in Sec. V. The
tail of the curvature distribution is calculated in Sec. VI ~

We present numerical results supporting our theory in
Sec. VII and discuss our conclusions in Sec. VIII.

II. CURVATURE DISTRiBUTION

A. De6nition

We consider bounded quantum systems that are either
autonomous or periodically driven. The spectrum is then
represented, respectively, by the eigenvalues {E;(r)) ei-
ther of the energy or of the quasienergy in Floquet's
theory. '5 If a finite set 2 of eigenvalues is chosen, the fre-
quency distribution function of the curvature is defined
by

2(&;7)—: %{E;(r)in 2 such that E, (r) (E{,

The brackets ( ),~
define a semilocal average over a range

of energy where the spectrum is reasonably uniform. The
theoretical justification for this scaling will be given at
the end of Sec. VI. Let us note here that (2.4) is, as re-
quired, dimensionless.

B. Example

We illustrate our definition of the curvature distribu-
tion with the periodically kicked spin system given by the
following single-spin Harniltonian

H = A (S, ) pB—S„Q 5( t —n T), (2.5)

[S„,S ]=ifiS, with S =Pi s(s+1)I, (2.6}

and they act on a (2s+1}-dimensional Hilbert space.
The classical limit is obtained for s~+ ~. The role of
the perturbation parameter is, in this case, played by the
external magnetic field 8. We assign the other parame-
ters the values 3 =1, p=1, T=2m, and Pi=1.

The one-period propagator is the unitary matrix

( t Ih )p BS„—( t ih ) TA ( S )U=e "e

where A &0 is an easy-plane anisotropy, 8&0 is the
external magnetic field along the x axis, and p is the Bohr
magneton. The quantum spin operators S=(S„S,S, )

satisfy the usual angular momentum commutation rela-
tions

(2.1) = g ~m&e &m~, (2.7)
where % denotes the number of elements in the corre-
sponding set. For an autonomous system, 2 contains all
the energy levels below some maximum, E,(r)(E,„.
Because the number of eigenvalues is finite, (2.1) is a step
function which, in general, depends on the parameter ~.
A smooth distribution will be obtained in the classical
limit where the number of eigenvalues in 2 becomes
infinite,

9'(K)= lim 9'(K; J) .
gg /~ oo

(2.2)

For autonomous systems that are bounded at any energy,
it is sufficient to take the limit Em,„~+~. In systems
with a forcing period T, the quasienergy is always con-
tained in [0,2niil/T[, ' so that we must consider other
possible classical limits where the number of quasienergy
eigenstates increases indefinitely (see below).

The density of the curvature distribution is then

(2.3)

when the distribution is smooth enough.
The definition (2.1) is valid when the spectrum is uni-

forrn or assimilable. If such is not the case, the curvature
must be rescaled according to

(E,—E ),
((E, )')„

before calculating the frequency distribution function.

with 2s+1 eigenvalues on the unit circle giving the
quasienergies.

Notinj; the invariance of 8 under the transformation
S,~—S„however, we have decomposed the manifold
into odd- and even-parity parts. We have calculated the
quasienergies corresponding to (2.7) numerically in each
part of the manifold. Only the results for the even-parity
part are given in Figs. 1 —5. Figure 1 shows how they
vary with the external magnetic field for a spin s=16.
The histograms of the spacings {E +, E I are calcu--

lated from diagrams like Fig. 1 and are shown in Fig. 2
for s =64 and in Fig. 4 for the larger spin s =160. The
corresponding histograms of the curvatures are shown in
Fig. 3 for s=64 and in Fig. 5 for s =160. The curvatures
{b E /b, B I were computed using the discrete form
(1.1) of the second-order derivative, with bB =10 . The
size of hB limits the values where the curvature is
confidently calculated to the range (E

~

~ K, with

K, —10. This range can be increased using smaller
values for 58. Another possible method is described in
Sec. VII.

In the absence of a magnetic field, the spectrum is
characterized by the absence of systematic repulsion be-
tween the levels and by a weak curvature [cf. Figs. 2(a),
3(a), 4(a), and S(a)]. Once the magnetic field is switched
on, rare but extremely narrow avoided-level crossings ap-
pear with correspondingly large curvatures. Thereafter,
the repulsion phenomenon dominates the spectrum and
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FIG. 3. Density of the level curvature for the same system as
in Fig. 2 at different magnetic-field strengths: (a) B=O.O, (b)
B=0.5, (c) B=1.0. Note the scale difference in ordinates be-
tween (a) and (b), (c).
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FIG. l. Quasienergy spectrum vs the external magnetic field

B for the pulsed-quantum spin system of Hamiltonian (2.5) with

spin magnitude s=16, and parameter values A =@=8=1and
T=2~. Only the even parity manifold of dimension 17 is de-

picted in the fundamental zone (0 E (1).
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the spacing density vanishes near zero [cf. Figs. 2(b),
2(c), 4(b), and 4(c)]. Simultaneously, the curvature densi-

ty is broadened, reflecting the appearance of avoided
crossings [cf. Figs. 3(b), 3(c), 5(b), and 5(c)].

