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A theoretical derivation of the diff'erential photoionization cross section taking into account the

spin polarization of photoelectrons is presented. This cross section corresponds to rotationally
resolved transitions from an initial rotational level of the neutral molecule to a final rotational level

of the ion. The final-state wave function of the ion-plus-electron system is written in the Hund s-

case (c) coupling scheme, and the parities of this state and of the initial-state wave functions are ex-

plicitly introduced. Two equivalent expressions for the cross section are obtained that correspond
to two coupling schemes of the angular momenta involved in the problem. One is a transferred-
momentum-coupling scheme, and the other is the final-state (ion-plus-electron) total-angular-
momentum-coupling scheme. Their respective advantages in analyzing the experimental results are
highlighted. Each term in the transition moment and cross-section expressions contains a multipli-

cative factor of a simple form that determines if a contribution to these expressions is zero or not,
thus playing the role of a selection-rule factor. Our expressions apply to the single-photon process
as well as to multiphoton processes in cases in which only the last (one-photon) ionization step is

considered explicitly. The paper ends with derivation of explicit formulas for the total cross section
and the angle-integrated spin-polarization parameter in a particular case. The photoionization of
the HI molecule was the model for these particular formulas.

I. INTRODUCTION

The first measurements of the spin polarization of
molecular photoelectrons were performed in the case of
C02 and N20 (Ref. 1) molecules less than ten years ago.
Those experiments as well as subsequent ones were per-
formed using synchrotron radiation as a source of light
with moderate experimental resolution. Recently, vuv

laser light sources were developed that allowed much
better resolution in photoionization studies of molecules.
In particular, for molecules with a relatively large rota-
tional constant, this new technique makes it possible to
distinguish between rotational branches of a resonance
feature, as has been shown in the case of photoionization
of HI by Huth et al. , and Hart and Hepburn. The ex-
perimental arrangements used by these authors provide
high-resolution photoelectron-yield spectra giving the to-
tal cross section, angle-integrated photoelectron polariza-
tion parameter P or differential cross section without spin
analysis. Simultaneous angle- and spin-resolved photo-
electron yield spectra are, in principle, attainable with the
present experimental setup. Using a threshold photoelec-
tron spectrometer developed recently by Miiller-Detlefs,
Sander, and Schlag or a time-of-fiight electron spectrom-
eter developed by Allendorf et al. (which is not restrict-
ed to the threshold region) the rotational spectrum in the
exit channel can be resolved. This progress in techniques
indicates that rotational photoionization spectra (i.e.,
cross section, angular-integrated polarization parameter,
and differential cross section) corresponding to the transi-
tion from a Boltzmann distribution of initial states to al-

lowed final states can be obtained in the near future.
A different direction of research is multiphoton excita-

tion and ionization. With lasers of moderate power, and
particularly using two lasers of different colors, this tech-
nique permits the preparation of an intermediate excited
state of given rotational level and parity, which is then
photoionized. By this technique, one can obtain rotation-
al state-to-state photoionization spectra of an excited
state.

At low photon energies a theory concerning spin polar-
ization of photoelectrons ejected from atoms was
developed nearly 20 years ago and is summarized in the
book by Kessler and in a review paper by one of us.
More recently the corresponding formulas appropriate
for molecules have been derived. In 1985 the first calcu-
lations of polarization parameters were published, fol-
lowed by a more detailed study in the case of shape reso-
nances and Cooper minima in hydrogen halides. ' In
these papers molecular rotation has not been taken into
account.

Several authors" ' have derived expressions for the
differential cross section without taking into account the
spin orientation of the photoelectron. The transferred
momentum formulation of Sichel and co-workers, "'
Fano and Dill, ' and Dill' has been used by, e.g. , Raoult,
Jungen, and Dill' in a calculation of rotationally
resolved total and differential cross section of the H2 mol-
ecule. The total angular momentum formulation
developed by Tully, Berry, and Dalton' and Thiel' has
been used in the calculation of angular distribution
without rotation by many authors (see, e.g., Thiel' ).
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More recently, analogous formulations, including rota-
tion, have been proposed by Itikawa' and Chandra. '

None of the papers mentioned above ' takes simultane-
ously into account rotation and spin.

The present work was motivated by the recent achieve-
ments of the experimental technique mentioned above.
The high-resolution photoabsorption spectra of the HI
molecule measured by Huth et al. and Hart and Hep-
burn were only roughly interpreted by these authors.
Detailed theoretical analysis of the experimental results is
difficult due to the fact that the existing model ' ignores
vibration and rotation. Vibrations imply changes in the
dynamical part of the cross section, namely, in calcula-
tion of vibrationally resolved transition moments. No
changes in the expressions for the total and difFerential
cross sections themselves are needed. As a consequence,
the vibration is not considered explicitly in this paper.
Inclusion of the rotational degree of freedom implies
changes in the coupling of angular momenta of the pho-
toelectron and residual ion, which lead to new expres-
sions for the diff'erential cross section. Therefore it is the
aim of the present paper to derive the rotational state-to-
state photoionization cross section for diatomic mole-
cules, with the spin polarization of the electrons taken
into account. We are looking for the probability of tran-
sition from an initial rotational level J" of the neutral
molecule to a final rotational level J, of the ion when the
photoelectron is ejected with momentum k and spin s.
We derive cross sections corresponding to two coupling
schemes between angular momenta mentioned above.
One is the transferred momentum (j, l coupling
scheme" ' and the other is the final-state (ion-plus-
electron) angular momentum (J) coupling scheme. ' '
An advantage of the first scheme is linked with the ap-
pearance of an incoherent sum in j, and with easy intro-
duction of a simple rotational factor. The second
scheme, though leading to a more complicated formula,
is convenient when studying autoionization resonances
since a single term, corresponding to the total angular
momentum J of the resonant state, gives dominant con-
tribution to the cross section. The use of wave functions
of definite parity in the initial and final states permits the
writing of the transition moment and of the cross section
in a form containing a selection-rule factor. By inspec-
tion of this simple factor it is possible to determine which
transitions are allowed and contribute to the cross sec-
tion. A similar selection-rule factor has been introduced
by Dixit and McKoy and Fredin et al. ' in the context
of multiphoton work. Variants of this selection rule have
been derived by many other authors.

The equations obtained here are applicable also to the
n +1 resonant multiphoton process. The preparation of
the intermediate state by an n-photon excitation is ig-
nored and one considers explicitly only the last, one-
photon, ionization process.

