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Dynamics of atomic hydrogen in a generalized van der Waals potential
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The classical dynamics of a hydrogen atom in a generalized van der Waals potential is investigat-
ed. In order to carry out the analytical and numerical investigations for a range of parametric
values, we removed the singularity of the problem using Levi-Civita regularization and converted
the problem into that of two coupled sextic anharmonic oscillators. We identify the integrable
choices of the oscillator system using the Painleve singularity analysis, and the associated second in-

tegrals of motion are derived using the extended Lie transformations. Numerical investigations are
carried out for other nonintegrable regions and we observe chaos-order-chaos type of transition re-

gions when one of the system parameters is varied.

I. INTRODUCTION

V=y(x +y +p z ), (2)

where y and p are constants, Eq. (2) is called the general-
ized van der Waals interaction. The Hamiltonian of the
hydrogen atom in such a generalized potential (in the
nonrelativistic limit) is then

2 ]H= ——+y(x +y +Pz ) .
2 r

(3)

Here we use atomic units, e =8=m, =1. Hamiltonian
(3) represents many systems such as (i) the quadratic Zee-
man problem (p=O, y&0), (ii) the spherical quadratic
Zeeman problem (p= I, yWO), (iii) the instantaneous
van der Waals potential ' problem (p=&2, yAO), and
(iv) the standard hydrogen-atom problem or Kepler prob-
lem (P=O, y=0).

Considering the system (3), a large body of information
is now available for nonzero values of the y and P=O
case. However, the hydrogen-atom problem involving
the generalized van der Waals force is yet to be studied in
detail both classically and quantum mechanically. In this
paper we are interested in understanding the classical dy-
namics of the system (3) for nonzero values of y and p.
Using a singularity structure and symmetry analysis, we
identify the integrable limits of (3). For nonintegrable re-
girnes we carry out a numerical analysis to bring out the
chaos-order-chaos transitions.

van der Waals forces' play an important role in solid-
state physics and physical chemistry, particularly consid-
ering the interactions involving no valence electrons. If
we consider a single hydrogen atom kept a distance d
from a perfectly conducting wall, then the dipole interac-
tion energy between the atom and the wall is

2

8d
(x +y +2z ).

This is the instantaneous van der Waals potential. '

If we generalize the instantaneous van der Waals po-
tential as

The plan of the paper is as follows: In Sec. II we bring
out the connection existing between the perturbed
hydrogen-atom problem (3) and the coupled nonlinear os-
cillators. In Sec. III we explain how the Painleve singu-
larity analysis can be used to locate integrable cases of
the oscillator Hamiltonian. We discuss the Lie symmetry
approach to find out the associated second integrals of
motion or the integrable cases in Sec. IV. Finally, Sec. V
contains our numerical results of nonintegrable regions
and discussions about the system.

II. CONNECTION BETWEEN PERTURBED
HYDROGEN ATOM AND THE COUPLED

NONLINEAR OSCILLATORS

System (3) possesses cylindrical symmetry. If we intro-
duce the cylindrical coordinates (namely, x =p cosP,
y =p sing, and z =z) in Eq. (3), we have

2

H =
—,'(p +p, )+

q +y(p +P z )
—

2 2, i2, (4)
2p (p +z )'

where p, p&, and p, are the canonical momenta conju-
gate to the coordinates p, P, and z, respectively.

Equation (4) is a three degrees of freedom Hamiltonian
system in which P is a cyclic variable and so the corre-
sponding canonically conjugate momenta p& is con-
served. Since p& is the z component of the angular
momentum, it can be quantized as

p~=mA,

where m is the magnetic quantum number. In this
analysis the Coulomb singularity r=0 poses considerable
diSculties as in the case of the quadratic Zeeman prob-
lem. Consequently, we will have to deal with the m&0
and m =0 cases separately.

A. mXOcase

In the original Hamiltonian (3) in Cartsian coordinates,
there is a singularity at r =0, which necessitates an
infinitesimally small step size for numerical integration of
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the corresponding equations of motion. This can be cir-
cumvented to a large extent in the cylindrical polar coor-
dinates, as the singularity at r =0 can be compensated by
the centrifugal term (p&/2p ) in Eq. (4) and hence there
is no difficulty in carrying out the numerical calculations
using Eq. (4).