This observation suggests that the curvature distribu-
tion is intimately related to the spacing distribution. The
smaller the spacing between two levels, the larger the cur-
vature in absolute value. We thus expect that the behav-
ior of the spacing density near zero determines the tail of
the curvature density at large values of the curvature.
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FIG. 4. Density of the level spacing for the same system as in

Figs. 1 and 2 but now with spin magnitude s =160 at different
magnetic-field strengths: (a) B=0.0, (b) B=0.5, (c) B=1.0. In-
set: fivefold refinement of the histogram near zero spacing. The
statistics are now improved. Comparing Figs. 2 and 4, the his-

togram is seen not to converge to a smooth density in the ab-
sence of external field (a), while it does so in the case when the
field is switched on [(b) and (c)]. Note the vanishing of the spac-
ing density near zero spacing showing the level repulsion
phenomenon when the external magnetic field is switched on.
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FIG. 2. Density of the level spacing of the same system as in

Fig. 1 but with spin magnitude s =64 at different magnetic-field
strengths: (a) B=O.O, (b) B=0.5, (c) B=1.0. The cells of the
histogram have a size 6,B=0.2. Inset: magnification of the his-

togram near zero spacing but with fivefold finer cells.

FIG. 5. Density of the level curvature for the same system as
in Fig. 4. Note the broadening of the curvature density in the
presence of the magnetic field together with the same notice as
in Fig. 3.
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III. PARAMETRIC MOTION OF THE LEVELS

In the following, we shall restrict ourselves to auto-
nomous systems; how the following theory can be extend-
ed to periodically kicked systems will be explained in Sec.
VIII. We shall consider systems which depend linearly
on the parameter ~ with a Hamiltonian operator

H(~) =H0+r V, (3.1)

which is Hermitian because its eigenvalues must always
be real. Many physical phenomena can be described by a
Hamiltonian of this form, including the Stark effect and
the linear Zeeman effect.

We assume that the Hamiltonian operator (3.1) acts in
the Hilbert space of fixed quantum numbers correspond-
ing to the few remaining constants of motion, e.g. , the to-
tal angular momentum or the parity, when they exist. In
the absence of further constants of motion which would
diagonalize the energy operator (3.1), the diagonalization
can be carried out by an orthogonal, a unitary, or a sym-
plectic transformation, according to the three universali-
ty classes of Dyson. ' The physical systems contained in
each of these classes are described in Porter's review. '

The matrix elements of the energy operator are then real,
complex, and real quaternion, respectively. Some proper-
ties of such numbers and matrices are briefly reviewed in
Appendix A.

We are concerned in the present paper with the
"motion" of the eigen values, which we denote by
x„(r)=E„(r), co—nsidering the parameter ~ to be a pseu-
dotime. Differentiating both members of the eigenvalue
equation,

H(r)~n, r& =x„(r)~n, r& with &m, r~n, r& =5 „, (3.2)

it can be shown that the parametric motion is governed
by a finite set of first-order differential equations, name-

18—21

Because X is anti-Hermitian, X' „' is real antisymmetric,
while the X '„' (a =1,2, 3) are real symmetric with van-
ishing diagonal elements. For the unitary systems, we
must set X' „' and X' „' equal to zero. For the orthogonal
systems, all X '„', X' „', and X' „' need to be set equal to
zero. Keeping in mind this reduction scheme, we may
consider Eq. (3.9) as providing the most complete
description of the three kinds of systems.

Equations (3.3)—(3.5) are the canonical equations of the
following classical Hamiltonian

N N „1 (g(a) )2

~N —
T XP+l X X

n =1 m n =1 a =0 (Xm
mWn

(3.10}

where v= 1,2, or 4 if the system is orthogonal, unitary, or
symplectic, respectively. The differential equations are
obtained using the Poisson brackets

and

[x,p„I =5 „, (3.1 1)

(3.12)

(3.13)

(3.14}

real quaternion and they can be expanded on the basis of
unit numbers [e0,e„e2,e3 I as explained in Appendix A:

dXn
=pn

dpn"=2
d7.

nm mn

=1 (x —x„)
mWn

dX „ X (X(„d7.
I —1

I&m, n

(x —x, ) (x„—x()

(3.3)

(3.4)

(3.5)
M(a, b1 ~f ~g

k, l, , =1,b =0 ~+kl
(3.16)

(3.15)

where abc represents any cyclic permutations of 123.
The Poisson bracket of a pair of functions of the canoni-
cal variables is then given by

df Bg af ag
ax„ ap„ ap„ ax„

where p„ is the diagonal element of V,

p„(~)= & n, r( V[n, r &,

and the variables L „are the o6-diagonal elements

„(7)—= [x„(7)—x (1.)]&m, 7
~
v~n, 1.&,

of the anti-Hermitian matrix X given by

L = [ V, H(r)] = [ V, H0] = —X

(3.6)

(3.7)

which is ~ independent in any ~-independent basis like in
(3.1). For the symplectic systems, the elements of L are

N(N 1)—
2

(3.17)

canonical variables. The number (3.17) is the dimension
of the phase space of the dynamical system under con-
sideration, which is a generalized Calogero-Moser (GCM)
system. ' Strictly speaking, there exists ' ' another
version of the GCM system in which modified eigenstates

where the M&'I' ' „are the right-hand members of
(3.12)—(3.15).

