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Barkas effect in a central collision: Exact numerical results and the tenth-order Born series
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The time-dependent Schrodinger equation for a central collision between a heavy point charge
and a harmonically bound electron is solved numerically. This is done in a basis of energy eigen-
functions of the undisturbed electron. Our numerical method also provides the coefficients of the
Born series for the collision. W'e compare the Born expansion with the exact results. In agreement
with other calculations we find a significant Barkas effect for some collision parameter values. At
low velocities the Barkas correction is shown to be very large, but at higher velocities it becomes
very small even for ions with high charges.

I. INTRODUCTION

The slowing down of a fast charged particle in matter
is mainly due to the inelastic Coulomb collisions with the
bound electrons in the target. Conventionally, these in-
elastic processes are treated within the Bethe-Bloch for-
malism, where the distant collisions (with small momen-
tum transfers) are treated within first-order perturbation
theory, and the close collisions (with large momentum
transfers) are considered to be free. Under the assump-
tion that the projectile velocity is much larger than the
mean orbital velocity of the target electrons, the well-
known Bloch formula yields for the electronic stopping
cross section in the nonrelativistic case'
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Here, Z, and v are projectile charge number and velocity,
m and —e are the electron mass and charge, and Z2 and
I are the atomic number and mean excitation potential of
the target.

The Bloch formula is not the result of a perturbation
expansion in the primary interaction between the projec-
tile and the target electrons as is seen from the presence
of Z, e /fiv in the last term. This term containing the g
function is a close-collision correction, which stems from
an exact treatment of the near singular part of free Ruth-
erford scattering. Only for ~Z, e /ih'v~ &1 does the
function allow for expansion in (Zie /trtv ) yielding

which is the lowest term in a Born-series expansion in
Zie /A'v. In the opposite litnit of Zie /iriv ))1, Bohr's
classical result is obtained:
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The Bloch formula thus directly reflects the transition
from a quantal perturbative regime ~Z, e /fiv

~

(&1 to a
classical nonperturbative one ~Zie /Rv

~

))1.
A characteristic feature of the Bloch formula is that it

is an even function in Z& i.e., invariant to the sign of the
projectile charge. Experiments have shown, however,
that sign-dependent processes do occur in the slowing
down of fast charged particles. This was first shown by
Barkas and co-workers by comparing the ranges of pions
of opposite charge. Later, the effect was confirmed and
quantified, most recently in precise measurements of the
stopping of protons and antiprotons.

The origin of this so-called Barkas effect has been
sought in the polarization of the target atom by the
penetrating projectile. In the presence of a nonvanishing
binding force on the electrons, this will give rise to
uneven terms in the Born series. The Barkas effect has
been attributed to the leading uneven term in this series,
i.e., the Z& term.

In the first theoretical account of the Z, term (the Bar-
kas term), it was claimed that only distant collisions
would contribute to the effect. Later, however, it was
argued that a roughly equal contribution would come
from the close collisions. This assertion has been
confirmed by recent quantitative calculations. '

The presence of this sign-dependent effect shows that

where g(n) is Riemann's g function. In the limit of
~Zie /Av

~
&(1 the stopping cross section therefore

reduces to the Bethe formula

4~(Z, e')e' 2S=, Z, ln
mv
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the binding cannot be neglected even for the close col-
lisions. In fact, inclusion of the binding may affect the
close-collision part of all terms (even and odd) of the
Born series at least at moderate and low velocities, where
the collision time is sufficiently long for the target elec-
tron to probe its binding potential during the collision.
This is important since the close collisions play a crucial
role for the difference between the stopping formulas con-
sidered above.

In order to investigate the importance of binding in
close collisions, we consider the idealized case of a central
collision of a heavy charged particle with a harmonically
bound electron. For this system, we first calculate the en-

ergy transfer to the oscillator numerically and, second, to
tenth order in the Born series.

The choice of a harmonic binding potential allows for
easy evaluation of the matrix elements and direct corn-
parison with previous results for the Z& term, ' the Z&
term, " and the Z& term. ' Our numerical method, how-
ever, is sufficiently general to cover also more realistic
atomic potentials.