The paper is organized as follows: In Sec. II we
present the expression for the final- and initial-state wave
functions with definite parity and for the corresponding
transition moment. We also briefly discuss the selection
rules for the transition moment and the cross section. In
Sec. III we derive the rotational state-to-state cross sec-

tion in the two coupling schemes discussed above and
also average over the initial rotational states correspond-
ing to a given temperature and sum over the final rota-
tional states to obtain the photoabsorption spectrum.
The theoretical photoabsorption cross sections can then
be compared to the experimental spectra of Huth et al.
and Hart and Hepburn. In Sec. IV we consider the ex-
ample of photoionization of the HI molecule and give ex-
plicit formulas for the total cross section and P parameter
in the case of 0, =

—,
' final ionic state with the l of the con-

tinuum electron restricted to 0, 1,2. They can be directly
used by experimentalists in the evaluation of the above-
mentioned parameters. Section V is a conclusion.

II. FINAL-STATE WAVE FUNCTION
AND TRANSITION MOMENT

We will consider a molecular photoionization in the
nonrelativistic photon energy region where the electric-
dipole approximation is valid. The radiation field is as-
sumed to be so weak that only one-photon processes take
place. Vibrational excitations of molecules are not con-
sidered here explicitly though all equations are written in
a form which enables one to include them easily.

In our derivation we use two coordinate systems. One
is the molecular coordinate system or molecule-fixed
frame (primed coordinates and symbols) with the z' axis
directed along the internuclear axis. The other one is the
laboratory coordinate system or space-fixed frame
(unprimed coordinates and symbols), with the vector q
defining the laboratory z axis. This vector is directed
along polarization vector e for the linearly polarized light
or along the direction of light propagation for circularly
polarized and unpolarized light. We present in Fig. 1
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FIG. 1. Laboratory and molecular coordinate systems. The
vector q defines the z axis of the laboratory coordinate system.
It corresponds to the e vector for linearly polarized light or to
the vector of photon momentum for circularly polarized light.
The unit vectors k/~k~ and s/~s~ (to simplify the figure we use
unnormalized vectors) are directed along the photoelectron
momentum and spin, respectively. The z' axis is parallel to the
internuclear axis.
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these coordinate systems and the vectors appearing in the
photoionization process. Latin and Greek letters corre-
spond to the laboratory and molecular projections, re-
spectively, the only exception being for the photoelectron
spin with projections p and 0. corresponding to the
space-fixed and molecule-fixed frames. The projections
on the molecule-fixed frame are usually signed projec-
tions. We also introduce unsigned projections which are
labeled with an overbar (e.g. , 0).

We will use lowercase symbols for the photoelectron
wave function and quantum numbers, uppercase symbols
with subscript c for the ion, and uppercase symbols
without subscript for the ion-plus-electron system. We
also use the spectroscopic notation for the initial states

(i.e., 0",S",etc.).
Throughout this paper we will use the atomic units

fi=m =e =1 for all the observables including the energy.
The only exception is for the cross section which is ex-
pressed in cm .

A. Final-state wave function

The final-state wave function is an antisymmetrized
product of an electron and an ion wave functions. Before
considering this product, let us discuss first the wave
function of the continuum electron in the laboratory
frame with the ingoing normalization appropriate for
photoionization:

y(
—

)( I r )—
' 1/2

2 YI' (r)(e '&I I e 'Sl I') "e "'YI" (&)Is@) .
2ir &m

Here [2/(m. k)]' is a factor normalizing the continuum
wave function to the energy, r and k are the position and
momentum vectors of the electron, and s is its spin (Fig.
1). The wave function (1) is expanded in spherical har-
monics Y& in the space-fixed frame. The expression in
small parentheses in (1) is the radial wave function of the
electron, SI I being the scattering amplitude in space-fixed
frame. The spin-wave function is ~sp) with p being the
projection of spin in this frame. 8& is equal to
kr —(le/2) —(Z/k )ln(2kr)+ ri& where —(Z/k )ln(2kr )

QI,„'(k,r) =g yIz '(k, r')aI'z "(k,R),
l, k

(2)

where

+gI is the Coulomb phase shift. ' The corresponding
function in the molecular frame of reference, where nu-

merical calculations are usually performed, is y&z
' and is

related to f,'„'by

1/2

. i'e 'g Y&z(r'}(e '5~~ —e 'SI I')~so )
2ir I,

(3)

and A, and 0. are the projections of orbital angular
momentum and spin in the molecular frame. The matrix
Sl.

&
is the scattering matrix in the molecular frame. The

symbol R represents the three Euler angles relating the
molecular frame to the laboratory one.

The transformation between these two frames
defines the coefficients al'z "(k,R}of Eq. (2):

a;z "(k,R)= g Yl* (k)2)z" (R) 2)'„'(R). (4)

Here 2)I" (R) are rotational matrices in the Edmonds
notation.

It is obvious that the expressions (1)—(3) above are val-
id only asymptotically, i.e., far from the ionic core. The
relations between these forms and expressions valid close
to the ionic core are given in Eqs. (7) below.

The ion emerges from the photoionization process with
total and spin angular momenta J, and S„respectively.
The projections of these momenta, and of orbital angular

momentum in molecular frame, are Q„X„andA, . The
projection of total angular momentum J, in the laborato-
ry frame is M, . For simplicity, we use the notation
~&,X,Q, ) for the electronic wave function of the ion.
Obviously, this function depends parametrically on the
internuclear distance. The corresponding rotational
wave function is proportional to the rotational matrix

(J )2)n'I (R). Instead of using a set of basis functions of the
C C

ion having either positive or negative projection O„we
use linear combinations of these two functions which are
properly symmetrized eigenfunctions of the total Hamil-
tonian. The two possible linear combinations are called
e and f states and have, following the notation of Chang
and Fano, parity factor g, equal to +1 or —1, respec-
tively.