We conclude that the parametric motion of N energy
levels is governed by
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(rather than IX"„')) are treated as dynamical variables.
While that version may be suitable for describing wave
functions, the present form has the advantage of enabling
us to study the statistical mechanics of energy levels. The
GCM system is completely integrable because any solu-
tion I x„(r)I can be written as the zeros of the rational
function

det(H() +r V xI—) =0 . (3.18)

IV. GENERALIZED CALOGERO-MOSER GAS

A. Grand canonical ensemble

In order to calculate the statistical properties of typical
quantum systems, we need an infinite number of energy
levels. This observation leads us to consider Hamiltonian
operators (3.1) acting in infinite-dimensional Hilbert
space. The eigenvalue spectrum can then be correlated
with a gas of particles moving with the pseudotime pa-
rameter ~. The collisions between particles correspond to
avoided crossings of the levels. In spite of the complete
integrability of the finite GCM system, information may
flow out of any finite interval in the infinite GCM system
where dynamical mixing becomes possible.

To study the GCM gas we need an invariant probabili-
ty density defining a grand canonical ensemble. To sim-
plify the construction, we assume that the energy spec-
trum extends from —(x) to + (x) and is invariant under x
translations with a uniform density p. In complex quan-
tum systems like heavy atoms, molecules, or nuclei, the
level density is usually nonuniform, but for the purpose of
studying the spectral fluctuations the uniform density is
adequate. ' The number of energy levels in any energy
interval of size L large enough is thus assumed to follow,
asymptotically, a Poisson distribution

(4.1)

To construct this grand canonical ensemble we intro-
duce an intermediate canonical ensemble of systems with
N particles in the interval [ L/2, +L/2]. A—t the end
points —L /2 and +L /2 we place hard walls where the
particles undergo elastic collisions. Between the walls the
motion is ruled by the classical GCM Hamiltonian (3.10),
which is used to define a Gibbs measure

1
dMN L-

ZN L

v —1

gdx dp dX(') . (4.2)
1~m (n ~Na=O

The grand canonical ensemble will then be obtained in
the limit where the size L of the box increases indefinitely
while keeping the density p constant. The resulting mea-
sure depends on two parameters: the density p and the
inverse temperature p. The numerical value of the pa-

In order to study the statistical mechanics of the GCM
system in the following sections, we introduce its Liou-
ville measure defined by

v —1

(3.19)
1 m &n Na=O

rameter p is determined from the variance of the veloci-
ties tp„(w) ] of the energy levels:

(p„') —(p„)2=—, (p„)=0.1
(4.3)

If (p„) is different from zero in the observed spectrum,
we should subtract this mean drift of the spectrum from
the motion of the individual energy levels before compar-
ing with the predictions inferred from (4.2).

To fulfill the translational invariance of the grand
canonical measure, we must now verify that a uniform
density of energy levels is obtained for the canonical en-
semble in the limit where L,N~ ~, while N/L remains
constant.

XGX] ' ' dXN

(4.5)

where we set the size of the box to L =2 for simplicity.
The normalizing constant is then given by

(1)(L /2)N+("/2'N'N
N, L N (4.6)

where IN(1) is the integral (4.5) for the function u(x ) =1.
Accordingly, the partition function becomes

( 1 )2N/2[(~/p)1/2L /2]N+( v/2)N( N —1) (4.7)

In random matrix theory, Mehta and Gaudin' ' "
developed methods to reduce integrals like (4.5) to the
Fredholm determinant of an integral kernel composed of
mutually orthogonal functions. The harmonic-oscillator
eigenfunctions are used in the case of the Gaussian en-
sembles for which the joint probability density is (4.4)
multiplied by the weight function exp( —

—,'gkxk ).
Several other ensembles, such as the Jacobi, the
Laguerre, or the Legendre ensembles, have been con-
sidered by changing the weight function in order to use
the corresponding orthogonal polynomials in the reduc-
tion of the integral (4.5) by the Mehta-Gaudin tech-
niques. "' ' In this classification, (4.4) is the joint
probability density of the Legendre ensembles ' because
the weight functions is I so that we need the Legendre
polynomials to calculate (4.5) as shown in Appendix B.
Within the Legendre ensembles (as well as within the oth-

B. Relationship to random matrix theory

After integrating over the variables p and X'„we get
the joint probability density of the energy levels

1
fNL(x, , . . . ,x„)= g ~x,

—x ~"

N, L 1&(&j&N

for L /2 ~ x—; ~ +L /2, (4.4)

which we recognize to be the joint probability density of
random matrix theory. "'

The normalizing constant of (4.4), the level density, as
well as the spacing distribution, are all calculated starting
from the generating functional defined by
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ers), the exponent v=1,2, or 4 defines the orthogonal, the
unitary, or the symplectic ensemble, respectively.