The case of a central collision, i.e., a collision with im-

pact parameter zero, is of special interest, since the devia-
tions from the perturbative results are expected to be par-
ticularly pronounced in this limit. Furthermore, the
cylindric symmetry of a central collision reduces the
problem by one spatial degree of freedom while retaining
the complexity that a close collision may present. This
serves to reduce the required computation times.

We plan to return to the general collision in a future
publication.

II. BASIC EQUATIONS

We consider a massive point charge Z& e moving along
a classical trajectory passing through a target atom con-
sisting of an electron with charge —e bound harmonical-
ly with a resonance frequency co.

Initially, the harmonic oscillator is assumed to be in its
ground state IO) defined by

&o ln &
=E. In &, (5)

where Ho is the Hamiltonian of an unperturbed oscilla-
tor, E„ is the energy corresponding to the eigenstate

I
n ),

and n =0, 1,2, . . . . During the collision, the oscillator is
excited by the time-dependent Coulomb potential

Zie
V(r)= I.—R(t)l

where r and R(t) define the positions of the bound elec-
tron and the projectile, respectively.

The collision process is described by the time-
dependent Schrodinger equation for the oscillator. In the
interaction picture, this equation is given by

iA' —p(r) = V(t)4 (r) .
d-
dt

iHot /A
Here, %(t)=e ' %(t), with 4(t) being the wave func-

iHot /A —iHot /A
tion of the oscillator, and 4(t)=e V(t)e ' . By
expanding 4(t) in terms of the unperturbed energy eigen-

functions of the oscillator

4'(t)= g c„(t)ln )

the mean energy transfer hE is given by

b,E= y lc„( )I'(E. —E, ) .

Generally, AE will depend on the impact parameter of
the projectile in the collision. The overall stopping cross
section is given by

S =2m f dp b E(p)p, (10)

gE =gE' '+gE' '+gE' '+ ~ ~ ~ (12)

The terms up to AE' ' have recently been evaluated as a
limiting case in more general treatments concerning the
full impact parameter dependence of the energy
transfer. "' ' Extension of these calculations to even
higher order is complicated by the increasing number of
intermediate states needed. In practice, this kind of cal-
culation is therefore restricted to the first few terms.
Furthermore, in a central collision we cannot assume that
the interaction is weak and a Born series expansion is
therefore of little use.

In order to overcome these diSculties, we propose an
alternative numerical method for solving Eq. (7).

Integration of (7) from a time t to time tj+, gives

t.+,
P(t, )+=%(r, )+ f dkV(t)C (r) . (13)

if&

Irrespective of the strength of the interaction V(t), its
contribution in (13) is small for b.t =t +i —t sufficiently
small. We use this fact to expand the integrand in (13) in
powers of At and truncate the series after the second
term. This truncation introduces an error in (13) of
O(bt3). Consequently, the result of using (13) repeatedly
to find 4(t,„)from 0'(t;„) contains an error of O(bt ).
Here, t;„and t „are times chosen so that the collision
process is truncated well outside several adiabatic dis-
tances. In principle we can make this error arbitrarily
small by choosing At small. In practice a limit is set by
errors caused by a cutoff in energy, introduced below,
and execution time requirements. For the present, we no-
tice that the global error is O(b, t ). Hence, by doubling
the number of timesteps between t;„and t,„and there-
by the execution time, we can quadruple the numerical

where p is the impact parameter. In the present paper we
consider only the energy transfer in a central collision,
i.e., bE =bE(p =0).

Equation (7) can be transformed to an integral equa-
tion, and assuming that the interaction V(t) is weak
throughout the collision it can be solved iteratively by
standard methods of quantal perturbation theory. ' This
yields c„as an expansion in Z, e /iriv,

+c~ "+ct "+c~"+n nO n n n

By combining these probability amplitudes in the ap-
propriate way, the corresponding expansion for AE fol-
lows from substitution in (11):
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precision. This tradeoff makes the method practically
useful.