We can now introduce the wave function of the com-
plete system. Using (2), and the above considerations
concerning the ionic state, this wave functions reads (see
also Refs. 19 and 26):
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' 1/2

(R,k, r)= [~A, X,Q, }X)„'M(R)+g, ( —1) '~ —A, —X, —0, }Xi;,M (R)] g,„'(k,r) . (5)

In (5) we have explicitly written only the coordinate of the continuum electron r, omitting coordinates of the other elec-
trons. We also use the abbreviation C—:(n, A, X, ;S, ) where n, represents all the nonexplicit quantum numbers. We
can rewrite (5) in terms of a sum of eigenfunctions of the total angular momentum J of the electron-plus-ion system:

qlcn'M „(R,k, r)=g Q [j,J]'~ (
—1) ' Yl~(k)

J,jm, m,
I M

s 4'—" '(Rkr')
m p —I m M —M Cn 'M

J . J C

(6a)

—0 —1/2
C

(TCO,
A. , A

X [ ~A, X,Q, }g,~ '(k, r')2)„M(R)+g, (
—1)

'
1 i2

X
~

—A, —Z, —n, }q',—,' .(k,r'e'"„(k)]
8m

where the eigenfunction of J, appearing in the right-hand side of (6a), has the following expression:

s

ct co co 0 0

(6b)

Here j is the total angular momentum of the excited elec-
tron with m and co being its projections in laboratory
and molecular frames, respectively. In the last three
equations we have used the notation [J]=2J+1and also

[j,J]=(2j+1)(2J+1). Equation (6) corresponds to the
Hund coupling case (c) between the ion and the electron.
The explicit reference to this coupling case is essentiaj.
here as it is directly related to the observation of the spin
polarization of the photoelectron appearing through the
spin-orbit interaction. The matrix elements of this in-
teraction, and of the transition moment, take their main
contribution in a region of space where the electron and
the ion are close to each other (internal region). In this
region we have to enforce the antisymrnetry of the wave

c'
"'— (R k r')U —' '

, r

A, , f2
7l

The wave function y~zz'z is written as a sum of prod-

ucts of electronic wave functions O'A x n (k, r', R ) and ro-
C C C

tational functions g)nM ( R ):

(7a)

function and consequently the function (6b), valid in the
external region, is inappro riate. We define an internal
region wave function yAzg'n and connect it to the exter-

nal region wave function (6b) in the following way:

+ 1/2
' 1/2

[~A x n (k r ~)&nM(R)+'rl( 1) ~—A —x n(k r—~)&—QM(R)]
AXQ, Q, 8a

(7b)

( —1) '
Axn, n'

' 1/2

[~A" » (k, r', &)&'nM(k)+q( I)'8' „',—„,(k, r', z)S'"nM(k)]
C C C C C C 8''

In the particular case of a II ionic state the wave func-
tions (7b) and (7c) correspond to 0, =

—,
' and —,

' projec-
tions, respectively. The electronic wave function OA & &

C C C

is an antisymmetric product of the ionic core wave func-
tion ~A, X,Q, } ( II state in our case) and the continuum
electron wave function y'I&

'..

O,",„=~~A,r, n, }qI„-.') .

In fact, 0~ & & is a linear combination of triplet and
C C C

singlet states each constructed from at least one Slater
determinant.

The coefficients U of the frame transformation between
the internal (6b) and asymptotic wave functions (7a) are
obtained requiring the continuity between these two func-
tions:

J,s, l j;Jgg
Un, x n

j J J J I+~( —I)'~ ( —1) '
(rJ C

0 co co 0 0 2
(7d)
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B. Transition moment g&„&„=1when 0"=0",
(8b)

Consider now the transition moment corresponding to
the excitation from an initial state with the wave functionJlt II

~ ~

q«n. Q- by the dipole transition operator T « to a final

continuum state with the wave function q«cn'M „(R,k, r).
C C

The final-state X-electron wave function has been defined
in Sec. IIA [Eqs. (5)—(7)]. Similarly, the initial-state
wave function reads

'g~«t ~tt ~ n g «M»
Q«t

(8a)

where

i)—„„n„=«)"(—1) when 0"=—0",

' 1/2[J"]ttgt«M«t:
16~

I
n "0"&2)n-~ ( R ), (8c)

where the quantum numbers of the initial state are the to-
tal angular momentum J" with its projection in molecu-
lar and laboratory frames 0" and M", respectively, the
parity g", and the total spin 5". The symbols n" and
gn„represent all other quantum numbers not specified
explicitly and a sum over signed projections 0",conserv-
ing a constant module II"=const. Using (7) and (8) the
transition moment corresponding to a total angular
momentum J can be written as

0 +1/2
(
—1) '

A, , o.
0

Qg'((',"n IT-,„I.0 &,
qr n»

f2)~~~(R)2)" ' «(«R)2)' n M(R)dR

+rl"( —1) "rl( —1)'f2)'„M*(R)2)~", ,(R)XN' „'~ (R)dR

[J,J] ~ J,s, ls; Jqg,
Sm.

(9)

where Tz« =(4irl3)' r'Y, z«(r') is the transition moment

operator in the molecular frame with A, «being the projec-
tion of photon angular momentum in this frame. The
transition moment in the molecular frame satisfies the
following conditions:

which was used in the derivation of (9). Note that when
I

I

0"%0 and Q, PO each expression in (9), corresponding
to a given value of A, , 0., 0, and A, ~, contains four terms as
in the similar expression derived by Dixit and McKoy.
If, in Eq. (9), we assume dipole transitions (i.e.,
A, «=0, +I), then only two terms, but not always the
same, are dift'erent from zero. Performing analytically
the integration over R, and using the expressions (7a),
(7d), and (6), we can write the transition moment as a
sum of transition moments (9) corresponding to different
total angular momentum J of the final-state wave func-
tion (5):

(Ocn"'M „(R,k, r)IT «Iq«„-~n M &, R

M +1/2 —m r —M"
Q [J",j J]' ( —1) ' Y«' (k)

Jj M, m
I

S J J Jc

p —m m M, —M

tt

g' g ( —I) ' [J,]' (J,Q„lj T(J)IQ" &

0" ggr

(loa)

where

(J,&„ljIT(J)l&"&=[j,J]' 'g ( —1) rl —„„„t„-'„'-(E)
A, , o

S J J Jc

0 co 6) 0 0 (lob)
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and

(10c)

In (10) s is the kinetic energy of the electron. The in-

tegral in Eq. (10c) is over the coordinates of all the elec-
trons including r of the excited one. It can be calculated
in a one-configuration representation or in the
configuration-interaction representation using the
method of Ref. 27 based on the Lowdin first-order densi-

ty matrix.
The above expression for the transition moment is ap-

propriate for the analysis of resonances since the total an-
gular momentum J of the final state is explicitly defined.
This is so as a resonance corresponds to a discrete state
having a single J. It interacts only with one term in the
sum (selection rule EJ=0) of several continuum states
taken into account in Eq. (10a}. Consequently at reso-
nance only one term of (10) contributes to the cross sec-
tion. In the following we will call this form the "reso-
nance form. " The expression in the last set of curly
braces of (10a) is called the "selection-rule factor. " This
factor is independent of J of the final electron-plus-ion
state and of projections. As will be seen below, it con-
tains very simple information about the selection rules for
a transition.