The Legendre unitary ensemble was studied by Leff
and we refer the reader to his paper for this case. We
present in Appendix B a detailed derivation of the nor-
malizing constant, the level density, and the spacing dis-
tribution for the Legendre orthogonal ensemble. In this
way, we prove that the spacing distribution of Gaudin,
Mehta, and Dyson' ' applies to the Legendre orthogo-
nal ensemble, confirming the universality hypothesis. ' '

Furthermore, this analysis enables us to construct the sta-
tistical mechanics of the GCM gas.

From Appendix B, we obtain the following results
which concern the Legendre orthogonal ensemble. The
normalizing constant is

2 2 4 6

p„E(S)= S — S"+ S +
3 45 315

(5.4)

with now a quadratic repulsion. Assuming the universal-
ity of the different ensembles, ' ' we conjecture that the
spacing density for the Legendre symplectic ensemble
will be the Mehta-Dyson form

24 4 27 6

4725
(5.5)

2
7T 7T 3 7T 4 fTpoE(S)= S S + S + S + . . (5.3)
6 60 270 1680

This result completes the proof by Leff that the spacing
distribution for the Legendre unitary ensemble is the cor-
responding universal one"

N 2k(k1 )2
JVN2=IN(1)=2 AN with AN= ff

k=0 (2k)'
(4 g) with a quartic repulsion. We shall need these results in

Sec. UI.

so that the partition function for the orthogonal systems
( v = 1 ) behaves like

Z 23N/2[( /P)1/2L /4](1/2)N(N+1) for N (4 9)

The level density is approximately given near x =0 by

VI. TAIL OF THE CURVATURE DISTRIBUTION

From the definition (1.2) of the curvature, we observe
that the curvature of the level x((r) is identical to its ac-
celeration given by (3.4), so that

oNL(x)= [1—(2x/L) ] ' for N~~,
aL

(4.10)
'BANK—:X)(r)=—
()X

1

(6.1)

while it rises to

( )
N(N+1)

(4.1 1)

near the walls of the box where the levels accumulate be-
cause of the Wigner repulsion. Inside the box and far
from the walls the level density (4.10) is linear in N, in
contrast to the level density for the Gaussian ensembles
which has the disadvantage of increasing like N' . Con-
sequently, we define the density by

ZNp:— (4.12)

V. SPACING DISTRIBUTION

when we take the thermodynamic limit, N, L~ ~ with
N/L =const, to reach the grand canonical measure.

The probability density for the curvature of x
&

to take
the value K is then defined by

P(K):— lim PN L (K),
N/L

N/L =const

with

(6.2)

()&N
PNL(K)=—J5 K+ dMNL

BX 1

(6.3)

where dMN L is the Gibbs measure (4.2).
In the following, we shall calculate the asymptotic ex-

pansion of the probability density (6.2) when K is large.
By this approach, we evaluate the probability for rare
large curvatures to occur in the parametric motion of the
energy levels in irregular spectra. From Eq. (3.4), the
equation

'BA
K+ =0,

BX1

Given the large amount of interest focused on the spac-
ing distribution it is important to derive it carefully in the
present formalism. Working with the dimensionless
spacing between two nearest-neighbor levels x„&x„+, ,

"
(6.4)

possesses N —1 roots Ix',"'I for any value of K. These
zeros can be evaluated when K is large, positive, or nega-
tive, because (6.1) is a function of x, which diverges in

the vicinity of each level different from x, . Choosing K
positive we obtain

1/3
(k) + y (~(a))2

K

(5.1)S= (spacing/mean spacing ) =p(x„+1—x„),

(6.5)

d 6'(S)
dS

(5.2)
Consequently, we get

the spacing density p(S) is the second derivative of the
probability ( (S) that an interval of size S is empty of ei-
genvalues"

We prove in Appendix 84 that C(S) is identical, for the
Legendre orthogonal ensemble, to the universal function
obtained by Gaudin, Mehta, and Dyson for the Gaussian
and circular orthogonal ensembles, namely, ' "'

PNL(K)= g J 5(x) —x, (K))dMNL,(~)

1, =2

(6.6)
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with

t}9fN
—l /3

(k)
) 3 y (~{a)}2

l ~4 lk
Xl a

(6.7}

the Holtsmark distribution. Whether they are infinitely

divisible distributions is an open question.

VII. NUMERICAL RESULTS

~N, L 2' '(v+2)!
N L ~ P„+1K„+2

N, L
(6.8)

where JUN L is the normalizing constant (4.6) and A4N L is
the integral (C6) given in the Appendix C. The ratio of
these latter quantities can be rewritten as the following
mean value over the joint probability density (4.4):

Introducing the expression (4.2) for the measure and
carrying out a straightforward integration, the details of
which are given in Appendix C, we obtain

—
OT 0 o dH(oj

1~k~ V

v —
1

II II dH"
l ~k (1~Na =0

(7.1)

and

In order to check the asymptotic expressions
(6.11)—(6.13) for the curvature densities, we need good
statistics for the energy levels. Accordingly, we carried
out a numerical simulation with an ensemble of paramet-
ric systems (3.1) with random real, complex, and real
quaternion Hermitian matrices H0 and V taken in Gauss-

ian ensembles of density" '

JKN L 5(x, —xk )

Ix, —x~ I" )
(6.9)

A v —l

C,. "'"' g dV,".„'
l ~k N l ~k &1 Na =0

(7.2)

In the thermodynamic limit, and far from the hard walls,
this expression is related to the spacing density at zero
spacing by

lim
' =p"+'limS "p(S)=D„p"+'

N, L ao JUN L S~O
N/L =const

(6.10)

where p is the level density and the constants D are
determined from Eqs. (5.3)—(5.5) (cf. Appendix C2 and
cf. Ref. 27 for the case v=1). The result is similar for
negative K.