A heavy projectile with velocity u can at most transfer
an energy 2mu to a free electron at rest. %hen the
zero-point motion due to the binding is taken into ac-
count, more energy can be transferred. However, for a
harmonic oscillator 2mu /%co defines an approximate
cutoff in the number of energy eigenstates required to
give a full quantal description of the collision.

This finite set of eigenfunctions provide a natural
discretization of the collision process. In the following
we describe two ways to expand (13) to second order in
b, t and solve (7) within this basis.

A. Method I

By approximating 4(t) linearly through qi(t, ) and
t(t, ) for t, ~ t ~ t, +, and inserting this in (13), we get

(14)

Using (8) we find

t

c (tj+, )=c (tf)+ g f dt e " (m
~
V(t)~n ) c„(t~)+[c„(t) c„—(t, )]

jnj&n
(15)

In (15) we have explicitly introduced a cutoff n, „ in the energy, hence in the number of eigenstates used to describe the
collision process. By ~

n
~

is meant
~ n„+ n +n, ~, where n =(n„,n, n, ) are the energy quantum numbers of the harmon-

ic oscillator in three dimensions. With n, „ in place the integrand in (15) can be Taylor expanded about

t~+, &2=(tj+t~+, )l2 and the integration carried out. That leaves us with

c (t +&)=c (t )+ g e " ' '" (m
~
V(t +»~)jn )[—c„(tj)——,'c„(t~,)],

jnj +n
(16)

which provides a method for approximate solution of Eq. (7). Note that the method is formally very similar to the
two-step Adams-Bashforth method for the solution of ordinary differential equations, except that we have used the
linearity of the Schrodinger equation to evaluate V(t) at midpoints between the points in time where 4'(t) is evaluated.

B. Method II

Iterating (13) once, we have
t

y(r, +, )=qi(r, . )+ f '
dr V(r)%(r, }— f dt f dt'V(t)V(t')4'(tj)+O(bt ) .

J J

(17)

Again we assume that only the states ~n
~

~ n, „are excited, and Taylor expand the time dependence around t +,zz.
That leaves us with a one-step formula

c (t, +, )=c (t, )+ . g e' " '+'" (m~ V(rj+)q2)l&)c„(&J)i' jnj~n

jn j nmax

(18)

As method II involves the evaluation of two matrix elements in each time step, it is less eScient than method I as
long as 4(t) does not change rapidly with t. When it does, the one-step method in (18) reproduces this change more
effectively than the two-step method in (16).

Both methods are easily adapted to find many coefficients of the Born series for the collision process. This is done by
introducing c'"'(t }, the coefficient of the kth-order term in the perturbation expansion of c (t ). When c is written as
gkc'"'(Z, e /A'U ) in (18), it follows that

iA jnj n

At

jnj&n
(19)
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III. EVALUATION

So far our derivations have been quite general in the
sense that we have only assumed that Ho is integrable
and that the projectile follows a classical trajectory
specified by R(t). In the following we assume that the
projectile moves uniformly with velocity v along a
straight-line trajectory passing through the center of a
harmonic oscillator target. We thus do not take into ac-
count the Coulomb deflection on the nucleus that will
take place in a realistic atomic collision. In the energy
region considered in this paper, however, the effect of the
Coulomb deflection is negligible except for the very
heaviest targets.

In the calculation we use cylindric coordinates with the
oscillator placed at the origin and the axis of symmetry
along the trajectory of the projectile. In this system the
position of the oscillator and the point charge are given
by r=(z, r, P) and R(t)=(ut, 0, 0), respectively. By sym-
metry the P coordinate drops out of the calculation and
the allowed transitions of the oscillator are therefore
characterized only by the axial and radial quantum num-
bers

ivl) =iv&il &,

where

&harv!2'
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1/2

(P2r 2 )e
—P r /2 (22)

Iteration of the recursion relations (18) from the initial
condition c'"'(t;„)=5k u5 u gives c'"'(t,„). From
these coeScients other Born series are derived, for exam-
ple that in (12). A two-step expression similar to (19) can
be derived from (16).