The expression (10) can also be written in a different
form similar to the one introduced by Buckingham, Orr,
and Sichel" or Fano and Dill. ' This form can be ob-

FIG. 2. The vector diagram corresponding to two coupling
schemes for the angular momenta of the molecular photoioniza-

tion process including rotation. The vectors corresponding to
observable quantities are J, j', and J„which are the initial

state, photon, and final ionic state angular momenta, respective-

ly. The other three angular momenta j, j„andJ are defined by

the space orientation of J, j', and J, .

tained from (10) using a transformation to 6-j symbols
[see, e.g. , Rotenberg et al. , Eqs. (2.19) and (2.6)]. It is
written in terms of transferred angular momentum which
is defined as j, =J, —J"= j~—j, where j~ —= 1 is the angu-
lar momentum of the photon. An equation equivalent to
(10a) in this formulation reads

(R k r)
I

T',I+'„„~„„),

m —m~ mJ Jr

J, j,

(1 la)

where the last factor in (1 la} has the following expression:

(1 lb)

We call this form of the transition moment [Eq. (11}]
the "scattering form" as the momentum transferred dur-
ing the collision of the excited electron with the ionic
core is well defined. Using this formulation, we obtain a
much simpler expression (see Sec. III) for the cross sec-
tion and polarization parameters with incoherent sum
over the transferred momentum j, .

Finally, to get some more insight in the meaning of
these two coupling schemes, we have drawn, in Fig. 2, a

vector diagram of momenta. (See similar diagram in Ref.
14). The vectors corresponding to observable quantities
are J",j, and J, . They can take different orientations in

space, each orientation corresponding to a term in the
summations of Eqs. (10) and (11). Given their orienta-
tion, these vectors completely define the other three vec-
tors j, J, and j, . The vectors J and j, do not correspond
to some observable quantities, but they are useful for the
interpretation of the photoionization process.
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C. Selection rules for transition

The analysis of expression (10) and (11) in terms of al-
lowed quantum numbers and projections will give us the
selection rules for the photoionization process. The last
3-j symbol of (10a) and (lla} gives two restrictions, re-
spectively:

II+0"=A~=0 +1 and IJ"—1I ~ J~J"+1,
n, +0,"=X, and IJ" j, I

—J, J"+j, (12}

The first line in (12) is the standard selection rule for the
discrete spectrum, whereas the second line in (12) re-
stricts the possible rotational states of the ion. The
selection-rule factor, appearing between curly braces in
(10}and (11),gives a supplementary selection rule:

This selection rule is identical to the one derived by Dixit
and McKoy in the framework of their multiphoton
work. It is analogous to those derived by Raoult, Jungen,
and Dill, ' Dixit et al. , and Fredin et al. ' without ex-
plicit consideration of the spin. We can obtain a simple
proof of their selection rules by replacing j by l in the
above equations, suppressing the 3j coeScient

I s j
O' CO

and eliminating the spin from Eq. (13). For i), =1 we
therefore obtain b J+l =odd of Dixit et al. , or in the
case of l =1, AJ =even of Raoult, Jungen, and Dill. ' Fi-
nally the Fredin et al. ' selection-rule factor is obtained
by replacing their l' of the initial state by l +1 of the final

I

J, +J"+s+1+(1—rt, )/2+(1 —rl")/2 —s —S,
—S"=odd . (13)

s+J, +1+J"x —1) (14a)

where 51 +I 2„is the Kronecker symbol and everything

else has already been defined except for

Il l2
rtt 1 =-,'[( —1}'+( —1}'] (14b)

This factor is + 1 or —1 when both l, and lz are even or
odd and zero otherwise. It appears from (14) that
4 J 's"„'( 1„12), and consequently the cross section, is
different from zero only when I, and 12 are of the same
parity. The condition l, +l2 =even is in fact the same as
the condition l &+l2+L =even and L =even obtained
from a 3-j symbol appearing in Eqs. (19b) and (20c)
below.

III. ROTATIONAL STATE TO STATE
DIFFERENTIAL CROSS SECTION

The square of the dipole matrix element, defined in the
preceding section [Eqs. (10) and (11)],gives the probabili-
ty of the ejection of an electron in the direction k with
the spin oriented along the z axis of the space-fixed frame.
The angular distribution of photoelectrons with defined
spin polarization (ADSP), or the differential photoioniza-
tion cross section for ejection of an electron in the direc-
tion k, with its spin oriented along another direction s
(see Fig. 1), is given by (Cherepkov, Raseev, Keller, and
Lefebvre, ' and Huang )

state and also X' and X+ by J"and J„respectively.
The cross section, derived in Sec. III, is proportional to

a product of two transition moments and therefore con-
tains a product of two selection-rule factors which, when
calculated explicitly, gives

J5g —s —S —S"
+J"s"s1"(11,12 ) —

& [511+1,, 2 + 11,1, ) '0, (
—1)

I—„;,J;,„;,(k, s)= „gg (%„„&„MIr„I+c„'M„(R,k, r))——,'[1+(s/IsI)cr]„„
p&, p2 M", M

(15)

The coefficient Ns =(4n aaQzh) is a function of the
photon energy E h only. This photon energy is, in fact,
the energy difference between final and initial states. It
should be expressed in the same units as the energy nor-
malization of the final-state wave function (1). Note that
+=137.037 is the dimensionless fine-structure constant,
and ao is the Bohr radius. The operator —,'[1+(s/IsI)o'],
with cr being the Pauli matrix vector, is the operator pro-
jecting spin on the s/IsI direction It can b.e presented in
the following explicit form: '

—,
' [1+(s/I s I )u]„„

l

2= g ( —1) '&2m. Ys M (s)
S,M p&

—
p2

—M,

(16)

Here we have coupled two spin functions in the usual
way.

The laboratory coordinate system and the different
vectors appearing in the photoionization process [see Eq.
(15)] are drawn in Fig. 1 and were mentioned in the
preceding section. Compared to photoionization without
rotation, no supplementary vectors appear because in the
gas phase we are averaging over the random orientation
of the molecular frame.