Finally, the tail of the curvature distribution is given
for each ensemble by

'2

N

X„=2 g
m=l
mWn

v —l (
V(a) )2

, =0 Xn Xm
(7.3)

where the Ix„] are the eigenvalues of the matrix Po. Be-
cause the probability density (7.2) is invariant under any
orthogonal, unitary, or symplectic transformation
V~ W 'VW, the matrix elements V'„' of V in the basis

where we fixed a0= —,
' and a, =

—,', . C0 and C, are the
normalizing constants. The spectra of these systems are
already irregular at ~=0. A suitable shift of the origin of
~ always guarantees this situation. We can calculate the
curvature of each level thanks to the second-order pertur-
bation formula

1
PoE(K ) = + (6.11) 10000— I I I I I I I I I I I I I I I

3

P (K}=2 2r + +1

P K' (6.12)
1000 =

2l3~4
PsE(K) =

3

5

1 + 0 ~ ~

K' (6.13)
100 =

for large ~K~. We note that the powers of the parameters
f3 and p are consistent with the fact that the dimension-
less curvature is 10 =

PK/p . (6.14)

This result provides the justification for the scaling (2.4)
needed when the spectrum is nonuniform.

The curvature distributions (6.11)—(6.13}are normaliz-
able so that they have a probabilistic interpretation.
Their mean value is zero because the densities are sym-
metric under K~ —K. The variance is infinite for the
orthogonal ensemble but finite for the unitary and the
symplectic ensembles.

Because the level curvature is the acceleration of a par-
ticle in the GCM gas, the curvature distribution is the
analog of the Holtsmark distribution for a gas of stars in-
teracting by gravitation. However, the present distribu-
tions are not stable in the sense of Levy, as is the case for

GOE

10
I I I I I III I I I I I I I I

1000

FIG. 6. Density of the level curvature (in absolute value) ob-
tained from 50 pairs (Ho, V) of random (200X200) real sym-
metric matrices taken in the Gaussian orthogonal ensemble
(GOE) described in Sec. VII. The histogram of the absolute
value of the level curvature is constructed with cells of size
K~K~ =40. The histogram is plotted in logarithmic scale. The
solid line has a slope —3.
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10000—

1000 =

l I l I I I t t I t I I 5 1 I I that the curvature distribution is independent of the de-
tails of the ensembles when the conditions defining the
Dyson universality classes' are met.

VIII. CONTI. USIQNS

100 =

10 =

GUE

10

I I I I I I I I

100 1000

FIG. 7. Density of the level curvature (in absolute value) ob-
tained from 50 pairs of random (200X200) complex Hermitian
matrices taken in the Gaussian unitary ensemble (GUE). The
solid line has a slope —4.

10000- I I I I I III I I 1 I I III

1000 =

100 =

10
I I I I I I I I

100 1000

FIG. 8. Density of the level curvature (in absolute value) ob-
tained from 50 pairs of random (100X 100) real-quaternion Her-
mitian matrices taken in the Gaussian symplectic ensemble
(GSE) (see Sec. VII). The solid line has a slope —6.

of eigenstates of Ho have the same Gaussian density

The histograms of the absolute values of the curvature
were then calculated for the orthogonal, unitary, and
symplectic ensembles, and plotted in Figs. 6, 7, and 8, re-
spectively. Each figure also shows the theoretical slope
expected from Eqs. (6.11)—(6.13) for logP(K ) versus
log~K~. The agreement is excellent.

We note that the Gaussian ensembles used for this nu-
merical calculation are not the Legendre ensembles used
in the theoretical calculation. The agreement suggests

In this paper we have obtained the tails of the curva-
ture densities [given by Eqs. (6.11)—(6.13)] for the orthog-
onal, unitary, and symplectic ensembles. The detailed
calculation we give here confirms the elementary deriva-
tion of the tail function based on the assumption that the
curvature of a level is determined by its nearest neigh-
bors. Indeed, the second-order perturbation formula (7.3}
suggests that K-S '. If the spacing density behaves
like S near S=O, the curvature density then decreases
like ~K~

" for large ~K~, as obtained previously. This
close relationship between both distributions leads us to
conjecture that the distributions of the dimensionless cur-
vature (2.4) or (6.14) are universal, as the spacing distri-
butions within the three universality classes of
Dyson. ' '

Although the present theory concerns autonomous
quantum systems (3.1), the extension of the results of
Secs. III-VI to periodically kicked quantum systems like
(2.5) is possible. The statistical mechanics of quasienergy
levels for periodically driven systems has recently been
investigated in Ref. 29. Nakamura and Mikeska showed
that the parametric motion of the quasienergy eigenval-
ues is governed by the Sutherland system of differential
equations. ' Gibbs ensembles based on this classical
Hamiltonian reduce to the Dyson circular ensembles of
random matrix theory. ' ' The grand canonical ensem-
ble of the infinite GCM systems defined in Sec. IV is
recovered in the limit where the number of quasienergy
eigenvalues becomes infinite on the unit circle, so that we

expect that the curvature distributions (6.11)—(6.13) also
hold for periodically kicked systems with many level ir-
regular spectra.