B. m=ocase

Q U
2 2

z =
2

with the rescaled time variable

(6b)

If we consider the m=0 case in Eq. (4), there is a
singularity at p +z =0 and there is no centrifugal term
to compensate this singularity. So, one has to introduce
appropriate coordinate transformations to remove this
singularity. For this purpose, one can use the well-
known Levi-Civita regularization ' using "squared-
parabolic" coordinates

(6a)

analysis of the structure of the solution of the equation of
motion in the neighborhood of a movable singularity in
the complex time plane and identifying the conditions un-
der which it is free from movable critical singularities,
especially of the logarithmic branch-point type or certain
complex branch-point and irrational types (so-called
densed branching). For this purpose, one considers local-
ly the solution in the form of a Laurent series in a deleted
neighborhood of the movable singular point tp. Now the
problem reduces to the following three steps: (a) deter-
mination of the leading-order behaviors of the Laurent
expansion of the solution of the equation of motion (8),
(b) determination of the resonances or the powers at
which arbitrary constants can enter into the Laurent ex-
pansion, and (c) verifying that a sufficient number of arbi-
trary constants exist in the Laurent series solution
without the introduction of movable critical points.

To analyze the system (8), we consider a set of two cou-
pled sextic anharmonic oscillators defined by the Hamil-
tonian

H =
—,'(p„+p )+~,x +co2y +ax +Py

r= I [u'(t')+v'(t')] '"dt' . (6c) +5,x y +62x y

Hereafter we will designate r as t itself. Then Eq. (4) can
be rewritten as

where co, , co2, a, P, 5„and 52 are parameters. The associ-
ated equations of motion are

0=2= —,'(p„+p, ) E(u +v—)+ A (u +v )

+B(u v +u v ),
where

(7)

x
2

+2N]x +6ax'+451x'y'+252xy'=0,

d2
+2cozy+6Py +25&x y+45zx y =0 .

dt2

(10a)

( lob)

A =(yP')/4, B =[y —(y/3')/4] .

Here, the true energy E occurs as a parameter and the
physical trajectories evolve in an effective potential whose
pseudoenergy is always equal to 2. Also there is no
singularity problem here and hence one can integrate nu-
merically the Hamilton's equation of motion of (7), name-
ly,

(Sa)

We will discuss the three steps of the Painleve analysis
separately.

A. Leading-order behaviors

We assume that the leading-order behavior of the solu-
tions x(t) and y(t) of Eqs. (10a)—(10b) in a sufficiently
small neighborhood of the movable singularity tp is

U =PU

p„=—
(
—2Eu +6Au'+4Bu v +2Buv ),

p„=—
(
—2Ev+6Av'+2Bu v+4Bu v ),

(Sb)

(8c)

(8d)

x (t)=aorI', y (t) =bor', r=r ro 0 .

To determine p, q, ao, and bo, we use (11) in Eqs.
(10a)—(10b) and obtain a pair of leading-order equations,

without any difficulty and also one can apply certain
analytical techniques to investigate the integrability of
Eqs. (8a)—(Sd).

III. PAINLEVE ANALYSIS
AND IDENTIFICATION OF REGULAR REGIMES

FOR THE m =0 CASE

To analyze whether the system (7) is integrable for any
parametric choice, it is useful to analyze the singularity
structure aspects of equations of motion of Eq. (7). Such
singularity analysis or the so-called Painleve analysis is
found to be most useful in the case of polynomial oscilla-
tors. '

The Painleve analysis essentially consists of a local

3Q p +26]Q pb p +Q2P p

3Pbo+5)ao+252aobo

(13)

aop(p —1)rr +6aaor +45,aob r + ~

+252aoboH+ ~=0, (12a)

boq(q —1)r~ +6Pbor' +25,aobor

+452aobor ~+'~=0 . (12b)

Considering Eqs. (12a)—(12b), we can identify the follow-
ing different distinct sets of solutions.

Case (I)
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Case 2(a).

p

Case 2(b)

1/2
1q= —'+ —' 1+—

2 2 a

1/2
1q= —' ——' 1+—

2 2

) l

2

)
2 7

(14a)

(14b)

Case 1(i) .