Now, we obtain two workable expressions for ADSP,
corresponding to two coupling schemes of the angular
mornenta involved. To this end we select one of the cor-
responding transition moments (10) or (11) and together
with (16) introduce them in (15). Then we transform the
product Y, (k}Y, (k) in a sum of spherical harmonics

1 2

I'L~ (k); ' to obtain final expressions, we perform ana-
L

lytic summation over projections in the laboratory frame.
The result is
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m~I c c1c (k )
c c1c(

) y (
1)1+m~

v'3 n Jg
K, L,S

L

nJ~
YLM (k)Ys M (s)Cn;, ;, ;, (K,L,S,ML, E), (17)

El Jg
where for K =L =MI =S =0 the coefficient C„;,J'„—'„(0,0,0,0, E) is normalized to unity. The angular momenta L and S
correspond to the coupling of angular momenta of the electron, whereas K is related to the angular momentum of the
photon. The total cross section appearing in (17) reads

n Jq, +E n Jq,~n'- (')— I' n'7l 3 "I (18)

n J g n J gWe give below the particular form of 8 n,',J'„'„(E)and Cn'„J'„'„(K,L,S,M, e) in the cases of the two coupling schemes.n"J"71" n"J"q"
(a) When we use the "resonance form" of the transition moment (10), the resulting expressions are written in terms of

rotational quantum numbers J, and J2 of the final state (ion plus electron):

;, g g' & Qr1'12"~ +s'I'"„'(l,l)& J,fl„ljlT(J)lfl"&& fl" IT(J)lf),J„~j&,
Ij n"

cc 21'
n" xn

(19a)

SJr]
where Ss' J',„'„(1„12)is given by expression (14a) and

n Jr]Cn„J„„(K,L,S,ML, E)
7l

( 1 )X K J L 1i2
&+J +1+J +J K L

[JPI]g C C C
( )

L

1 2

—ML

X I,
1

2

j2 K
1

I2 L.
1

S

1

J2 J" j]
J2 K ll 12L S

J 0 0 0 gs„j„n„(ll12 )
J2 c

where the expression for Qn„n„j„isnl Jl, n2J2 .

xg'g QQn, ',n, ',I,', '& J,Q„!1j1IT(J1)IQ"&&0"
I T(J2)lJ,Q„12j2&,

n"
I 2

(19b)

J" J, l J"
Q

1 1' 2 2 [J ][J ccJ ]1/2 (19c)—0, kr1 0" —Q2 l1[ 0"
Note that, in (19a), we obtain a double summation over 0" and 0",with the same convention for the sum symbol as in
(8a), i.e., summation over signed projections and constant module (Q"=0"=const).

(b) When we use the "scattering form" of the transition moment (11), the resulting expressions are written in terms of
transferred momentum j, :

n Jr], n J . n J71
n"J" " X+ Qo"n"J" j& n"D"J"'c1 I JEtc

J
rl

nil

K L. '"
Cn,',J'„'„(K,L, S,ML, E) =&6

[J"]8—„;,J;, '„(E)

where

K L S
0 M M g g Qn n 1 (Jt)cn n I ( &L&Sij&&e)

L L
Jt

ncc

(20a)

(20b)

J&
n J g 12+Jl+J 1+1 . . 1/2n,',„-'„J'„„(,L,S,J„E)—g ( —1) [J1,J2, 11,12] 11

J1~J2 l

11,12 2

j2 K
1 1 K

l2 L-
Ji J2

S

I, 12 L

() +s"J" "(11 12)&fl. 11j1IT(jt )I&"& &
&"

I T(j ) I&. 12j2 & (20c)
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and

Q '-', -(j )=[J"»,]
J Jl I

C

(20d)

In the case of cross section, expressions (18) and (20a), the factor (20c}can be written in a very simple form:

cn,',n'„'I'„„(0,0, 0,j„e)=g(Q„lj~T(j, )~II")(0"~T(j, )~0„lj)Ss'I';, (l, l) .
I,j

(20e}

Obviously Eqs. (19) have a more complicated structure
than Eqs. (20) because in (19) we have a coherent summa-
tion in terms of J~ and J2, whereas in (20) an incoherent
summation over j, occurs. The assignment and analysis
of the P, Q, and R branches of a resonance using the "res-
onance form" is easier as each branch corresponds to
only one term in the summations (19). The equivalent
analysis using the "scattering form" is more complicated
since it requires, for a description of a single branch,
several terms in the expansion (20). Nevertheless, far
from a resonance this scattering form permits us to ana-
lyze the spectrum in terms of momentum transferred be-
tween the ion and the electron during the "half collision"
process.

A further comparison between these two forms con-
cerns the so-called rotational factor Qn„&„~„[Eqs.(19c)
and (20d)]. In the resonance-form expression for B [Eq.
(19a)] the Qn„n"„~J„factor reduces, after summation over
0" and 0, to rotational line strength factor of a discrete-
discrete transition defined by Zare. In the case of 0"
and/or 0 equal o zero, it reduces to the well-known
Honl-London factor. ' The scattering form of this fac-

0 J
tor [Qn'„&„J„',Eq. (20d)] is similar to the discrete-discrete
rotational line strength factor but it is written in terms of
the rotational quantum number of the ion and the
transferred momentum instead of final-state rotational
and photon quantum numbers. As this factor is identical
for all the polarization parameters, it can be called, after
summation over projections, rotational line strength fac-
tor for photoionization. Note, finally, that this factor
reduces to a square of 3-j symbols on cases when 0"=0
and/or 0, =0 and we recover the result by Dill. '

When neglecting the electron spin, the scattering-form
expressions (18), (20a), and (20e) for the cross section are
the same as the formulas obtained by Fano in the case
of rotationally resolved photoionization of the H2 mole-
cule. Furthermore, if we neglect the parity (i.e., sum over

I

g" and 31, ) we recover the general expressions of Buck-
ingham, Orr, and Sichel" and Sichel. '

Usually, in photoelectron spectra states corresponding
to di6'erent g" of the neutral molecule or g, of the ion
(i.e., e,f states) lie energetically very close to each other
and are consequently not resolved. In a discrete spec-
trum these states (neutral or ionic) correspond to two
components of the A doubling. ' Neglecting the A
doubling in both states implies that in (19) and (20) we
perform the summation over g" and g, . Then the

SJg
selection-rule factor Ss J „.(l, , lz) [see Eqs. (19b) and
(20c)] reduces to 51 +~ 2„and the double summation

over 0" and 0" reduces to a simple summation. The
condition 5I +I z„is the same as the standard condition

51 + & + I 2„and L even obtained by inspection of 3-j
coeScients in (19b) and (20c) and we recover the expres-
sion for cross section corresponding to parity-undefined
states. In the case of nondegenerate initial states, a fur-
ther analysis reveals that if A doubling of the ion is
resolved in heteronuclear rnolecules both components are
populated by photoionization as any l is allowed by sym-
metry. For homonuclear molecules only one A-doubling
component of the ion is populated by photoionization
and we should obtain the same result in the case of
resolved or unresolved A doubling.

