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Post-collisional effects on the electronic distribution of autoionization processes are studied. A
formulation including both the long range of the projectile Coulomb potential and the polarization
potential is presented. The latter potential mixes close lying levels of autoionizing states with equal

magnetic quantum number, giving rise to a significant perturbation of the angular and energy distri-
bution of the electron spectra. Particular attention is paid to the mixing of autoionizing levels of
helium 2s2p 'P and 2p 'D. Deviation from 90' symmetry is studied, and comparison with experi-
ments is presented.

I. INTRODUCTION

When a multiple-electron target is excited by impact of
a charged projectile, it may latter decay, emitting one
electron of a defined energy. ' The electronic line shape
corresponding to this autoionization or Auger process is
affected by the outgoing projectile via the long-range po-
tentials. Three effects will be here mentioned that are
relevant to the present work. First, the peak is shifted
due to the Coulomb force of the projectile upon the tar-
get electrons; here this will be called the binding effect
(see, for example, Devdariani, Ostroskii, and Sebayakin ).
Second, a sharp enhancement of the profile in the for-
ward direction is observed, which is due to the post-
collision Coulomb interaction between the ejected elec-
tron and the projectile; this effect is called focusing, and
the theory was recently derived. Third, the projectile-
target interaction mixes close lying states and the angular
distribution of the autoionization electrons deviates from
symmetry about 90'; this effect is called Stark mixing and
was first observed by Stolterfoth, Brand and Prost. The
aim of the present work is to develop a general theory to
treat the autoionization process involving the three men-
tioned effects, paying particular attention to the latter
one.

Consider a point projectile of charge Zz impinging
with velocity u on a two (or more)-electron atom. Three
time regions are relevant.

Region I. —to &t &+to, the internal collision region
where the excitation takes place via strong interaction
with the projectile. For a typical collision, one has
to —ro/v, where ro is of the order of the size of the atom
in the initial state. In this range, collisional amplitudes
vary rapidly with time and impact parameter.

Region II. to (t & t, , the external or post-collision re-
gion where the energies of the states are shifted via the
monopole part (1/ut) of the projectile Coulomb potential
and the states are mixed via the dipole term (v.rlu't ).
The collisional amplitudes here vary only with time, and
the impact parameter can be neglected. The coupling
with the continuum can be also neglected, provided that
t, «2/1L, where I"L ' is the mean life of the excited

state. This work is designed to describe better this range
and to invest'igate its inAuence in the electron spectra.

Region III. t, ( t -2/I I, the decaying region. In this
range, the collision has effectively ended and the states
decay exponentially.

By inspecting the energy distribution of the Auger elec-
trons, one is able to "map" the behavior of the transition
amplitude as a function of time. Roughly speaking, elec-
tron energies (E) near the unperturbed peak energy (EL )

correspond to amplitudes at t —I L
' (region III). Ener-

gies at the tails of the peak correspond to shorter times,
thus mapping amplitudes within region II (effects of the
Stark mixing, if observable, should be found here). In the
extreme wings of the distribution we would be transform-
ing amplitudes within region I.

Although a general formalism is proposed in Sec. II,
we will be concentrated mainly in the process:
Zp+He~Zp+He", the latter decaying to He+(ls)+e.
Several experiments were made with He+ as projectile, '

and the spectra show structures due to Auger lines of
both the target and the projectile. ' In this work, we will
consider the projectile as a point particle (nonemitter).
Its consideration as emitter is straightforward [see Eq.
(2.31)]. Atomic units are used except where indicated.

In the present work, we are interested in three autoion-
izing levels of the He atom: 2s 'S, 2s2p 'P, and 2p 'D.
The corresponding states will be denoted only with the
quantum numbers LM with M ranging from —L to L.
Resonant or unperturbed peak energies (ELM =EL ) and
full widths (I LM=I t ) are, ED=1.222, E, =1.307,
E2 =1.298; and ro=0.005, I

&
=0.001 53, and

I 2=0.00263. Now, we introduce a reference time A&z',

where 5,2=E, —E2 is the difference in energy levels.
For the states 2s2p 'P and 2p 'D, 5,z'=110 a.u. , which
falls well within region II. Differences involving the 'S
level correspond to even shorter times.

II. THEORY

The final amplitude bf(p, t) representing one electron
in the ground state and the other in the continuum is
given by'
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i —b (p, t)=+exp[i(E E—)t](%'P 1/r&& ~41 )a

J

(2.1)

i b—(p, t)= +exp[i(E Ek)t]—(4
~ Vt, ~@k )bk(p, t)

a

+ f dkexp[i (E~ E)t]—
X (4 ~1/r~&~@I )bI(p, t), (2.2)

where V~= Vz + Vp Vp = Zp/1p are the projec-
1 2 1,2 1,2

tile electron Coulomb potentials. The coordinates rT
1,2

denote the positions of the electrons I and 2 with respect
to the target and r~ =rT —R are the positions with

1,2 1,2

respect to the projectile, R being the internuclear dis-
tance.

In the distorted-wave formalism we incorporate the
Coulomb interaction in the final channel, as follows:

Xb (p, t),
where E =k /2 is the kinetic energy of the ejected elec-
tron, E = c. —EI is the resonant or unperturbed peak en-

ergy, c is the initial energy of the two-bound electrons,
and EI is the final ground-state energy [EI=—2 in the
case of He+( ls)]. Also in Eq. (2.1) p is the impact param-
eter, t is the time, 4J(rz.„rr~) is the double-excited state,
1 lr, ~ is the usual electronic repulsion, and 4i is the dis-
torted final state. The amplitudes of the autoionizing
states bj(p, t) are themselves coupled and to the continu-
um states by the following relation

D '(a, —v, v—t)-( At) " for t »1/A,
r

I (1 —i a'exp(m a' /2)
D '(a', v', v t)~ A'tj

for t «1/A',
for t»1/A'.

(2.8)

b, (p, t) = t "'C, (p, t),
we have

ibI(p)=gyj f exp[i (E E~)t]t—"
J

(2.10)

where

X D '(a', v', v t)C, (p—, t), (2.11)

I&, ), (2.12)

and the constant A "was dropped. The inclusion of re-
gion I, i.e., the extension of the integral to t =0, intro-
duces no problem since the infinite oscillations of t" can-
cel any contribution coming from the internal collision
range, region I. The remaining task then is to calculate
CJ(p, t).