Our numerical method of solution of (7) is related to
the close-coupling scheme, which is commonly used in
similar problems. ' ' It differs, however, from these cal-
culations by the use of a large set of eigenfunctions deter-
mined by a physical cutoff. By a proper choice of n
the error due to the finite size of the basis can therefore
be made arbitrarily small.

The discretization in energy eigenfunctions in (16) and
(18) differs distinctly from the discretization on a spatial
lattice used in standard models for parabolic difFerential
equations. When we compare these methods we see that
our transfer matrix is dense as opposed to the sparse
transfer matrix for the lattice discretization. Because of
the naturalness of our discretization and cutoff, our
transfer matrix is smaller. This property and the expres-
sion of the matrix elements given below ensure that our
method works. It is, however, no general alternative to
established methods, since it is practical only when (5)
can be solved analytically.

H, and LI are Hermite and Laguerre polynomials and
/=&me@/fi. The corresponding energy levels are given
by

E„I=(v+21+ ,' )fico—. (23)
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The matrix elements (pk ~
V (t)

~
vl ), which are needed

only in (18), can be evaluated similarly:

(pk
~

V (t)~v! ) =(Z, e P) I do(1 —o )

XB'„„(o,ut )BI",I(cr, O) .

(27)

The integrals over o in (24) and (27) allow for easy nu-
merical evaluation by Gauss-Legendre quadrature, thus
enabling us to integrate (7) in some fixed interval. We
choose the initial and final position of the projectile to be
Put = —20.0 and Put =20.0, which for 2mu /A'c~u100 is
well outside several adiabatic distances.

The choice of steplength ht and cutoff value for the
number of oscillator eigenstates n, „depends strongly on
the actual parameters characterizing the problem. The
pertinent dimensionless variables in the collision are
Z&e /Av and A'co/2mv . While Z&e /Av can be interpret-
ed as the effective strength of the interaction between the
projectile and the bound electron, Ace/2mv measures the
importance of the binding force during the collision. For
a large value of Z, e /Av a small steplength ht is re-
quired. Conversely, the choice of n, „ is mainly deter-
mined by Ace/2mv through the cutoff in the number of
energy eigenstates discussed above. The largest cutoff
values needed in the calculation was n,„=52 corre-
sponding to a basis of 729 oscillator eigenstates. The
computing required in this case was approximately 1 h on
the Danish Amdahl VP1100 vector facility.

The matrix elements (pk~V(t)~vl) occurring in (16)
and (18) have been evaluated in (11)yielding

Z, e P
(pklV(t)ivl) = — — f do. o '"B' (o, ut)

&7r pv
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Wehe have arranged for an overall accuracy of about 1%
for all values of Z&e /Av and Am/2mv

IV. RESULTS

The mean energy transfer in a central collision is con-
veniently expressed through the dimensionless quantity T

10.0
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I

I
2mv~
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I
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I 1 I I I I
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(28) 6.0-

where T in general depends both on Z, e /fiu and
fico/2mv . By expanding T in powers of Z, e /fiu we get
the Born series.
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where the coeScients depend only on firv/2mu We a. lso
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for the Barkarkas-effect, i.e., the difference in energy transfer
for positive and negative particles. 0.0
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FIG. 2. The same as Fig. 1 for 2mu'/Ace=40.
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Wee have computed numerically exact results for T in
t e region 0. 1 Zie /Av 10.0 and 1.0 2mv /Ace
~ 40.0, and the Born coefficients T„ for n=0, 1, . . . , 8

and 1.0 ~2mv /fico 40.0. The results for T, T, , andus or
T2 have been compared with the corresponding results in
Refs. 11, 14, and 15, and agreement within 1% was
Ound.