Starting from (17) and using explicit formulas for the
two spherical harmonics appearing in that equation, we
can introduce the electron spin-polarization parameters
as coefficients before all nonzero terms in the summations
over E, L, 5, and MI . Each of these polarization param-
eters will correspond to a particular angular dependence
of spin polarization. Following Cherepkov, this angular
dependence can also be presented in a vector form by
writing it as products of unit vectors of k/~k~ and s/~s~
(to simplify the notation below, we use unnormalized vec-
tors) and unit vector q related to the photon (Fig. 1). The
resulting expression is

&E nJ~ 2 —3(m ~
m I c c c(k ) B c c c( ) 1+ ' c

p c c c[3(k ) 1]+ pp c c c( )0"J"g" ' g~ 3
0"J"7I" 0"J"7I" 2 0"J"g"

Q, J g,+mayo, ', '„'„[—,'(k s)(k.q) —
—,'(s q)] —[2—3(m~) ]go,',J'„'„[s.(qXk)](q.k), (21)

pn'„~;,„;,(s) = —&2C—„;,J;, ;, (2, 2,0,0, E), (22)

where the spin-polarization parameters are defined by the
equations P —„;,J'„"„(e)=&3/2C—„;,J'„;,(1,0, 1,0,e),

yn'„J'„'„(E) = —&15/2Cn, ',J'„'„(1,2, 1,0, E ),

(23)

(24)
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gn;, J'„'„(E)= —[Cn;,J'„;,(2, 2, 1, —l, s)n"I"q" 2 2
n"1"g"

—Cn,',J'„'„(2,2, 1, 1,s)] . (25)

The angular behavior of the cross section (21) is indepen-
dent of the choice of a particular coordinate system.
Moreover, it is formally the same for unpolarized atoms
also. The originality of the above expression stands in

the explicit introduction of the initial- and final-state ro-
tational levels, allowing the definition of a rotational
state-to-state cross section.

Starting from simple scattering form (19), we can now
single out the rotational factor (20d) and rewrite all the
expressions for the polarization parameters (22) —(25).

—QJg
We explicitly give the expression for the P n;,J'„'„(s)pa-

rameter only:

P c c c
( )—0"J"g"

3 QJ. QJgg g Qn n „J„(J,„)cn,',n„j'„„(1,0, 1,J„s).
[Jll]B c c c

( )
' n

(26)

fLJg
The general expression for the cn,',n„z„„(1,0, 1,j„s)fac-

tor is given in Eq. (20c) and its particular form in Sec. IV
[Eq. (31c)]below.

Up to now, we have discussed only the rotational
state-to-state cross section and polarization parameters.
Now we will average over the initial rotational states tak-
ing into account the Boltzmann distribution factor corre-
sponding to a given temperature (see, e.g. , Herzberg ):

NJ„= [J"]exp[ B'"J"(J—"+1)hc/(kT)],1

(27a)

where Q„is given by

Q„=g[J"]exp[ B'"J"(—J"+1)hc/(kT)]
JII

(27b)

and h, c, k, and T are the Planck constant, the speed of
light, the Boltzmann constant, and the Kelvin tempera-
ture, respectively. B'" is the rotational constant of the in-

itial state of the neutral molecule.
For each transition between initial and final rotational

levels, we have to fulfill the following energy conservation
expression:

(29b)

All other polarization parameters can be written using
formulas similar to (29b). We can also obtain a cross sec-
tion intermediate between the state-to-state rotational
cross section and the completely averaged one by omit-
ting in (29) the summation over J„r)„J",and i)". As
discussed above the summation over g" and/or
signifies that we neglect A doubling in the initial and/or
final states.

The averaged cross section and spin-polarization pa-
rameters (29) correspond to the photoabsorption spec-
trum. They will generate different spectra as a function
of initial-state population, i.e., as a function of tempera-
ture. A striking example can be given in the case of pho-
toionization of HI where warm (Eland and Berkowitz )

and cold spectra (Huth et at. and Hart and Hepburn )

are very different.

el rot Jc
ph CQ n"0" 0 J 0"J" J" &c' c c' (28)

IV. AN EXAMPLE: PHOTOIONIZATION
OF HI MOLECULE

where E„h is the photon energy and EEC'z „z-and

AE&'J z-J are electronic and rotational energy
c c'

differences between the final and initial states. In Eq. (28)
only transitions fulfilling the selection rules are con-

J,
sidered. The kinetic energy of the photoelectron cJ' is

implicitly a function of the other energy differences and is
identical with the kinetic energy c appearing for the first
time in (10b) above.

Now, taking into account (28), we obtain the averaged
cross section from a sum of expressions (19) or (20) each
multiplied by the Boltzmann factor NJ- (27):

(29a)

and similarly the averaged P polarization parameter:

HI('Xo )+hv
0"=0
g"=1

HI+( IIiy2)
0 =—'

2

g, =+1

e(lk, o. ),
I =0, 1,2
A, =o., m, 6.

(30)

Note that the HI molecule, on the one hand, is very close
to an atom, allowing I, j, and j, summations to be re-
stricted to only a few terms, and on the other hand, is a
molecule with a large rotational constant which is only
ten times smaller than the rotational constant of the H2
molecule. Therefore rotational features in the spectrum
of the HI molecule are easily observable.

Below, we will use the scattering-form expressions (18),

In order to illustrate the general formulas of the previ-
ous sections, we give here the explicit expressions for the
total cross section and integrated spin-polarization pa-
rameter P in the particular case of photoionization of the
HI molecule:
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(20a), and (20e) for the cross section and (26) for the
spin-polarization parameters as they are simpler to
manipulate than the resonance-form ones.