We believe that these curvature distributions can be ex-
perimentally observed in the spectra of atomic or molecu-
lar systems in an external electric or magnetic field. ' '

The curvature distribution can be constructed from ener-

gy spectra taken with at least three close values of the
external field. The determination of the tail exponent re-
quires, typically, several hundred level curvatures. The
statistics can be improved by measuring the curvature of
the same levels but at several different values of the exter-
nal field, values which are sufficiently separated from
each other. Moreover, the use of the distribution func-
tion 9'( ~K ~) rather than the density is recommended be-
cause we thus avoid the problem of choosing a good cell
size for the histogram. From Eqs. (6.11}—(6.13), we
deduce that

log[1 —9'( ~K ~ )]
log/K /

The measurement of such statistical quantities intro-
duces a new way of describing irregular spectra. If the
level spacings or the spectral rigidity were determined by
the spectrum with the perturbation parameter ~ fixed
once and for all, the curvature would provide a charac-
terization of the sensitivity of the irregular energy spec-
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trum to variation of a perturbation parameter. In partic-
ular, the theory developed in the present paper completes
the Brownian motion model approach proposed by
Dyson. ' Interpreting the perturbation parameter z
as a pseudotime, a Newtonian theory of ensembles based
on the GCM Hamiltonian (3.10) can now be constructed,
thereby filling a missing link in the program started by
Dyson. Indeed, if stochastic Brownian motion describes
the trajectories x„(r) of the GCM gas on a large scale,
the here-defined curvature (or acceleration) distribution
describes the small-scale differentiable structure of the
energy-level trajectories.

On the other hand, new ensembles can now be invented
and numerically implemented. In particular, the Legen-
dre ensembles can be simulated by the numerical integra-
tion of the GCM differential equations for X particles in a
box of size L with hard walls. We also remark that the
parametric distortions of an irregular spectrum are
characterized here by a temperature p ' which is natu-
rally interpreted as the variance of the velocity of the en-
ergy levels when the parameter r varies [see Eqs. (4.3)].
Accordingly, the present Newtonian ensembles distin-
guish the temperature p from the exponents v labeling
the universality classes of Dyson, albeit both are identical
in the Coulomb gas model.

Furthermore, the introduction of the pseudotime ~ in
addition to the pseudoposition x introduces a new ergod-
ic property of infinite GCM systems, defined by the
equality of an ensemble average and a pseudotime aver-
age. This ergodic property is different from the ergodici-
ty defined when an ensemble average equals a pseudoposi-
tion average, which has been previously considered in
random matrix theory. The new pseudotime ergodicity
is known to exist for the ideal gas and the harmonic solid,
both of which share several features with the GCM gas.

Finally, the level curvature plays an important role in
the magnetic susceptibility. In a random medium or in
size-effect quantum systems, the statistical properties of
the parametric motion of the energy levels are required
for the prediction of magnetic properties.

ACKNOWLEDGMENTS

P.G. is grateful to Professor G. Nicolis for his support.
P.G. would like to thank the National Funds for
Scientific Research (Belgium) for financial support.

APPENDIX A: QUATERNIONS

Real quaternions are real linear combinations of the
unit numbers [eo, e&, ei, e&I which satisfy the multiplica-
tion rules" '

eo =eo, e,+= —e, (a=1,2, 3) . (A3)

If A is a matrix with real quaternions elements, its Her-
mitian conjugate has the elements

(A ),„„=(A)„ (A4)

The complex numbers form a subset of the real quater-
nion numbers where the components of e2 and e3 are
zero. We may then use the standard notation with the
identification eo:—1 and e, =—(

—1)', whereupon the
Hermitian conjugacy reduces to complex conjugacy. The
real numbers form a subset of the real quaternions where
the components of e], e2, and e3 are zero.

APPENDIX B: LEGENDRE ORTHOGONAL
ENSEMBLE

The following calculations follow closely Chap. 5 of
the book by Mehta. " However, the extrapolation to the
Legendre orthogonal ensemble is not straightforward.
The main difficulty is the nonvanishing of the Legendre
polynomials at the boundaries of the interval [ —1, 1], al-
beit the harmonic oscillator eigenfunctions used for the
Gaussian ensembles vanish at the boundaries of their
domain of definition, namely (

—~, ~ ). In order to over-
come this problem, further manipulations are needed.

In this appendix, we set L =2 so that the energy levels
are confined in the interval [ —1, 1]. To treat the Legen-
dre orthogonal ensemble, we choose the exponent v= 1 in
the generating functional I~( u ) given by Eq. (4.5).
Furthermore, we restrict ourselves to even values of the
number N of energy levels to simplify the calculations.

1. The generating functional

We summarize the different steps required to integrate
(4.5).