In Figs. 1 and 2 we investigate the general dependence
of T on Z, e /fiv for two values of fico/2mu correspond-
ing to relatively strong binding (2mv /fico=4) and rela-
tively weak binding (2mv /fico=40) at identical veloci-
ties. For comparison, we have included Tp based on the
first Born approximation' and the maximum ener
tr ansferrable to a free electron at rest hE =2

energy

~ ~

max

which in the present notation yields

2mv
2

max 16'

0.0
0.1 10

I I I ~ t a

10.0
Ze'
SY

FIG. 1. The mean energy transfer in a central collision vs

~Z~e'/Iiv
~

for the binding parameter 2mv'/fico=4. Solid line,

exact numerical results dot-dashed l'ine, rnaxr mum energy
transferrable to a free electron at rest; dashed line, first Born ap-
proxirnation (Ref. 14).

As expected, To is approached for ~Zie /A'u
~
&&1,

where the interaction between the projectile and the
bound electron is weak, while free-particle scattering pre-
vails in the opposite limit ~Z, e /fiu

~

&&1. Turning to the
Barkas correction, we see that the difference in energy
transfer for positive and negative projectiles is quite large
in the case of strong binding (2mu /Ac@=4) leading to a
pronounced maximum around Z e /A =1 fv = or positive
ions. In this region the energy transfer of a positive ion is
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a factor of 2 larger than for the corresponding negative
ion. In the case of weak binding (2mu /fico=40) the
difference is much smaller, although not quite negligible
for large values of Z, e /Av. Such differences between the
strong and weak binding limits are to be expected since
the Barkas effect as a polarization effect must depend
strongly on the magnitude of the binding force. In both
cases the energy transfer is larger for positive projectiles
than for negative ones in agreement with T&, being posi-
tive in this region. " At larger values of Z&e /A'v, howev-

er, the effect changes sign. This indicates that negative
higher-order terms Tz„+&, n ) 1 are significant.

As the approach to To in the limit Z&e /Rv && 1 is

quite different in the two cases considered, it is evident
that the convergence behavior of the Born series must de-

pend strongly on A'cu/2mv . This is illustrated in Fig. 3,
where we have plotted T„ for 0 ~ n & 8. For
2mu /fico=4, the coefficients oscillate but fall off rapidly
with T, being the dominating higher-order correction.
However, for 2mu /fico=40 the picture is quite different.
Both even and odd terms form alternating series, but
while the even terms are all large, the first odd terms
(notably T, } are very small. The most important higher-
order correction in this limit is therefore the negative

fourth-order term T~. Note that the sign and magnitude
of the even terms for 2mu /Ace=40 are consistent with
the expansion of the Bloch correction for close collisions
in (2}. This is to be expected since the binding is of negli-
gible importance when Rco/2mv && 1.

In Figs. 4 and 5 we compare the Born series

T=gk —oTg(Z, e /h'v)" for various values of k,„with
the exact numerical results. As expected from Fig. 3, the
convergence is more rapid in the case of strong binding
(2mu /A'co=4), but in general we see that a series expan-
sion is useful only for Z, e /hu &1.

The condition ~Z&e /fiv
~
&1 puts a rather strong limit

on the use of the Born approximation. This is illustrated
in Figs. 6—8, where the dependence ofb, Eon 2mu /ficois
plotted for positive and negative values of Z, at a fixed

binding energy of Rco= 1 Ry. We see that the first Born
approximation is a reasonable starting point for ~Z, ~

=1
at high projectile energies. Even in this limit, however,
the first Born approximation becomes inaccurate for
~Z, ~=2 and 4. Furthermore, it is seen that while the
Barkas correction is dominating for ~Z, ~

=1 negative,
even corrections become increasingly important for
heavier ions in agreement with the Bloch formula.

At low projectile energies AE approaches
AE,„=2mv, i.e., the maximum energy transferrable to
a free target electron at rest. The characteristic max-
imum of hE is thus a consequence of its different behav-
ior in the low- and high-energy limits Note, however,
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Born expansion
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I I

1.0

I

I

1
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0 4 8
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FIG. 3. The Born coefficients for the mean energy transfer in
a central colljsjon. 2pnp /fico=4 and 2~U /Ace=40.