Equation (2.8) is a valid approximation in our case, but
the equivalent expression in Eq. (2.9) is not always gen-
eral (for example, in the forward direction A '=0).

Using Eq. (2.8) and factorizing out the long-distance
Coulomb behavior of the doubly excited state" [see Eq.
(3.2) below]:

0 f 4f(rr, rr )D (a, —v, rp )D (a', v', rp ) (2.3)
A. No mixing of states

where a =Zt, /u, a'=Zt /u', v'=k —v, and

D (Z/p, p, r)= (I+iZ/p)exp[~(Z/p)I2]

As a first approximation we neglect the interaction
with the other excited states, and include only the cou-
pling with the continuum to obtain the standard result

X,F, ( iZ/p—, 1, ipr i—p r)—. (2.4) C (p, t)-C' (p, t)=exp( —I Jt/2)cI(p, ~ ), (2.13)

4/(rr, rr ) is the unPerturbed final state rePresenting
1 2

both electrons in the field of the target, one in the bound
state and the other in the continuum. Since the initial
state 4, (rr, rr ) is peaked around rT -0 we can ap-

1 2 1,2

proximate r =r —R- —R- —vt, and so
1,2 1, 2

(O'I ~1/r, & 4J ) —(@I~1/r~z~@J.)D '(a, —v, vt)—
3'g

ibI(p)=g F~B, cj(p, Oo ) (2.14)

where

where c (p, t = ao ) represents the collision amplitudes cal-
culated at very long time. Substituting C,' ' into Eq.
(2.11) gives the closed-form result

where

X D *(a',v', vt), —(2.&) r,-

cuj = +i (E E}, — (2.15)

D '(a, —v, vt)= I (1——ia}exp(na/2)

X,F, (ia, l, i At),
(2.6)

B = r(l+ia)
ia (2.16)

D *(a',v', vt)= I (1 i a)exp—(m—'a2/)

and

X,F, (ia', l, i A 't),

A =2u, A'=(uu' —v v') . (2.7)

The time limits of the Coulomb distortions factors are

F =I (1—ia')exp(m '
a2/)~F, (i 'a, 1 i+al, i /Ao)t.

(2.17)

The three factors in Eq. (2.14) have precise physical
meanings: the term in square brackets gives the Lorentz
line shape in the absence of any projectile distortion, F
represents the focusing factor which accounts for the
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enhancement in the forward direction due to the interac-
tion of the projectile with the ejected electron, and 8 is
the binding correction due to the long-distance Coulomb
interaction with the bound electrons in the target and ac-
counts for a shift of the peak energy. It will be found
that Stark mixing introduces a fourth multiplicative fac-
tor in Eq. (2.14}.

The factor F has the following limits:

1(1 ia—')exp(ma'/2) as ~A'/co,
~
«1,

F —+
I (1+i (a —a')) A'

as i
A '/to

i
))1 .

I 1+ia co

(2.18)

When a =a', we have

F~B/(a =a') =exp( ia'ln—A'}=const . (2.19)

We call attention to a particular condition where focus-
ing and binding effects cancel each other and shorter-
range interactions, such as Stark mixing, should emerge
more clearly. Since this happens at relatively high veloci-
ties, the shorter-range interactions are also weak and so
the profile is expected to be unperturbed.

Integrating over the impact parameter gives the double
differential cross section

a= ZP
a a

U

(large angles) .

Zp
for

I
A /~t. ~l &&1

(2.24)

At few-keV impact energies, a » a ' and so a =a with a
good accuracy, but one should have in mind that as U in-
creases a decreases to the point that it vanishes [see Eq.
(2.19)]. An exact expression of a valid for all angles is
not possible, since it is defined only through the limits,
however, approximate expressions could be derived. For
practical purposes, we use here the simple expression

a=a —a'
f

A'/'+ cot.~/'
(2.25)

which has the same limits of Eq. (2.24). By introducing
the parameter a, we will be able to estimate the effect of
the Coulomb potential on the electron profile, as ex-
plained in Sec. IV.

Due to the long-distance monopole interaction, the
maximum of the distribution E' is shifted with respect to
the resonant position E by

cases, the exponent of t (0 or —ia') adds to ia [see in-

tegrand of Eq. (2.11)] to produce a total Coulomb param-
eter a, given by

Zp
, for

~
A'/coL~~ «1 (small angles),

d„=X(~,P, )"D,
, k(~kPk }

j, k

(2.20) t
r

E —E = —a J
J J (2.26)

where where the full width at half maximutn (FWHM) I '
is

given by
(2.21)

I '=I (1+1.15a )'~
J J (2.27)

and

DJ &
— PcJ' P, (x) c& P (2.22)

is the density-matrix element, the diagonal elements hav-
ing the meaning of cross sections. In matrix form, we
can write Eq. (2.20) as

When a » 1, I ' = I 0.81a+ I 0.26a, where the first
and second terms of the right-hand side correspond to
the low-energy and high-energy half-widths of the peak,
respectively. When focusing is neglected, or a »a', then
a=a &)1 and these Eqs. (2.26) and (2.27) become similar
to Eq. (3) and (3') of Ref. 8. When a =a' or a=0,
E ' =E., and I,' =I, and the unperturbed distribution
should be observed, as indicated before.

k
=(y P)"D(y P)'=(P' y') D(P' y'), (2.23) B. Stark mixing

where y are components of a row vector y (y', the tran-
sposed, is a column vector), D is the usual density matrix,
and P is a diagonal matrix, here called profile matrix. In
general, as we shall see, the P matrix is nondiagonal ow-

ing to Stark mixing.
The factors y, are, except for a constant, spherical har-

monics [see Eq. (4.17) below] and account for the unper-
turbed electron angular distribution. The matrix ele-
rnents P determine the profile of the electron energy dis-
tribution. They do not depend strongly upon the electron
emission angle 0, except in the forward direction where
they take into account focusing effects through F, . D, &

is a number which gives the intensity of the yield.
The two limits of Eq. (2.18) correspond to the asymp-

totic behaviors of D *(a',v', —vt}, in Eq. {2.9). In these

As an improved approximation we include the interac-
tion with the other excited states, proposing