(a) The domain [—1, 1] is decomposed into te N! sub-
domains where the variables [x, I are ordered. Because
the integrand of (4.5) is a symmetric function, Iz(u ) is
equal to N! times the integral of the same integrand but
over anyone of these subdomains. For definiteness we
choose

R =I —1&x, &x, «x~&1]. (Bl)

Because the variables are now ordered, the product
g;, J ~x,

—xj ~
is equal to the Vandermonde determinant

det[(x, }' '],

(b) Using the property of the Legendre polynomials
that

and

eoe, =e,eo=e„e,eb = —ebe, =e, ,

(A1)

(A2}

P„(x)= '
x "+0{x" '),(2n )!

2ll( f )2

the integral (4.5) becomes

(B3)

where abc is a cyclic permutation of 123. These unit
numbers can be represented by 2 X 2 matrices with com-
plex elements. "' The Hermitian conjugates of these
unit members are defined by

I~( )=uN! A~, f . f det[u(x;)P, , (x, )]..
Xdxi . dx~,

with

(B4)
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N —1 2k(k1)2

(2k )1
(85}

x
fz, z, ,

= . I dx f dy u(x)u(y)

(c) (84) can then be expressed as a Pfaffian (cf. Refs. 10
and 11)

X [Pz;(x )Pz (y )

P—
z; (y )P z, (x )], (811)

IN ( u ) =Nl ~ N 1[de—t(fkl )k, I =0, . . , N . 1]'—

with

fk(= I dx J dy u(x)u(y)[P„(x)Pl(y)

(86) 1
f2l l, zj 1 (4 1)(4 ~

X f dx f dy u(x)u(y)[P2, (x)Pz (y)

+ +3P, (x ), (89)

and forming linear combinations of lines and columns,
det(fkl ) is transformed into det( fkl ) with the elements

fz; zj
= f dx f dy u(x)u(y)[Pz, (x)Pz, (y)

Pk (y—)P, (x )] . (87}

The indices k and l are separated into even and odd num-
bers by permutations of lines and columns in det(fkl ) so
that the indices are ordered like

k, 1=0,2, 4, . . . , N 2; N——1, 1,3, . . . , N 3. —(88)

Note that the odd integer N —1 is placed in front of the
other odds in order to deal with the nonvanishing of the
Legendre polynomials at +1, as will appear below.

(d) Using the property of the Legendre polynomials
that

Pz (x ) =(4j —1)Pz, (x )+(4j —5)P2, (x )

(2l + 1 )(2!+ 3) fkl — fk N (813)

The column fk N 1
is replaced by fk N, . S—imilar

transformations { are carried out on the lines
k=N —1, 1,3, . . . , N —3. All the lines are then divided
by 4. Accordingly,

'2
2N

det( fk() =
3XSX7X X(2N —3)(2N —1)

~ljglJ
Xdet

gJl I lJ
(814)

Pz;(y—)Pzj(x )] .

(812}

(e) The columns fkl with1=1, 3, . . . ,N —3 are replaced
by

2l (y )Pzj(x }] (810) where

&j = ,' J
'

dx-j"dy u(x)u(y)[pz, (x)pzj(y) —pz, (y)p, .(x)]=—g. (815)

f dx f dy u(x)u(y)[p„(x)pz, (y) —P„(y)ltz, (x)],4j+1 & x
(816)

P;j = I dx dy u(x)u(y)[pz, (x)pz (y) —
$2,. (y)pzj(x)]= —p

(4i + 1)(4j+1) 1 x
(817}

with

$,.(x)=P', (x) P' (x), i,j. =0—, 1,2, . . . , N/2 —1 .

(818)

2. Normalizing constant

This constant is obtained by using the function
u (x ) = 1 in (815)—(817). We obtain

IN(u ) =2 AN det

]/2
lJ RlJ

gjl PlJ
(819)

We remark that the line and the column labeled by k or
1=N —1 in f„, are transformed into the column j =0 of

g; and p; as well as the line i =0 of p; . They are not
further separated from the other columns and lines in the
notation of Eqs. (816) and (817). In this way, we are able
to calculate exactly the generating functional of the
Legendre orthogonal ensemble.

(f) Finally, the integral (4.5) becomes

~ij I iJ ~ gij ~ij (820)

which justifies by its simplicity the previous manipula-
tions. Accordingly, the normalizing constant is given by
Eq. (4.8).

3. Level density

Dyson showed that the level density as well as the n-
leve1 correlation functions are obtained from the func-
tional derivatives with respect to the function a(x } of the
functional (819), where the function u(x ) is replaced by
1+a(x ).' In particular, the level density is given by"
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I~(1+a )

5a(x ) I~(1) a=0

N/2 —1

det[I —M(8)] = g (1—
Al, ), (831)

where

N/2 —
1

5a(x ) a=0
(821)

provided that IA.~ I are the eigenvalues of the matrix
(830). They are also the eigenvalues

A f(x ) = f R~(x,y )f(y )dy (832)

of the kernel
IJ glJ IJ

Using the expansion (89) of the even Legendre polynomi-
al derivatives, together with the odd polynomial corre-
sponding formula, we obtain

N/2 —
1

%'~( xy)= g P2;(x)[P„(y) P~—(y)], (833)
i=0

acting on the functions

cr~ ~(x )= g [Pk(x)] —
—,'P~(x )P~, (x ) .