FIG. 4. Comparison of the Born expansion with exact nu-

merical results for 2mu /fico=4. Solid line, exact numerical re-
k

suits; dashed line, the Born series T=g„""T'(Z~e'/fiv } for

k,„=O, 2, 4, 6, and 8 corresponding to the curves a —e.
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FIG. 5. The same as Fig. 4 for 2mv'/Ace =40.
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FIG. 6. Mean energy transfer vs projectile energy for
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= I and fico= I Ry. Solid line, exact numerical results; dot-
dashed line, maximUm energy transferrable to a free electron at
rest; dashed line, first Born approximation (Ref. 14).
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FIG. 8. The same as Fig. 6 for ~Z, ~

=4.
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that the overall behavior of AE depends critically on the
sign of the interaction. For positive ions, the energy
transfer is rather strongly peaked around the maximum
value, while it is broad and featureless for negative ions.
Some of the essential processes causing the strong energy
dependence of hE in an attractive potential, where the
projectile and the electron may come very close, are
therefore suppressed in a repulsive potential.

In Fig. 9 we have plotted ATE& for the same values of
~Z, ~

as in Figs. 6—8. As expected, large deviations from
the perturbative result occur for low projectile energies,
where the binding is important. In the high-energy re-
gion, however, the perturbative result is approached and
the Barkas correction becomes quite small even for heavy
ions. This indicates that while the overall applicability of
the Born series is determined by Z&e /Av, the odd terms
show an additional strong velocity dependence due to the
binding parameter Ace/2mv .

2.0—

/
AEB

z, 'h(d

\

1.0

Exact results
—-- Second Born appr.

'hu) = 1Ry

V. DISCUSSION

We have calculated the mean energy transferred to a
quantum harmonic oscillator in a central collision with a
uniformly moving point charge. The calculation was car-
ried out numerically by solving the time-dependent
Schrodinger equation in a basis of energy eigenfunctions
of the undisturbed oscillator. The energy transfer b,E is
given numerically exact and up to tenth order in a Born
series.

As expected from Ref. 4, we find a clear separation of
the results according to the value of Zie /fiu. For
~Z, e /Ru

~

&( I the interaction between the projectile and
the electron is weak and causes only a small disturbance
of the motion of the bound electron. In the opposite limit
of ~Z, e /A'u~ )&I the interaction is strong, and in this
case the binding causes a small correction in an otherwise
free collision. A Born series in Z, e /A'u is therefore use-

ful only for light ions, while a more-detailed treatment is
needed for heavier ions, where the two regions must be
connected. The numerical method developed in this pa-
per provides an example of such an approach.

Our results confirm that a Barkas correction exist even
in the case of a central collision, where the interaction
time is short compared to that of a distant collision. The
Barkas correction, however, turns out to depend strongly
on the binding parameter fico/2mu . At low velocities it
is a very large correction, but at higher velocities it van-
ishes even for heavier ions, while large, even corrections
persist in this limit.

In a more general context, the results of the present
calculation of AE for a central collision support the in-
clusion of a Bloch correction for close collisions. Howev-
er, in the presence of a binding force a close-collision Bar-
kas correction must also be considered. Only when

0.0

10

2 fYlV

FIG. 9. The Barkas correction vs projectile energy for
~Z~ (= I, (Z~ ~

=2, and ~Z~ ~

=4. In all cases fico= I Ry. Solid
line, exact numerical result; dashed line, Barkas correction
based on the second Born approximation (Ref. 11).
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enlightening discussions, and critical reading of the
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%co/2mv'«1 does the Barkas correction become very
small and an expansion in even terms of Z, e /iiiu is possi-
ble.

As the methods of calculation presented here are quite
general, they are applicable to more realistic atomic po-
tentials also. This is important since quantitative aspects
of the calculation may depend on the particular choice of
binding force. Considering, however, the harmonic oscil-
lator as a limiting case of a general atomic system charac-
terized by a mean resonance frequency I/fi, ' we may as-
sume that the qualitative features of the calculation are
general.
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