C, (p, t) =JR, k(t)exp[i(E, Ek )t]Ck '(p, t),— (2.28)

where the terms R „(t)exp[i(E Ek)t] represent —solu-
tions of the differential equation (2.2) in region II, with
the condition that only channe1 k is populated at t ~ ao .
In the present work we consider that the collision time is
much smaller than the lifetime I - and so we can neglect
the coupling with the continuum included in the second
term of the right-hand side of Eq. (2.2}. The expression
for the yields now reads

gy„P„"D k gy P „', (2'.29)
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where the matrix element P k is given by

P, k= dtexp —~kt t"D ' a', v', —vt R, k t

(2.30)

We recover Eq. (2.23) by decoupling the states, that is, as-
suming that Rj k(t)=51 k so that Pi k =PJ5i k

. Note that
we consider that R. k are only a function of time and not
of impact parameter p, since we are interested in long
collision time (region II) where the impact parameter can
be neglected. Also note that R k is a unitary matrix
which relates the amplitudes at infinity to the amplitudes
at time t.

If, as in many experimental situations, both the target
(slower emitter) and the projectile (faster emitter) decay
via Auger electrons and no coincident measurements are
carried out, the total amplitudes then reads ibf (p)
=ibf )(p)+ibf '(p), where the projectile quantities
should include the Doppler effect. The double differential
cross section is expressed in matrix form, as

(
(T) p(T))eD(T, T)( (T) p(T))t

dk

+( (P) p(P))eD(PP)( (P).p(P))t

+2 Re[( (T) P(T))+D(TP)( (P).P(P))t] (2.31)

III. EVALUATION OF THE R-MATRIX ELEMENTS

In the close-coupling technique the wave function is
proposed to be

where the last term of the right-hand side involves a den-
sity matrix that mixes the amplitudes on the target and
projectile. In this work we do not consider the projectile
emission.

In Sec. III, we calculate the R matrix, and the P-matrix
elements will be evaluated in Sec. IV. We summarize the
findings in Sec. V, where the explicit expressions are writ-
ten down.

2Zp +o(1/R'»
R

(3.2)

& ~ ppI vp I@)()&
=+2& &2ppI vp, I&2)() & ~

= 2

3l/2ZP

ZTR
(3.3)

2l/3ZP

ZTR

(3.4)

(3.5)

where ZT is the effective charge of the n =2 hydrogenic
orbital. For helium targets, we estimate ZT through the
energy condition —2ZT/2X2 = —2 /2X1 +EL, the
peak energy EL =—1.3 and so ZT=—1.7. It gives a depen-
dence in Eqs. (3.4) and (3.5): ZpDM/R— with Dp=2
and D, =1.76, which do not differ greatly from the
values 2.8 and 2.4, respectively, obtained by Stolterfoth,
Brand, and Prost.

In the M=O subspace, the coupling with the 2s 'S
state can be neglected in region II, because the difference
of energy E,O=E, —Eo =0.076 a.u. and so the phase fac-
tor containing such a difference in Eq. (2.28) oscillates,
canceling the transitions between Stark levels for
t & 1/b, )p=13 a.u. This is not the case for the lnixing be-
tween 2s2p 'P and 2p 'D, where such cancellation takes
place at much larger time: t & I/b, lz=llO a.u. , well
within region II.

Factorizing out the Coulomb behavior: bLM(p, t)
=t "exp( —I Lt/2)cLM(p, t) [see Eqs. (2.10) and (3.2)] we
find that, for t ((I L

'. iB/dtbpp(p, t)=id/'(3b 2(p, t)=0,
and

and this is the long-distance Coulomb behavior already
incorporated in Eq. (2.10) above. The nondiagonal ma-
trix elements of interest are the ones that have the same
magnetic quantum number and the difference of orbital
quantum numbers is unity. The asymptotic limits of
these elements as R ~ oo are'

4;(rT, rT,p, t)
() ~M

i c, (p, T) = exp(ir)c2 (p, 1 ),
()g M M= X i)LM(P t)e"P( 'sLMt)@LM(rT, rT, )

L, M
(3.6)

() ~M
i c2 (p, r) = exp( i ~)c) —(p, r),

M M

the variable ~=b, 2t, andwhere we introduce
A,M =6)gM, with

2&3ZP 3ZP
Pp= —,, P) =-

ZTv ZTV
(3.7)

The system of differential equations can be easily written
as two independent differential equations:

d ci 2 dc& A, c]+ — i + — =0,
7 1

(3.8a)

d C2 2 dC2 k C2+ —+i + =0.
d r 'r

(3.8b)

where ELM is the standard combination of single electron
wave functions g„l (rT ). For the He-target case, the

1, 2

base is nine-dimensional (L from 0 to 2, and M from L—
to L), but we shall work in a six-dimensional base, by
making use of the symmetry property: bl
=( —1) bLM Defining 4L. M

= [(IlL M+( —1) 4LM ]/
&2 for MAO, the corresponding amplitudes read
bLM =( —1) v'2bLM, M ranging from 1 to L Hereafter, .
the bar on M will be omitted. The amplitudes bLM satisfy
the differential equation given by Eq. (2.2), where we drop
the second term of the right-hand side, because, as men-
tioned before, the backcoupling with the continuum can
be neglected in this range (region II).

After some algebra, we find the diagonal matrix ele-
ments tend as
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where, for notational convenience, we omit p and the sub-
script M. It is evident that if c, (r) is a solution of Eq.
(3.8a), c2(r)=c;(r}=c,( —r) is a solution of Eq. (3.8b),
so we need to concentrate on the former one.

As required by Eq. (2.28), we need to find the following
solution: c(r) =Rc(r= ao ), where R is a unitary matrix.
In the M =0 and 1 subspaces, it reads

R &&(r) exp(is)R &2(w)

exp( —i r)R2)(r) R~2(r) (3.9)

and is diagonal otherwise. The asymptotic limit requires
R; J ~5;~, and the norm conservation that DetR= l. It
is convenient to write R,2(r)=iR', 2(r) and

R2, (r)=lRz, (r); so it follows that R2z(r)=R»(r) and
R 2, (r ) =R ',

2 (r ), and the norm: 1 =
~
R '»

~
+

~
R '&2

~
.