(5~—5, )aobo+(3p —52)bt= —,'„r= —1, —,', —,', 3 .

(17a)

Case 1(ii)

(52 —5, )aobo+(3P —52)bo =0, r = —1, 0, 2, 3 . (17b)

Case (2b).
where the leading-order coeScients are given by

1
a =—,b =arbitrary .4

0 8
& 0 (14c)

451=5(x, q= —, f = 1, 0, —,3

[Note: We do not consider in the following the cases in
which the roles of p and q are interchanged as distinct as
they can be trivially obtained from Eq. (14).]

B. Resonances

r = —1, 3, 1+(1—4yo)'/

go=2[(52 —5&)ao+(3P 5z)bo]bo

Case (2).

(16)

For finding the resonances, that is, the powers at which
the arbitrary constants may enter into the Laurent series
expansion as ~~0, we substitute

x (t) =aors+ 0&H+", y (t) =bor~+Qpr +", 7 0 (15)

into the equations of motion (10a)—(10b). Retaining the
leading-order terms and solving the system of linear alge-
braic equations, we get the following resonances.

Case (1).

C. Evaluation of arbitrary constants

For evaluating the arbitrary constants of the solution
x (t) and y (t) of Eqs. (10a)—(10b) associated with the reso-
nance sets (17a)—(17b) and (18), we have to substitute

6 6

x (r) —g

akim(1/2)k+1

y (r) —g bkr(1/2)k+p (19)
/( =0 k=0

into Eqs. (10a)—(10b) and then check that no dense
branches need to be introduced. Then we get the follow-
ing parametric restrictions.

Case 1(i)

co, =co~, a=P, 5, =52= 15a .

Case 1(ii)

co, =co, , cc=P, 5, =5,=3cr .

Case (2b)

co, =4c02, a=64P, 5, =80P, 5z=24P .

r = —1, 0, (1—2q), 3 .

If we allow for the possibility of square-root-type
branch points corresponding to weak Painleve proper-
ty, "we obtain the following possibilities for resonances:

Finally, there is also the trivial case 5, =52=0, corre-
sponding to two independent decoupled sextic oscillators.
For our oscillator Hamiltonian (7), co, = co&

= E, —
a =p= A, and 5, =52=B. For these choices only the fol-

TABLE I. Properties of the hydrogen atom in a generalized van der Waals potential problem for
various parametric values.

Cases

Parametric
restrictions

of the
oscillator
problem

3=arbitrary
B=O

Parametric
restrictions
in the van
der Waals

problem

/3= 2

y =arbitrary

Second integral
of motion of the

oscillator problem

Two uncoupled
sextic oscillators

Remarks

Oscillator
system

decouples

A =arbitrary
B =33

P=l
y =arbitrary

I2 =(up, —vp„)' Circularly
symmetric

A =arbitrary
B =153

p —1

2

y =arbitrary
I2 —p„pu 2Euv

+63(u +v )uv

+20Au v'

Solvable in

terms of
Jacobian

elliptic fn
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lowing parametric restrictions are valid: (i) 8 = 15 A, (ii)
8 =3A, (iii) 8=0, and (iv) the trivial case, A=O, 8=0.
From Eq. (7) we know that A =yP /4 and
8 =y —yP /4. Thus 8=0 corresponds to P=2, 8 =3A
corresponds to P= 1, and 8 =15A corresponds to P= —,

'

of the original Hamiltonian (3). Interestingly, Alhassid
et al. have pointed out the existence of quantum dynam-
ical symmetries exactly for these three cases of the origi-
nal van der Waals problem. So one can conclude that the
integrability of the classical system may be the reason for
the existence of dynamical symmetries of the van der
Waals problem. ' Our results are tabulated in Table I.

IV. GENERALIZED LIE SYMMETRIES
OF THE TWO COUPLED SEXTIC ANHARMONIC

OSCILLATOR AND THE ASSOCIATED
SECOND INTEGRALS OF MOTION

Let us verify the integrability of the Painleve cases iso-
lated in the above section and also find the associated
second integral of motion using generalized Lie sym-
metries. The integrals of motion of finite-dimensional La-
grangian systems can be related to the infinitesimal sym-
metries under extended Lie transformations involving
velocity-dependent terms. ' We consider the two cou-
pled sextic anharmonic oscillator system (10) and show
the existence of nontrivial generalized Lie symmetries for
specific sets of parametric values.

