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The approximate constant of motion introduced previously for the description of a charged sys-
tem in a homogeneous magnetic field is interpreted physically as the kinetic momentum of the col-
lective motion. The algebra satisfied by this operator and by the exact constants of motion describes
the behavior in a magnetic field of a single particle possessing the total charge of the system. With
this algebra, we generalize the approximate constant of motion and obtain a family of operators de-
pending on arbitrary parameters. Canonical transformations based on these new operators separate
the Hamiltonian into collective, internal, and coupling terms. These terms take the same form for
charged and neutral systems although the collective energy represents different physical behaviors.
The coupling between the internal and collective motions is small for some choices of the parame-
ters if at least one particle is much heavier than the other ones.

I. INTRODUCTION

In the presence of a magnetic field, the center-of-mass
(c.m.) separation becomes a complicated problem whose
solution is not exactly known.! In fact, the notion of a
center of mass needs be generalized and the abbreviation
c.m. should in some cases be more appropriately under-
stood as meaning “collective motion.” Center-of-mass
corrections qualitatively modify some atomic properties
when the magnetic field is strong enough, i.e., in the vi-
cinity of neutron stars for low-lying levels or in the labo-
ratory for Rydberg states. Binding energies are reduced
by c.m. effects’™* and can render states unstable.»® The
c.m. problem also questions our understanding of basic
quantum mechanics and forces us to develop new ap-
proaches.

Intuitively, one expects a very different behavior of a
neutral system, such as an atom, and of a charged system,
such as an atomic ion. In the former case, the collective
motion is free whereas in the latter case, a cyclotron
motion arises. This difference appears clearly in the de-
tailed mathematical study of Avron et al.! These au-
thors show that a notion of c.m. separation exists for neu-
tral systems. Three commuting constants of motion are
provided by the components of an operator called the to-
tal pseudomomentum, or the total generalized momen-
tum. The process is called a “pseudoseparation” because
the resulting internal Hamiltonian still depends on the ei-
genvalues of the pseudomomentum. In the charged case,
two components of the pseudomomentum do not com-
mute and an exact c.m. separation does not appear to be
possible.

An approximate constant of motion initially intro-
duced for atomic ions’ but valid for arbitrary charged
systems® provides an approximate c.m. separation.”!°
This approximate constant of motion is useful for systems
in which at least one particle is much heavier than the
other ones. The separation process is then performed ap-
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proximately with a perturbation expansion whose param-
eter is the cyclotron energy of the system in typical ener-
gy units of the field-free problem. This method allowed
us to perform a detailed comparison of the charged and
neutral cases.® Surprisingly, the properties of both kinds
of systems exhibit a number of close similarities. In both
cases, the same internal Hamiltonian and the same type
of coupling between the internal and collective motions
are found. Only the collective energies differ in the intui-
tively expected manner. The analogies between both
kinds of systems become even more apparent in an exact-
ly solvable model.®

The striking similarity between the charged and neu-
tral systems raises the following question: Is a simultane-
ous treatment of both cases possible? In the present pa-
per, we answer positively to this question. In order to de-
velop this treatment, we first generalize the definition of
the approximate constant of motion introduced in Ref. 7.
To this end, as in our preliminary report,!! we start from
a physical definition of this approximate constant of
motion in terms of a generalized kinetic momentum, as-
sociated with the total generalized momentum. On phys-
ical grounds, these operators have to satisfy the same
commutation relations as those of a single (neutral or
charged) particle in a magnetic field. With the general-
ized approximate constant of motion, we perform a
canonical transformation which separates the collective
motion from the internal motion, except for small cou-
pling terms which can be treated perturbatively. The re-
sulting treatment remains valid if the system is neutral or
even in the absence of magnetic field.

The operators characterizing a single particle in a mag-
netic field and their algebra are recalled in Sec. II. An
analog algebra for the collective motion is taken as
definition of an approximate constant of motion in Sec.
III. Solutions are presented and discussed in Sec. IV. In
Sec. V a linear canonical transformation is performed to
separate approximately the internal and collective
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motions. The atomic case is treated as an example in Sec.
VI. Concluding remarks are presented in Sec. VII.