1R"'(r) =—exp(ir/2) W, , ~2(
—ir)

i—exp(ir)G, z( —ix~0 ', ), (3.12)

where 8' and G are the Wittaker' and Meijers's' func-
tions, respectively. The use of the norm conservation
equation, to order A, , gives

Re(R' ') = —
~
W

& &&2(
—ir)~ /(2r ) .' (3.13)

3F, (1,2, 3;4;i le),3~'' ' (3.14)

The full second order can be calculated with the Weyl
transformation' of G

& 2.

R (r)=623(+l'r~o 'I 2)

A. Iterative solution

Proposing the following power expansion in terms of
the polarization strength k:

R))(r)=g A, "R "'(r),

and so on. The Meijer's G functions express a power
series in powers of r. Their asymptotic limits are known
and produce'

R()(r~~ }= I+A, [i/(3r ) 1/—(2r )+ . ]

+A4[ —I/(18' )+ . ]+O(2, ),
exp(ir)RI2(r)=+A, "+'R' "+"(r), (3.10)

RIz(r~~)= A[i/r +2/r + ]

and substituting in Eq. (3.6), it is found that R'"' satisfy
the following relations:

R' "+' (r)=+ f dx exp(ix)R' "'"(x)/x
(3.11)

R' "'(r)= —f dx exp(ix)R' " '"(x)/x
7

Starting with R ' '= 1, it follows by integration'

+A, [I/(3r )+ . ]+O(A, ),
(3.15)

Ri, (r—+0)=1—
A, [1/(2r )]+O(k ),

R Iz(v~0)=A(1/r)+O(A, ) .

The manipulation of the series becomes untractable for
higher orders in A, . To second order in A, the mixing ma-
trix then reads

I+I, Gz3(+is!o
~

2)+O(A, ) exp(lr)AG&z( ir~!o
' —&)+O(A, )

—exp( —ir)AG&z(is~0 ', )+O(A, ) I+A, Gz3( —is~0 I z)+O(A, )
(3.16)

In Fig. 1(a), we show the amplitudes c, (r) and c2(r)
calculated to first order, imposing c2(x=2)=1 for
A, = —0.264, corresponding to the coupling between
2s2p 'Po and 2p 'Do for He+-He collision at 7-keV im-
pact energy. In Fig. 1(b), we add the real part of the
second order [Eq. (3.13)]. As the order increases, oscilla-
tion occurs for ~ & X. Note that, unless the infinite orders
are included, the norm (dotted line) is violated for small

It is interesting to remark that the iterative method
here developed can be straightforwardly generalized to
any other potential of the type 1/t", and for larger sys-
tems of equations.

B. Approximate trigonometric rotation

The exact calculation, as developed in the preceding
section, is diScult to treat and very complicated to

proceed to higher orders, which are relevant at short dis-
tances. However, a simple approximation can be done
for small v.. In this case, the main contribution of the in-
tegrand of Eq. (3.11) comes from x -r, so we can approx-
imate the odd orders by

R' "+"(r)-exp(ir) f dx R' "'*(x)/x (3.17)

By keeping the same expression for the even orders, we
flIld

R' "+"-exp(ir) ( —1)"
(2n + 1)ld" +

(3.18)

R (2n) (
—1)"

(2n)!

which can be summed up to all orders to give the well-
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1.0—
~.. hf

~ + ~ ~ ~ ~ ~ ~ s a ~ a

Cp

(a) (a)
hf

Q ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s a

~ ~ ~ e

(b) hf (b)
Q a-s& ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~1.

0.5 1.0 1.5

T = Q i{a.u. )

2.0 0.5 1.0 1.5
7' = A 2 t (a.u. )

2.0

FIG. 1. (a). Amplitudes c&(~) and c2(~) calculated to first or-
der with the condition c2(~=2)=1 as a function of ~=hj2t, for
A, = —0.263. It corresponds to the mixing between 2s2p 'Po and

2p 'Do for Zp=1 and v =0.26 a.u. (equivalent to He+-He col-
lision at 7-keV impact energy). N denotes the norm. (b) Similar
to (a), adding the real part of the second order [Eq. (3.13)].

FIG. 2. (a) Amplitudes c&(~) and c2(~) calculated with the
approximate trigonometric rotation with the condition
c2(~=2)=1, for A, = —0.263. As in Fig. 1, it corresponds to
Zp =1 and v =0.26 a.u. (equivalent to He+-He at 7-keV impact
energy). (b) Similar to (a), for A, = —0.90, corresponding to
Zp =1 and v =0.14 a.u. (these parameters correspond to He+-
He collisions at 2-keV impact energy).

known trigonometric functions

R I) (r)=cos(A/7), R )2 (r)=sl (An/r),

and so

cos(A. /~) i exp(iv. )sin(A, /r)R'"=
i exp( —ir)sin(A, /r) cos(Air)

(3.19)

(3.20)
ma

(3.21)

real part in A, [Fig. 1(b)].
Assuming that the state ends in the 'D, ' the first dip

(which corresponds to the first peak of the 'P) occurs at
P/t-n/2, replacing t by tE (see the Appendix), we can
predict, very roughly, the first effect of the Stark mixing
when

where the superscript (t) denotes the trigonometric ap-
proximation. The norm is then exactly conserved. At
small ~, i.e., for t &1/A, 2, the trigonometric rotation is
expected to hold: the states can be considered degenerate
and the rotation behaves as a usual standard Stark mix-
ing [note that it gives the correct limit as v~0, as com-
pared with Eq. (3.15)]. However, as also expected, the
trigonometric rotation becomes less accurate as ~ in-
creases.

Figs. 2(a) and 2(b) show c, (r) and c2(r) for A, = —0.264
and —0.90, corresponding to the couplings between
2s2p 'Po and 2p 'Do for He+-He collision at 7- and 2-
keV impact energy, respectively, where experiments were
carried out. ' Note the trigonometric function depends
only on A, /r=P/t, and retains no trace of the energy
difference A, 2, which is only present in the exponential of
the nondiagonal terms. This factor exp(ir) introduces
oscillations at large ~. Note that for ~~0.3, the tri-
gonometric approximation [Fig. 29a)] does not differ
greatly from the exact second-order approximation to the

where a is defined in Eqs. (2.24) and (2.25) above. At this
electron energy, the emission pattern should exhibit some
trace of 'Po as the emitting state. We will come back
later to the subject.