Ic =0

N/2 —
1

f(x)= g cP2;(x) .
&=0

(834}

+N, 2(x } [NPJv, (x )+ (N+ 1 )Pjv (x )
2(1 —x )

(823)

Using the Christoffel-Darboux formula and the derivative
recurrence formula, we finally have

We note that the kernel (833) characterizes the Legendre
orthogonal ensemble and di8'ers from the kernels calcu-
lated previously for the other ensembles.

In the limit N~ ~, using the Christofel-Darboux for-
mula together with the large-order asymptotic expansion
of the Legendre polynomials, '

—(2N+1)xPN i(x)P~(x)] .

(824)
P, =, cos(mg),

(
—1)

( nm) '. (835)

Using large-order expansion of the Legendre polynomi-
als, Eq. (4.10) is obtained after the rescaling x~2x/L.
Equation (4.11) is derived starting from (823) with the
analog of Eq. (89) for odd Legendre polynomials and
P„(+1)=(+1)".

and

I'
2m +1 2m

the kernel becomes

(
—1)

, , sin(~g),
(~m )' ' (836)

4. Spacing distribution

The spacing density is the second derivative of the
probability 6'~(8) that the interval [ —8, +8] with 8(1
is empty of levels. " This probability is given by

1 sin[n(( —g)]
N N' N 2 n(g —ri)

sin[a. ( g+ rl ) ]
n(g+ ri)

(837)

with

D~(8) =I~(a ) lIg(1), (825)
which is the universal kernel obtained by Gaudin and
Mehta. ' '" Accordingly,

Because (826) is an even function of x,

A, ]J
—

P(J
—0,

(826)

(827)

D(S)= lim 6 (mS/2N)= +[1—Sy2, (S)], (838)
N oo

i =-0

where

and y 2, (S)= f2, (z;S)dz, (839)

(8)=det(«}, =o, , wn

After integration, we get

(828)

(B29)

in terms of the S-dependent spheroidal functions
fo,f2,f~, . . . , as proved by Gaudin and Mehta. ' "

APPENDIX C: TAIL OF THE CURVATURE DENSITY

M; (8)= f P2;(x )[P2, (x ) P~(x )]dx . —
2 —0

(830)

Given this expression, we apply the method of Mehta
and Gaudin to calculate 6 ~(8}.' '" We have the identity

1. Asymptotic expansion

Equation (6.6) is evaluated asymptotically for large and
positive values of K. After integration over the variables
x, , IP„], and [X'„'],with m and n different from 1, we

obtain
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1P~L(K)=
N, L

' JV/2 —1

21T /t/

, (x, )
Bx

1

(g(a))2
-p —~X X (x, —x„}

f( /P)'"I; —,I] d
2~i (j~N

From the asymptotic expression (6.5) for the root x',"', we have

(Cl)

2 « "}'
(x(k) x )2 4

1/3
1V (g(a) )2+gg +O(K ' ).

a=2 a (Xk-Xa)'
nAk

(C2}

Replacing the second derivative of the GCM Hamiltonian by (6.7) and integrating over the variable IX'1'„'j, with nWk
in the kth term, (C 1) becomes

N/2

rl [( /n)'"I, —)I]"gl( /f3)'" —.I]"d
[ L /2, L /2] n =2

n&k

where

k) (a) 2

( —~, +~)'3

' 1/3
K

exP —P g (XIk')
a

'1/3 '

a=0

(C3)

(C4)

with 0 ~ a ~ v —1. This integral is independent of the index k and is given by

gk) ~v/222v —
3( v+ 2)1

133v/2+ lrt v+2

Finally, introducing

(C5)

NL= X Ik=2

+ L/2

2 i(j N n=2
n&k

(C6)

and using Eqs. (4.6) and (4.7), we obtain Eq. (6.8).

2. The coef5cient
m=0

6(XQ —x + ) b(XQ —x, )+
lxQ x +1I lxQ x

(C9}

&x 2 &x 1 &xp &x1 &x2 (C7)

of ordered eigenvalues. The distribution 5(x) in (6.9) is
replaced by the function

0 for Ixl&e/2,
1/e for lx I

& e/2. (C8)

Then Eq. (6.9} becomes a series of terms each containing
a pair of mean values:

We evaluate here the mean value (6.9) for a uniform
spectrum of density p. Let xp be any eigenvalue in a se-
quence,

The mth term is given by

m
0

where p' '(S) is the density of the mth-order spacing dis-
tribution. ' ' For m =0, p' '(S) is the nearest-neighbor
spacing density given by (5.3)—(5.5) for v= 1,2, and 4, re-
spectively. In the limit e —+0 and when m =0, (C10) gives
(6.10). However, the densities of the higher-order spac-
ing distributions are known to vanish at S=O with
powers greater than v. ' ' Accordingly, (C10) with m ~ 1

vanishes and (C9) reduces to (6.10). Q.E.D.
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