In this example, we select one initial nondegenerate
state n" with S"=0 and 0"=0"=0, and two final states
w th C=(n, A, X,S, )=(n, l —,'; —,') and 0, =—', . The parity
g"=1 of the initial and q, =+1 of the final states corre-
spond to the e and e,f states, respectively. As a conse-
quence, we simplify the notation (1oc) for the transition

Q, , ll,
moment t„'n (s)=

t&& and notation (20e) for the
I

coefficient e&,',&„J'„„=—eJ' '. %e also calculate explicitly0"0"J"g"
all the 3-j symbols of Eqs. (20a), (20e), and (26). As we
restrict I G [0,2], the angular momentum j and j, are also
restricted to jC [—,', —,

' ] and j, 6 [—'„—', ].
The selection-rule factors give, for a particular selec-

tion of J" and J„two distinct unequivalent contribu-
tions. —1/2+ J + 1+J"

(i) One for q"g, (
—1) ' =1 and g&&=1

which when introduced in (20e) gives

cj" "(Q Q Q ej' ) = I t,.l

'+
—,', I td. l

'+
—,', I td. l2+ —

„

I tdsl + —Re( t&~td)+ Re( t~~tds )+ ,
"
, &2/—3Re(t„'~t„s)105

(31a)

cj" "(Q Q Q sj") ltd I
+

p] ltd I
+

) Itdsl + Re(td td )
—Re(td tds) —,", —2/3Re(td &s)105

(31b)

and

cj ~, , (0,0,0, -'„sj'. ) = —,", It« I
'+

—,', I t,.l
'+

—,', I t„l' — —«( td. t&„)— «( td. tds ) + 3
&2/3Re( td. tds )

35 3
" 105

(31c)

—1/2+ J, + 1+J"
(ii) The other for ri"rI, (

—1)
g&I= —1, which when introduced in the same equation
gives

cj'„'(0,0,0, —,', sjl ) = —', I
t

I
+ ,

'
I
t „I+ ', —Re(t~' t—„),

(32a)

(32b)

and

J 7I Jcj' '(0, 0,0, —7, sj' ) =0 . (32c)

If now we restrict the initial rotational state population
to only three rotational levels, i.e., J"=0, 1,2, which cor-
responds approximately to a temperature of 20 K, then
the allowed rotational levels of the ion for the 0, =—',
state are J, E [—,', —", ]. It is impossible to give here the ex-

pressions for all the corresponding transitions. Instead,
we list the most intense transitions selected from a pre-
liminary calculation in the spin-orbit autoionization en-

ergy range using the same electronic model as the one
published in Ref. 9, namely,

J"=0, q"=1
J"=1, g"=1

J"=2, g"=1

J —3
T7

J —3
27

J —5

J —5

J—2'
J —7

g, =l,
9c 1

g, =l,
g, = —1,

g, =l,
g, =1.

(33a)

(33b)

(33c)

Q3/2 3/2(3/2) I g Q3/2 3/2(5/2) () g

Q
3/2 5/2( 3 /2 )

—I 2 Q
3/2 5/2( 5 /2 )

—
Q 7'7 14

Q3/2 5/2(7/2) —
1 0714

The corresponding two cross sections are

(34a)

(34b)

The above list establishes a propensity rule for these tran-
sitions. From this list, we explicitly present below the to-
tal cross section in the case of J"=1 which is the level
with the highest population (47%%uo) at the temperature of
20 K. The four resulting rotational factors, calculated
using Eq. (20d) with 0"=0"=0, have the following nu-
merical values:

XE3/2 3/2 —I( 3/2) E
[1 g

3/2 —1(0 () 0 3 3/2)+() g 3/2 —1(0 () () s E3/2)] (35a)

~'" '" '(E'")= [1.2c'," '(O, O, O, -', e', ")+0.7714C',"I(0,0, 0, -', s', ")+1.O714C', " '(O, O, O, -', E'")]X~
(35b)

where we have used Eqs. (31a) and (31b), respectively.
An expression for the spin-polarization parameter P analogous to the cross section (lg), (20a), and (20e) was given in

J
Eq. (26). The cj'.„'(1,0, 1,j„sj' ) coefficient can be written in a simpler way than the general form (20c):
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(+j +1cJ'„.'. (1,0, 1,j„eJ'-)=g (
—1) ' [A,j~] J] J2

1 1 S J, 7(,'Ss' I'. „'-(1,l)
J2 Jt

x ( Q„lj,I T(j, ) I

Q" ) ( Q"
I T(j, ) I Q, lj, ) .

Using this expression, we find again two distinct unequivalent contributions:

(36)

—,'„ltd~I
—

+» ltd~I + —,",, ltdsl
— Re(td~td„) — Re(td~tds)

630

28&v+ Re(td' tds), (37a)

c,'„"'(1,0, 1, —,', e; }=—
—,",, Itg. l'+ —,",, ltd„l'+ ,",, lt, sl—' —«(td'. td„)+ «(td'. tds} —«(t,".t„),

315 " 630

and

(37b)

cJ'"'(l, o, l, -'„EJ'}=—
—,",, ltd. l' ——,",, ltd I' —3, ltdsl'+ Re(td' td ) —Re(td" tds)+ Re(td' tds), (37c}

—1/2+ J + 1+J"
for the case of rt"g, (

—1) ' =1 and rti, =1, and

(38a)

(38b)

J g J
cJ (1,0, 1,—„sJ) —0,

—1/2+ J +1+J"
for the case of rt"rt, ( —1) ' = —1 and rttI

= —1.
Now, using Eqs. (37) and (38), we obtain the spin-polarization parameter P corresponding to the transition (33b):

P '( )= [l.8, , '(1,0, 1,—', )+0.8, '(1,0, 1, —' )]
1

(38c)

(39a)

P 3/2 s/2 1(Es/2) [ 1.2c 5/2 1( 1 P 1 3 Es/2)+0 7714c 5/2 1( 1 P 1 s ss/2)+ 1 0714c s/2 i( 1 P 1 v ss/2)] (39b)
1

The formulas (35) and (39) give workable expressions
for the example we have considered in this section. From
these formulas and the one derived in Sec. III, we can
draw the following conclusions.

(i) The particular rotational transition selects contribu-
tions given either by Eqs. (31) and (37) or by Eqs. (32) and
(38). Therefore state-to-state rotational transition selects
even or odd 1 of the spherical-harmonics expansion (2) re-
lated to the photoelectron momentum. This means that,
using the rotational state-to-state spectroscopy, we can
probe directly details of the photoelectron wave function.
This result was already obtained theoretically ' ' and
confirmed experimentally (see Ref. 5 and references
therein) in the case of resonant enhanced multiphoton
ionization spectroscopy particularly for the NO mole-
cule. ' By using spin polarization of the photoelectron
and differential cross section even more detailed probing
of the photoelectron wave function is possible.