In this section we have calculated the exact first order
in A. term but higher orders are rather untractable. Alter-
natively, a trigonometric approximation to all orders is
possible which conserves the norm but tends to the
correct limit slower than the exact behavior. One way of
improving the calculation is to use product of rotations
(trigonometric at small and exact one at large r) matched
in the intermediate region, say, around ~-A, .

IV. EVALUATION OF MATRIX ELEMENTS

In this section, we deal with the algebra to obtain
closed forms of the matrix elements, and in the next sec-
tion, we resume the relevant expressions for heliumlike
targets.
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A. P-matrix elements using the trigonometric rotation

Let us start considering the diagonal terms

PLMLM= I dt exp( co—LMt)t' D (a', v', v—t)
0

() I (1—ia) A'

I ( I +ia) a)LM

—ia'

BLM
~LM

(t)
CLM .

(4.6)

Xcos(ip~i/t), (4.1)

PL'M LM
= [I (1 ia'—)exp(ma' /2) ]BLM

LM
(t)

CLM ~ (4.2)

BlI is the binding factor [see Eq. (2.16)],

where, for a reason that will become evident later, we
write a instead of a. In the forward direction,

~
A '/coLM

~
((1, D '(a', v', vt) —transforms into the

Coulomb factor [see Eq. (2.9)] which is independent of t,
and so Eq. (4.1) becomes a simple Laplace transform.
Thus the integral is given in closed form' in terms of the
Bessel function K, ; which can be related to the hy-
pergeometric function U. ' After some algebra we find

The terms in square brackets of Eqs. (4.2) and (4.6) corre-
spond to the limits of the focusing factor FLM [see Eq.
(2.18)]. Then, we approximate

1
CLM —PLMCLM

(t) — (t)
PLM, LM ~LMBLM

(t)

LM
(4.7)

for all angles, where FLM is given by Eq. (2.17). The pa-
rameter a, which contains both long-distance interac-
tions, is defined in Eqs. (2.24) and (2.25). As indicated be-
fore, in our energy range of interest, a &&a' and so a=a
with a good accuracy.

For the nondiagonal profile matrix terms, we should
solve the same kind of integral (4.1) with i sin(pM/t) in-
stead of cos(Pelt). Following the same technique, we
find after some algebra

(t)CL'M= [exp( —z(+))U(+)+exp( —z( ))U( I],
2U0

1
SL M

— iPLM SL M
(t) — ~ (t)

PSALM, LM '+LMBLM
(t)

~LM
(4.8)

Uo= lim U( —1/2 —ia, —1 —2ia, s)
g~o

(4 3) where ~E L~ = 1 an—d

1SI"I= [exp( —z(+) ) U(+) —exp( —z( ) ) U( ) ],2U0
I (2+2ia)

I (3/2+i a) (4.4) (4.9)

U~+ ~

= U( —1/2 ia, ——1 2ia, 2—z~+ ~), (4.5)

z~+ ~=(2~PM ~coLsr)' (1+i), and a=a. Once again we
use the superscript (t) to indicate that the calculation was
done within the trigonometric approximation. On the
other hand, at large angles, when

~
A '/coLM

~

))1,
D '(a', v', vt)-(A' t—) " [see Eq. (2.9)] and so the in-
tegral remains basically the same with a =a —a'. The re-
sult is then

with a defined in Eq. (2.25). The negative sign in Eq.
(4.8) takes into account the sgn(pM)= —1. Note that
z~+ ~

is a function of Psr ~, and so the real Part of z~+
is positive, as required by the integration procedure. '

We conclude that the profile matrix elements can be writ-
ten as a product of four factors: unperturbed shape,
binding, focusing, and the new terms CLM and SLM
which take into account the Stark mixing.

Finally, we can write the trigonometric profile matrix
as

Poo

0 P )0C io
—iP20S20

(t) ~ (t)

0 —iP &0S &o P2o C2o
(t) (t)

p(t)
0 (t)

—iP„S(,',)

0

(t)—
iP2& S2'&' 0

P2, C2')' 0

P22

(4.10)

It should be pointed out that PLM =PL, i.e., independent
of the magnetic quantum number, because FIM=FL,
BLM =BI, and coLM =coL. Only CL'M and SL'M depend on
M.

The Sommerfeld parameters a and a ' take into account
the Coulomb interactions, and pl is the strength of the

polarization potential. The three correcting factors to
the unperturbed distribution: FL~, BL~, and CL~ (or
Sl~) depend primarily on a', a, and pl, respectively, be-
ing unity as the corresponding parameter is switched off;
i.e., FIM(a'=0)=BL~(a =0)=C&~(P~=O)=1. In ad-
dition, as p~ ~0, SLM ~0 and the profile matrix tends to
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be diagonal. The integration technique here developed is
quite accurate: P'"-matrix elements are correct solutions
of Eq. (4.1) when 8=0, very reliable for very large 0, and
it has the correct limit for all angles as p~O.

Figures 3(a) and 3(b) display in solid lines the real parts
of Si2'o' and Ci20' (the imaginary parts are small) for a point
projectile of unity charge impinging on He target at
v =0.1414 (corresponding to 2-keV He+ iinpact energy
on helium) as a function of the ejected electron energy.
The functions CLM and SLM behave quite like the tri-
gonometric functions cosine and sine, respectively, as can
be seen by expanding by a power series the trigonometric
functions in Eq. (4.1). For a»1, we can approximate,
crudely,

O
N

V)

I)
o—

F

(0)

(b)

SLM Sin

C'" -cosLM

I PM I ELM

ia

pM I t. M

ia

(4.11)
O
O}I

O
I)
K

In Fig. 3, we also show in dashed lines these simple ex-
pressions which follow the more precise calculations us-
ing Eqs. (4.3) and (4.9). The influence of the nondiagonal
terms will be maximum when the argument of the sine
functions is m/2, which is a condition already found in
Eq. (3.21).