The Euler-Lagrange equations of motion of Eq. (9) are

Lx = =a, (x,y)
Bx

2
—N —2(a, =@ (az), (22b)

where E is the infinitesimal generator of the transforma-
tion

+ni +n2ex '
ay

+(gi —gx ) +(g2 —
gy )

Bx
(23)

Now we have two equations, Eqs. (22a) and (22b}, with
three unknowns rt„rt2, and g. So one has to assume a
specific form for i)„rtz, and g. We assume the following
specific forms for rt„r12, and g:

g1=b1+ b2x +b3y

'Q2=c1+c2x +c3y

(=0,

(24a)

(24b)

(24c)

b, =0,
b1xy =0,
b1 =0,
b2xx =0

(25a)

(25b)

(25c)

(25d)

where b, 's and c s are functions of (x,y) only. Substitut-
ing (24a)—(24c) in (22a) and (22b) and equating the
coefticients of various powers of x y ", we get the follow-
ing set of overdetermined partial differential equations:

= —(2',x+6ax'+45, x y +252xy ),
BL

y = =a&(x,y)
By

= —(2cug +6Py'+25, x y+452x y') .

(20a)

(20b)

x ~X =x +Ert, (x,y, x,y, t),
y Y =y +Ei)2(x,y, x,y, t),
t ~T = t + eg(x, y, x,y, t),
x ~X=x +a(i), —gx ),
y~ Y=y+E(g2 —g'y), e &&1

where

(21a)

(21b)

(21c)

(21d)

(21e)

a a. a. a a—+ x+ y+ cz1+ a2 g, , i =12
Bt Bx By Q Qy

(21f)

We consider the following time-dependent infinitesimal
transformations:

2b2y+b3=0

b2yy+2b3xy =0,
b3 =0,
C 1xx

C1xy

c1 =0,
C2xx =0,
2C 2xy +C 3xx

=0,
yy

+2C3xy

3yy

Solving (25a)—(25g) we get

b, =b1ox +b»y +b»,
b2 —b Oy + b 2,xy +b22x +b23y +b24

b3 b21X b2QXy +b3QX +b31y +b32

(25e)

(251)

(25g)

(26a)

(26b)

(26c)

(26d)

(26e)

(26f)

(26g)

(27a)

(27b)

(27c)

a a. o. a a+ x+ y+ a + a2
Bt Bx By Qx Qy

(21g}

For Eqs. (20a)—(20b) to be invariant under these transfor-
rnations, the following invariance conditions should hold:

ij, —x g —2/a, =E ( a, ), (22a)

c1=c1ox +c»»+C12
2

2 20y + 21xy 22X + 23y + 24

(28a)

(28b)

where b1Q, b», b12, b2Q b21, b22, b23, b24 b3o b31, and

b3z are constants. Similarly, by solving (26a)—(26g), we

get
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TABLE II. The symmetries and second integral of motion of the oscillator system (9).

Number Parameters

co, =co,, a=f3, 5, =5,=3a
Symmetries

2y (xy —xy )

7I~=2x (xy —yx }

Second integral

(xy —yx )'

(2) N )
=cop, cx =P, 5 )

=5p = 15cx =ky
g, =kx

xy+ 2']xy +6ax 'y
+6axy'+ 20ax 'y'

(3) co~ =4'&, a=64p,

5, =80P, 5, =24P g2 yx 2xy

(yx —xy )y
+2(co, +3Py'

+ 16Px 4+ 16Px'y')xy'

C3 — C2] X C2pXy +C3pX +C3]y +C32
2

where b's and c's are constants.
In addition, we have

3Q]b2x +b3Q2x +2Q2b3x + a2b2y =C2Q]y

(28c)

(29a)

I 1x 2 1y 1 1x 1 1y (29c)

c2a]x+3a,c2x+c3a2x+2a2c3x+Q2c2y =
2 2x+ 2 2y,

(29d)

b2Q] +2a]b2 +b3Q2 +3a2b3y a]b3 b3Q]x C3Q]y

(29b)