(ii) There are more terms in (31) and (37) than in (32),
and (38). This is due only to the truncation in the expan-
sion we have considered (two even 1 and one odd 1) and
has no particular physical meaning.

(iii) The cross terms appearing in the expressions (31),

(32), (37), and (38) correspond to different projections of I
on the internuclear axis, projections which are undefined
in the space-fixed frame. As expected, molecular rotation
mixes these different projections. But there are no cross
terms in 1, and consequently no long-range Coulomb
phase differences. The integrated cross sections and spin
polarization P are therefore probing only short-range
phase differences. This property can be used for a more
detailed analysis of phase differences contributing to the
spectra by comparing integrated and differential cross
sections and spin-polarization parameters.

(iv) If in a photoabsorption experiment the rotational
structure is not resolved then the corresponding cross
section and polarization parameter formulas are, to a
good approximation, obtained using (29} where we sum
over final rotational levels J, and parity g, and average
over initial rotation levels J" and parity g' but neglect
the rotational energy differences b E&'J &-J" defined in

c c'
(28). In order to demonstrate that we recover the purely
electronic cross section (i.e., the sum of square moduli of
electronic transition moments) we change the order of
summations over J, and j, in the rotationally resolved
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cross section. Then, using orthogonality properties of 3-j
symbols [see, e.g. Eq. (1.13) of Rotenberg et al. ], we ob-
tain

A, J2 2 &n"ri I"("j ) =[J"] .
J

Finally, by inspection, we can see that summation over j,
in (31) and (32) gives, for the cross section without rota-
tion, only squares of moduli of transition moments, i.e.,
all the cross terms vanish. In the case of spin-
po1arization parameter P, the same arguments hold, for
(26) and the cross terms in (37) and (38) vanish also. The
result is a sum of square moduli of transition moments
with positive and negative signs, a standard situation
without rotation. Using directly the formula without
spin derived by Buckingham, Orr, and Sichel" and
Sichel' we find a similar property for their rotationally
unresolved cross section. These arguments are strictly
valid if we neglect the energy difference between rotation-
al levels of the initial and final states.

(v) If the rotational structure in a photoabsorption ex-

periment is resolved ' we have to take into account in

(29) the energy difference EEn'~ „~and add it to the
C C

electronic transition energy HAEC'n „n-defined in (28).

Then the transition moments tt&, calculated at different

kinetic energies eJ' [see (28)], contribute to the cross sec-

tion at a given photon energy E h. Now, if the transition
moments vary smoothly with the energy, the resulting
photoabsorption cross section is approximately equal to
the electronic cross section or the one obtained in the ap-
proximation of (iv). If there are narrow resonances in the
photoabsorption spectrum, i.e., the transition moment
varies sharply with the energy, then these two cross sec-
tions are very different. Namely, a single resonance cor-
responding to a purely electronic transition will split in

several resonances in the present photoabsorption spec-
trum. Moreover, the cross terms in (31), (32), and

(36)—(39) will not vanish as in the case of approximation
(iv).

This short discussion completes the formulas presented
in this section for the particular case of photoionization
of the HI molecule from its ground state.

V. CONCLUSIONS

In this paper we have derived general expressions for
the total and differential cross section and spin-
polarization parameters for transitions from a given ini-
tial rotational level of the neutral molecule to a given
final ionic rotational level. We started from the frame
transformation between the laboratory frame correspond-
ing to the experiment and the molecular frame where the
actual numerical calculations are performed. The contin-
uum electron wave function is expanded in spherical har-
monics related to the position vector r and the momen-
tum vector k. For the present analytic derivation of the
differential cross section one needs only the explicit ex-
pansion of the wave function related to the momentum
vector k.

Throughout this paper, we have used wave functions of

definite parity. These functions are eigenfunctions of the
total Hamiltonian and are essential when taking into ac-
count the rotation.

We used two angular momentum coupling schemes
which correspond to different dummy summations, one
over the transferred angular momentum j„the other one
over the total angular momentum J of the final state (ion
plus electron).

Our definition of j, is slightly different from the one in-

troduced by some authors. '" Here j, is the momentum
transferred between the two fragments, electron and ion,
including spin during the "half collision" process. The
present definition of j, was already discussed by us in Ref.
38 and also by Chandra. It presents the advantage of
being directly related to the expressions without
spin. " ' The differential cross section in terms of j, (the
scattering form) is very simple since it contains an in-
coherent sum over j, and a compact rotational factor,
common for all the polarization parameters.

The differential cross section in terms of J (the reso-
nance form), though having a more complicated expres-
sion, is appropriate for the interpretation of narrow reso-
nances. In this case, a single term in the sum over J, hav-

ing the same J as the discrete state embedded in the con-
tinuurn, dominates the cross section.

An advantage of the present formulation, common to
the two schemes, concerns the selection-rule factor. This
factor, appearing in all the final formulas, permits us an
easy evaluation of selection rules and of terms contribut-
ing to the transition moment and cross section. A partic-
ular experiment involving transition between two rota-
tional levels can select only even or odd I in the cross sec-
tion. Similar results were also obtained in the derivation
of multiphoton ionization selection rules.

The vector form of the differential cross section is
presented in Eq. (21). This form associates the five polar-
ization parameters to products of vectors defining the
physical problem, thus making them independent of the
coordinate system. It is common for unpolarized atoms,
for molecules in a gas phase both without rotation, '
and, as it was done here, with rotation taken into ac-
count.

An expression for the differential photoionization cross
section, which corresponds to the average over the initial
Boltzmann distribution of the rotational levels and sum
over the final rotational levels, have also been derived.
The resulting spectrum will show splitting of the narrow
electronic resonances into different rotational branches.

The formulas derived in this paper apply also to the
(n +1) multiphoton ionization if only the last ionization
step is considered explicitly. The multiphoton experi-
ments have the advantage of populating only one rota-
tional level of the intermediate state, thus considerably

simplifying the spectrum and allowing the direct applica-
tion of our very detailed formulas including spin polar-
ization of the photoelectron. Alignment and orientation
of the intermediate state, which often appears in multi-
photon experiments, can be easily taken into account in
the present formulation.

In the last section we derived explicit scattering-form
formulas for the cross section and polarization parameter
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P in the case of a restricted number of terms in these ex-
pressions. In particular, these formulas apply to the
spin-orbit autoionization region of the photoionization of
the HI molecule.
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