0
1 22

I } I i t

1 24 1.26 1.28

ELECTRON ENERGY ( a. u. )

B. P-matrix elements using the exact first order

To calculate the first order in pM, obtained with the
iterative method, we need to evaluate the integral (4.1)
containing A,G i z ( i r

I z
'

i
—
) instead of cos( pM /t ). Fol-

lowing the same pattern as before, it is found that the
profile matrix has a similar structure to Eq. (4.10), given
by

FIG. 3. (a) Real part of S20 as a function of the electron ener-

gy in atomic units in the forward direction, corresponding to
projectiles with unit charge impinging on He target at
U =0.1414 (or 2-keV He+ on He). Curves denoted with T and S
correspond to Eqs. (4.9) and (4.11), respectively. Curves F and
A denote the real parts of S&02O corresponding to Eqs. (4.13)
and (4.16), respectively. (b) Similar to (a). Curves T and S
denote the real parts of C20 given by Eqs. (4.3) and (4.11), re-

spectively.

Poo

0

0

P1oC1o, 1o

10 20, 10

0

P20S10,20

P20C20, 20

0 0

P» C11,»

LP11S21,»

P22

'P21S» 21 0

P21C21,21

0

(4.12)

To first order in pM we have CL~ LM =1, and the nondi-
agonal elements read

Sxjit, L~= IpMI .ia(1+ia)

. ~KL
X 2F1 1,in, 2+ in, 1 +i

~LM
(4.13)

where b, Lz =Et Ez. In Fig. 3(a) we—plot in a solid line

3 [E, E —t r, /21—
QZT

for COL~ &&ELx. (4.14)

the real part of S",o'2O (the imaginary part here is not
negligible) and compare with the previous results. Two
limits of Eq. (4.13) will be discussed next.

For electron energies larger than the difference of ener-
gies, i e., IF. —E, 2I & 6 i2-0. 25 eV, i e., in the tails of the
peak, the argument of the hypergeometric function is al-
most unity, and so Eq. (4.13) can be approximated by

M ~LM

la
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which is the result that we would obtain if the first order
of the trigonometric rotation were used [compare with
the first order in pM of SL'M in Eq. (4.11)]. This limit is

expected, since for t 1/A&z, the trigonometric rotation
holds, and this region maps into the electron peak tail.
Based on the approximate relation (4.14), we are able to
infer some features of the inhuence of the nondiagonal
terms. It is then expected that the Stark mixing far from
the peak does not depend on Zz, it increases as U de-
creases and it depends linearly on IEt EI.—Also note
that for most of the experimental situations, S+M LM & 1.

On the other hand, for energies satisfying IE E, 2—
I(h, 2, i.e., near the resonant energy, deviations from Eq.

(4.14) are expected, which are related to the fact that the
trigonometric rotation breaks down at large collision
times. In this case coLM «ALz, and after performing a
Kummer's transformation to the hypergeornetric func-
tion in Eq. (4.13), we find that

I PM I +LM
KM LM g ~ O LM ~LK

AKLa ia 1)— (4.15)

which happens to be the Laplace transformation of the
asymptotic limit as t ~ 00 of the first order of the nondi-
agonal rotation element [R ', z in Eq. (3.15)].

To estimate higher orders, we could combine the exact
first order with the one using the trigonometric rotation
for higher order by including the behavior of the first or-
der near the resonant energy within the argument of the
function sine, as follows:

SEM, LM
IPM I&LM

a[i ~LM +AKL (i a —1 ) ]
(4.16}

This simple expression gives a good account of the first
order and the trigonometric approximation near and far
off the resonant energy, respectively, as shown in Fig.
3(a). There are no major changes to curve S in Fig. 3(b) if
we approximate CLM IM by the cosine of the same argu-
ment of Eq. (4.16).

V. EXPLICIT EXPRESSIONS FOR He TARGETS

The theoretical double differential cross sections read

=g UJ „D,„=Tr(U' D),dv

j,k

U, k=&2E gy„P„' gy P

(5.1)

(5.2)
n m

For the Auger transition He*'(n =2)~He(ls}+e, we
can reduce the expression of the terms of the matrix U to

Uoo, oo
=

2
I
V'ro Yi'i I',

' Iv'r, Y2I',
2m

M

+(+i)e 'Qr Y S
(5.3)

U2M 2M
=

2
( + 1)e 'QI 2 Y2 C2M, 2M

+(+1)e'"'Vr, Yi SiM2M,
P*, P

U, = [(Wi)e 'Qr, Y, CiMiM

+(+i)e 'Vr2Y2 S2M, iM]'

X[(+1 }e'"'Qr2Y, C,M,„
+(+ 1)e 'QI, Yi SiM pM],

M and different orbital one I.. Further, as the sign of the
Slater integral (the one involving the real radial func-
tions) is not generally available, there is an uncertainty
on the sign as indicated in the equation above. This un-

certainty can be removed by inspecting the sign of the
matrix element used in the calculation of the width I L.

C. Calculation of the terms yL~

If the final state of the electron which remains bound
to the target is spherical symmetric, such as for the E
shell, yLM reads

where M =1,2, UzM, M= U*,M zM, and zero otherwise.
The upper and lower signs in Eq. (5.3) correspond to the
sign of the Slater integral. The profile terms PL do not
depend on M and are given by

yLM
=

& +f I
1 «» I@'LM ~

' 1/2

Y (0),
2m 2E

(4.17)

1
PL =FLBL

IL
L+i (E E)—(5.4)

where by the symmetry property used in Sec. III we have
1' =[Y +(—1) Y ]/&2 for MAO (Y =Y }
0:—(8,/=0) is the solid angle of the ejected electron,
and

a.
L =argI (L+1 i I+2E ) . — (4.18)

It is important to pay attention to the phase factor,
which corresponds to the one of the continuum states, be-
cause it plays an important role in the interference be-
tween two states with equal magnetic quantum number

where BL and FL are the binding and focusing factors
defined in Eqs. (2.16) and (2.17), respectively.

The functions which account for the Stark mixing are
CLMLM and S~MLM and they are quite similar to the
functions cosine and sine, respectively. CLM IM was cal-
culated in the trigonometric rotation to give CLM [see Eq.
(4.3)] and it is well represented by the simple cosine func-
tion Eq. (4.11) [see Fig. 3(b)]. On the other hand, SKM LM
was calculated in first perturbative order [Eq. (4.13)], in
the trigonometric approximation [Eq. (4.9)], and it can
also be approximated by a simple sine function as shown
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in Eqs. (4.11) and (4.16). This latter expression gives also
a good estimation of both limits as shown in Fig. 3(a).
Although in the present work we perform full calcula-
tions, we like to remark that those simple expressions,
such as Eqs. (4.11) and (4.16), contain the basic physics of
the problem, and so the computation of the hyper-
geometric function U and &F, can be avoided.