By using Eqs. (27a)—(27c), Eqs. (28a)—(28c) along with
the equations of motion (20a) and (20b) in Eqs.
(29a)—(296, we get a system of six algebraic equations. By
equating various powers of x y", m, n =0, 1, . . . , 6, in-
dependently to zero, we get consistency conditions only
for certain parametric choices which are exactly the same
cases identified through the Painleve analysis in Sec. III.
These parametric choices along with the associated
dynamical symmetries are given in Table II. To prove
the integrability, we derive the corresponding integrals of
motion using Noether's theorem' as

(30)

]y 1 2y Q2 3y Q1 3x b3Q2

1 1x 2 ly 1 2x 1 2y

(29e)

(29f)
where f is a function of (x,y, t) and it can be found us-
ing'

TABLE III. The four one-dimensional Lyapunov exponents of the oscillator system (7).

Parameters k3 Inference
Constants of

motion

A= —'
6

8 = —0.1

0.51 —0.51 Chaos Total energy

A= —'
6

8=0
Integrable

(regular)

Total energy

System
decouples

A= —'
6

8=0.25

0.14 —0.14 Chaos Total energy

A= —'
6

8=0.5
Integrable

(regular}

Total energy
I =(Qp, —Up„)

A= —'
6

8=1
0.12 —0.12 Chaos Total energy

A= —'
6

8=2.5
Integrable

{regular)

Total energy

Iz =p„p, —2Euv
+6A (u +v )uv
+20AQ v

A= —'
6

8=5
0.7 —0.7 Chaos Total energy
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E(L)+gL =f . (31)

For our analysis, we substitute g, , gz, and g in Eq. (31)
and we find f. Using this f in Eq. (30), we get the re-

quired second integral of motion. For the sextic Hamil-
tonian system (7) only cases (1) and (2) of Table II sur-
vive, while the third case is co, =co2, 6& =52=0 for which
the system (7) decouples into two independent sextic os-
cillators.

!.62569- V. NUMERICAL INVESTIGATIONS
OF NONINTEGRABLE REGIONS

AND DISCUSSIONS
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FIG. 1. For the oscillator Hamiltonian (7) with A = 6,
B = —0.1: (a) trajectory plot, (b) Poincare surface of section
(U=O, p„&0), and (c) variation of the maximal Lyapunov ex-

ponent.

In Secs. III and IV we identified the integrable regions
and their associated second integrals of motion. In order
to understand the dynamics of various other regions, we
carried out a detailed numerical investigation of Eqs.
(Sa)—(8d). We have now a system of four first-order ordi-
nary differential equations which can be solved numeri-
cally for a fixed negative energy value E of the original
system (3). For our computation we have used
E = —1.0 X 10 . As E=O is the threshold value for the
bound states in the case of the hydrogen-atom problem,
we have chosen this high value for E in order to capture
the onset of chaos easily. Then we solved Eqs. (Sa)—(Sd)
using the Runge-Kutta-Gill fourth-order method and ob-
tained (i) the trajectory plot, (ii) the Poincare surface of
section, and (iii) the spectrum of one-dimensional
Lyapunov exponents.

In the case of the trajectory plot we integrated Eqs.
(8a)—(8d) for 25000 times with an optimum time step
value. For the Poincare surface of section plot we in-
tegrated Eqs. (8a}—(Sd) for 500 points and projected out of
the phase space the v =0, p„&0 plane and plotted u

versus its momentum p„. To calculate the one-
dimensional Lyapunov exponents and the maximum
Lyapunov exponent we integrated Eqs. (Sa)—(8d) along
with their variational equations. ' From our Painleve-
analysis, it is clear that Eqs. (8a)—(8d) are integrable for
three different choices of B, namely, B=O, B =33, and
B =153. Fixing A =

—,
' for numerical calculations, Eqs.

(8a)—(8d) become integrable for B=0, B=0.5, and
B=2.5. In our numerical analysis, B was varied in the
region (

—0.1,5.0). In each case the trajectory plot, the
Poincare surface of section plot, and a spectrum of one-
dimensional Lyapunov exponents were obtained for a
grid of initial conditions. The results for typical values of
B are tabulated in Table III. Figures 1—3 are sample
plots of our numerical investigations corresponding to a
single initial condition [except Fig. 2(b)]. Of course, our
studies were repeated for a grid of initial conditions in
each of the cases, before coming to conclusions.