How we address the normalization property of the ele-
ments UL~LM. After integrating on the energy and an-

gular distributions, we find

fdEfdQU —1+(I —I )
2Q

(5.5)

For most of the cases here studied, the norm can be con-
sidered unity within a few percent.

VI. RESULTS

To compare with the experimental double differential
cross section in energy and angular distribution of the
ionized electron, we simply have to replace the density-
matrix elements in Eq. (2.29), and convolute with the ex-
perimental resolution f, to give

where we have assumed that the focusing effect does not
modify greatly the norm and

(5.6}

do'
(M =0)= U1p ipD ip ip+ U2p 2pD2p pp (6.6)

where U,ozp=2Re(U, p zp) and Uip 2p
—2Im(Uip2p).(R) (I)

These terms factorize the off-diagonal density-matrix ele-
ments, while U,o,o and U20 zo modulate the diagonal ele-
ments or cross sections.

In Fig. 4, we plot the nondiagonal terms U]o 2o and
U', 0'2O as a function of the electron energy at 0' and 180
(solid and dashed lines, respectively), corresponding to 2-
keV He -He collision using the first-order theory (similar
results are obtained if the trigonometric Stark rotation is
used instead). Three features of the nondiagonal terms U
should be pointed out: first, for a given angle, they oscil-
late around the peak, and should account for the interfer-
ence patterns observed in some experiments' (due to the
rapid oscillations, its structure should be sensitive to the
experimental resolution rj}. Second, these nondiagonal
terms U may have some inhuence in the forward-
backward discrepancy, depending on the values of the
off-diagonal density-matrix elements. And third, in-
tegrating on the energy distribution, we find that, for a
given angle, their contributions are comparatively negli-
gible, that is,

f dE'UIo'2p « fdE Ur pi p& L =1 2 . (6.5)

It follows that

=g U)'kDj k
=Tr(U" D),dcT

jik

U'„= fdE'f (rj~E E')U, „(E—'),

(6.1)

(6.2)

and so the procedure developed by Bordenave-
Montesquieu, Gleizes, and Benoit-Cattin to obtain total

+50-
rj being the energy acceptance of the apparatus. Since f
is a real function, then U k=Uk . For simplicity, we
here consider an ideal detector where f (rlI E —E')
=5(E E') and so —U'k =U k. Equation (6.1) also al-

lows us to consider the inverse problem, that is, to find
the density-matrix elements from a given set of experi-
mental data. For the case here studied, the Hermitian
matrix D is determined in general by 14 independent pa-
rameters: 6 diagonal (real: Doo po, D,M, M, D~~2~) and
4 nondiagonal (comPlex: Dpp ip Dpp pp Dip po D11 pi ).
If we neglect the overlap with the 2s 'S, the number of
parameters reduces to 10. Furthermore, if, as usual, ' it
is assumed that Eq. (6.1) can be expressed as a modulus
square of a complex sum, we can then write

+40—

+20-
CV

aO
D -20—

-60—

180
0

(b)

Dj, k V Dj j Dk, k exp[1 ( 1111k y, )1—(6.3)
04

~ 0 -20
and the number of parameters is brought to 8. Most of
the experiments only deal with the diagonal density-
matrix terms, and a few others ' let us obtain the non-
diagonal ones, assuming the approximation above.

For instance, consider the contribution of the subspace
M =0 of Eq. (6.1).

-40—

-60—
1.22

I I I I

1.26 1.50
ELECTRON ENERGY (a.U. )

dc'
(M =0)= U1o ioD 1o io + U2o 2oD~o ~o

+ U1o, 2oRe(Dip, 20 }
(R)

+ U10, 201 (D10,20 }(I) (6.4)

FIG. 4. Nondiagonal terms U'lp po and Ulp 2o as a function of
the energy of the ejected electron. All quantities in atomic
units. Calculations were carried out using the first order in the
polarization strength. Solid and dashed lines are the results for
0 and 180', respectively. The parameters correspond to Zp =1
and U =0.14 a.u. (or He+-He collision at 2-keV impact energy).
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100—
(0)

cross sections from the angular distributions is substan-
tiated.

In Fig. 5, we display the diagonal Upp pp for the same
case as Fig. 4, calculated with the first-order [Fig. 5(a)]
and trigonometric rotation [Fig. 5(b)]. Different signs for
L =1 and 2 were used in Eq. (4.18). If equal signs are
used instead the spectra at 0=0 and m exchange roles. It
should be remarked that if Stark mixing is switched off,
then ULMLM(8=0) and ULMLM(0=~) diff«httle, the
only source of deviation being the focusing effect, which
is a factor almost independent of the electron energy.
Thus the differences are due mainly to the influence of
the polarization potential. Near the peak energy, long-
distance amplitudes are mapped, and so the first order as
plotted in Fig. 5(a) is supposed to be more appropriate.
As we move to the tail of the distribution, the first order
breaks down and the trigonometric rotation should take
over. Further, the structures observed in Fig. 5(b) can be
related to the amplitudes as a function of time [Fig. 2(b)].

Figure 6 shows the diagonal terms Uzpzp at 30' and
150' for v =0.24 and Z&=1, corresponding to 10-keV
Li+ on helium calculated in first order [Fig. 6(a)] and
with the trigonometric rotation [Fig. 6(b)]. Different
signs for L =1 and 2 were used in Eq. (4.17) in order to
fit the data. The theories follow the tendency of the ex-

10- (o)

10
(b)

U

0
100

O
CEl

(c)

10—
150. o

~
0 ~

0 o ~

0 0
Zo

0

I I I I

1.24 1.26 1.28 1.50
ELECTRON ENERGY (a.u. )

FIG. 6. Upp pp at 30' and 150' for Zp = 1 and U =0.24 a.u.
(corresponding to 10-keV Li+ on He) as a function of the elec-
tron energy. All quantities in atomic units. (a) shows the spec-
tra using the first order, (b) displays the results using the tri-
gonometric rotation, and (c) the entire experiment (Ref. 7) in ar-
bitrary units.

0.01—
ci

O 100—
O

10-

180

00

(b)

periments [Fig. 6(c)]. As indicated in Ref. 7, if 8 is
small, only M =0 is the dominant magnetic sublevel and
L =2 is the more likely to be populated via double-
promotion rotational coupling. So, the comparison of
Upp pp with the entire experiment is quite reasonable. for
a more detailed comparison with the data we need to con-
volute the theoretical results with the instrument resolu-
tion and consider kinematic effects which broaden the
peak.

In order to study the forward-backward asymmetry of
the diagonal terms UL~ L,~, let us define the ratio

0.1—

ULM, LM(~)
S LM(|))—

ULM, LM( ~ (6.7)

0.01—

0.001
T.10

Ii

I
I

1
I al } I

1.20 1.50
ELECTRON ENERGY ( a.u.}

FIG. 5. The diagonal term Uzp ~p as a function of the energy
of the ejected electron. All quantities in atomic units. Calcula-
tions were carried out using the first order in the polarization
strength (a), and trigonometric rotation (b). Solid and dashed
lines are the results for 0' and 180', respectively. Results at 180'
are multiplied by 3.88 and 3 in (a) and (b), respectively, to have
equal intensity at the maximum. These factors account mainly
for focusing e8'ects. The parameters correspond to Z&=1 and
U =0.14 a.u. (or He+-He collision at 2-keV impact energy).

In Fig. 7, we plot p2o(150') for the case of Fig. 6. First
order (curve F), trigonometric rotation (curve T) and the
model developed in Ref. 7 (curve SBP) are plotted and
compared with the experimental ratio. All the theories
agree qualitatively with the tendency of the data.

We can roughly evaluate pzp, by approximating Eq.
(6.7) to first order on the nondiagonal matrix P terms as

1+2 Im[gio, 2o(0)$10,20 ]
820(0) —)'(a') +

' ' +0($1020 )1+2 Im io, 2o
m' Sio,2o

(6.8)

where y(a')=2vra'/(I —e '
) is the modulus squared of

the Coulomb factor, and
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SBP
p2o(8) -1+ 4.4po cos(8)

3cos (8)—1
(6.11)

3—
O

O 2—
OJ

I

1 22
I I I

1.24 1.26 1.28

ELECTRON ENERGY {a.u. }
150

»o(8)
410,20( 8}

8yzo 8

=+( —0.35+ l. 127i)
3cos (8}—1

(6.9)

We keep the uncertainty of the sign coming from Eq.
(4.18): the upper sign (+) if both Slater integrals corre-
sponding to L =0 and 1 have the same sign, and the
lower sign ( —) otherwise. After assuming that the nondi-
agonal terms of the profile matrix are both small, and ex-
pressible by the approximation (4.14},we conclude that

FIG. 7. Asymmetry factor p»'(30 ) =@20(150 ) as a function
of the electron energy in atomic units for Zp=1 and U =0.24
(corresponding to 10-keV Li+ on He). Solid lines labeled with F
and T correspond to the first order and trigonometric rotation,
respectively. The dashed line denoted by L corresponds to the
linear approximation [Eq. (6.11}]. The dotted line denoted by
SBP and circles is the theory and experiment of Stolterfoth,
Brandt, and Prost (Ref. 7), respectively.

The good agreement of this simple approximation with
the experiments, as shown in Fig. 7, is better than expect-
ed. Equations (6.10) and (6.11) should be understood as
very approximate expressions.

Near 8=54, i.e., when yzo =0 [where Eq. (6.11) is no
longer valid], the only emitting source in the M =0 sub-
space is 'Po which can be populated either by direct col-
lision in region I, or by Stark mixing with Do in region
II. Anyway, we should have in mind that at angles not
necessarily very large, the M =2 subspace dominates the
spectrum since Dz2 &2 is found to be much larger than

D20 zo.
' Similar analysis can be made for the M =1 sub-

space.
In summary, we have developed a general formalism to

calculate the electronic profiles corresponding to autoion-
izating states, including binding, focusing, and Stark mix-
ing of the close lying states. Attention was paid to the
mixing of the 2s2p 'P and 2p 'D states of helium target.
The inhuence of the diagonal and nondiagonal elements
of the matrices R, P, and U were studied. The Stark mix-
ing was found to produce forward-backward asymmetry,
depending on the signs of the Slater integrals. This un-
certainty is removed if also the sign of the Slater integral
is available, more than the absolute value. In the sub-
space M =0, we obtain an asymmetry qualitatively in ac-
cordance with the available data. More experimental re-
sults are needed to test further the present formalism.
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APPENDIX
2.2Po

pro(0) —y(a') 1+ (E, E)—(6.10) Neglecting Stark mixing, the diagonal P-matrix ele-
ments are reduced to

where we restore the sign to po: po&0, if Zp &0. The
picture of Eq. (6.10) is simple: y(a') represents the
enhancement in the forward direction due to the projec-
tile focusing, and the correction term in the large
parentheses is due to Stark mixing. Energies near the res-
onant energy E =E2 correspond to long time where there
is no mixing and so the Stark correction is null. As we
decrease in the energy of the ejected electron, we are
mapping smaller times where the Stark mixing populates
the 'Po. This state provides an angular distribution pro-
portional to y, o-cosO enhancing the forward direction
and depleting the backward one, or vice versa [depending
on the relative phase of Eq. (4.17)]. As mentioned before,
the competing effects between the polarization and
Coulomb potentials are expressed by the ratio
po/a= —2&3/(ZTv). Within this rough approximation,
this ratio is independent of Zp.

At any other small angle, but larger than the focusing
angle, the Coulomb factor can be dropped and the
forward-backward ratio can be approximated to be

PtsttM=Pt - J dt exp( rvt t)t'—
I (1+ia)

1+ia
COL

(Al)

where a is defined in Eq. (2.24), and cvL = I t /
2+i (FL E). We are int—erested here in finding where
the maximum contribution to PLMI~ comes from. By
examining the integrand, we find that relevant times are
around tF i a/rot . I—n the tail of the profile, i.e.,

EL —E ) I L /2, tF is real and simply reads

for E —E&I /2 .
I.

(A2)

One example of this relation is Eq. (2.26). Equation (A2)
relates the electron profile at a given energy E with the
behavior of the co11isional amplitudes at tF. The use of
the stationary-phase approximation in the vicinities of tE
gives Eq. (Al) except that the I function is approximated
by the Stirling formula.
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