Figure 1(a) represents the trajectory plot (u versus U) of
Eqs. (8a)—(Sd} for B = —0.1. It possesses a complicated
structure. The surface of section plot consists of random-
ly distributed points [Fig. 1(b)]. The variation of max-
imum Lyapunov exponent with respect to time is shown
in Fig. 1(c). It settles down to a positive value of 0.51.
Repeating this for various initial conditions and various
negative values of B, we conclude that the system be-
comes chaotic for negative values of B.

As noted already, for B=O the system (7) decouples
into two independent sextic oscillators and hence be-
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comes separable. The trajectory plot [Fig. 2(a)], Poincare
surface of section [Fig. 2(b)], and the maximum
Lyapunov exponent [Fig. 2(c)] are in conformity with the
integrable nature of the system.

For B=O.25 the trajectory plot [Fig. 3(a)] shows a fair-
ly complicated behavior. The corresponding Poincare
surface of section [Fig. 3(b)] contains randomly distribut-
ed points occupying only some regions of phase space.
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FIG. 2. For the oscillator Hamiltonian (7) with

8=0.0: (a) trajectory plot, (b) Poincare surface of section (U=0,
p„&0), and (c) variation of the maximal Lyapunov exponent.

FIG. 3. For the oscillator Hamiltonian (7) with

8=0.25: (a) trajectory plot, (b) Poincare surface of section
(v=0, p„, &0), and (c) variation of the maximal Lyapunov ex-
ponent.



42 DYNAMICS OF ATOMIC HYDROGEN IN A GENERALIZED. . . 3947

The maximum Lyapunov exponent [Fig. 3(c)] settles
down to a small positive value of 0.14. This has been
confirmed for various initial conditions. Hence we con-
clude that for 8=0.25 the system shows chaotic behavior
but the fraction of phase-space volume occupied by the
chaotic trajectory is small.

Similarly, we carried our numerical investigations for
other values of 8 lying around the integrable regions.
From our detailed study we found that for 8=0.0, 0.5,
and 2.5, we have only regular behavior as expected corre-
sponding to the integrable cases identified in Secs. III and
IV. For 8 = —0.1, 0.25, 1.0, and 5.0, we observed chaot-
ic behavior. In the cases of 8 = —0.1 and 8=5.0, chaot-
ic trajectories filled a large fraction of phase-space
volume. In the cases of 8=0.25 and 8=1.0, we observed
chaotic trajectories filling a small fraction of phase-space
volume. This is due to the fact that these two choices lie
in between the integrable values —that is, the 8=0.25
case lies in between the 8=0.0 and 8=0.5 integrable
cases. Similarly, the 8=1.0 case lies in between the
8=0.5 and 8=2.5 integrable cases.

For the m&0 case, we integrated the original Hamil-
tonian (4) itself directly for different values of energy, m,
y, and /3, and also for various initial conditions. Here we
failed to identify any chaotic region in our computation.
However, it needs further investigation. '

We conclude that by varying the value of 8 from nega-
tive to positive values one can observe chaos-order-
chaos-type transition regions. As the value of 8 can be
related with the y and P values of the original system, we
can say that there are chaos-order-chaos regions in the

perturbed hydrogen-atom problem. It is to be recalled
that in the usual quadratic Zeeman problem ()F3=0), if we
increase the value of y, then there is a smooth transition
from regular motion to chaos. ' In the anisotropic
Kepler problem, when we vary the anisotropy parameter,
the system makes an abrupt transition from regular be-
havior to chaos. However, if we include P and vary it,
we observe a chaos-order-chaos transition phenomenon
which seems not to be observed in any of the other per-
turbed hydrogen-atom problems so far.

In addition, instead of fixing the value of y and varying
P, we fixed the value of 13 as 2 (instantaneous van der
Waals potential) and varied the value of y gradually to a
higher value. As in the quadratic Zeeman problem case,
the system makes a transition from regular behavior to
chaos but the fraction of phase-space volume occupied by
the chaotic trajectories is found to be small even for a
large value of y. The hydrogen-atom problem in a gen-
eralized van der Waals potential is an interesting system
for the study of quantum chaos. ' The results of it will
be published separately. '
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