II. PARTICLE IN A MAGNETIC FIELD

Let r and p be the coordinate and momentum of a par-
ticle with mass m and charge ¢ in a homogeneous mag-
netic field B. Its kinetic momentum is

T=p—qA(r), (1)

where A is the vector potential in an arbitrary gauge.
The nonrelativistic spinless Hamiltonian

H=m%/2m )
possesses several constants of motion. The pseu-
domomentum! 1213

k=m+gBXr (3)

commutes with 7 and H. Classically, it is related to the
center r, of the orbit through k=¢gBXr,. Another con-
stant of motion generalizes the parallel component of the
orbital momentum'*?

L, =B-rX Hk+m)=(2¢B)"\(K*—7?) , (@)

where B is a unit vector in the field direction. The second
form is valid only for ¢5<0. The operators k and 7 verify
with £, the commutation relations

[ﬂk’ku]—:o ’

[Wk’ﬂylziﬁqe}\pow [k)aku]= _iﬁqekuva ’

~ ~ (5)
[mL]=i#iBX7, [k, L ]=i#iBXk,

where the indices vary from 1 to 3 and ¢, is the an-
tisymmetric tensor. The components of k and 7 parallel
to the field are identical and commute with the transverse
components. They also commute with £. The relations
(5) show that k and 7 provide a convenient and natural
basis for a gauge-independent description of charged par-
ticles in a magnetic field."”

In the neutral case (¢ =0), 7 and k become identical
and their common transverse components satisfy with .
the two-dimensional Euclidian algebra. We note here an
important difference between the neutral and charged
cases: if ¢ =0, all the operators belonging to the algebra
(5) are constants of motion; if g0, is not a constant of
motion. This property has important consequences in the
c.m. problem.

III. SYSTEM OF PARTICLES
IN A MAGNETIC FIELD

Let us consider a system of N +1 particles (labeled
from i =0 to i =N)) with charges g; and masses m,.
During the c.m. separation process, all particles, but one,
are treated in a symmetric way. The asymmetrical role is
attributed to particle 0. Let us however emphasize that
this particle can be chosen arbitrarily. Of course, in some
cases, physical reasons may suggest a natural choice for
particle O but this choice is by no means obligatory. In
an atom, for example, the nucleus is an obvious candidate

as particle 0.
The Hamiltonian of N + 1 particles reads

N
H=T 2m;) 'r+ Vir,—r151,—1;), (6)
i=0

where V is rotation invariant. Translation invariance of
the potential is explicitly displayed in (6). The constants
of motion are the total pseudomomentum

N
K=k, (7)
i=0

and the generalized parallel component of the total orbit-
al momentum

N
Ly=3 Ly )

The components of the total pseudomomentum K satisfy
[K;,K,]=—ifiQ¢,,,B, , 9

where Q is the total charge. The transverse components
commute with the parallel component but do not com-
mute with each other if Q differs from zero. This com-
mutation relation confirms that significant differences will
appear according to whether Q is zero or not. The com-
mutator of K with £, is

[K,£,]=i#BXK . (10)

In the neutral case (Q =0) the transverse component
of K and £ satisfy the Euclidean algebra.'! The center
of mass behaves as a free particle with K playing the role
of a momentum. Since all the operators appearing in (9)
and (10) are then constants of motion, a c.m. separation is
possible.! The charged case (Q+0) is different: if a sepa-
ration were possible, the system should behave collective-
ly as a single charged particle and relations similar to (5)
should exist. But full separation implies that these rela-
tions would involve only constants of motion. However,
we know that this possibility is already ruled out in the
single-particle case.

Now, we generalize the approximate constant of
motion by searching for a family of operators C(a)
presenting the physical behavior of a kinetic momentum
whose commutator with H is “small.” These operators
depend on several linear parameters represented by the
vector notation a. Their number as well as their
definition will be made more precise in Sec. IV. Howev-
er, we already choose that a=0 corresponds to the ap-
proximate constant of motion employed in our earlier
works.

Hermitian operators C presenting the physical behav-
ior of a kinetic momentum must satisfy with K and L,
the commutation relations

[Cy,K,]1=0, (11)
[C),C,1=ifiQ€,,,B, , (12)
[C,.L1=i#BXC, (13)

with the additional translation invariance condition



[C,¥V]=0. (14)

An obvious solution to Egs. (11) to (14) is the total kinetic
momentum

N
n=73n (15)
i=0

but its commutator with the kinetic energy is not small.
Another solution is given by the operator’

C(0)=K—Q0BXr,, (16)

which has been successfully employed in the calculation
of c.m. corrections for atomic ions.!® In fact, (16) shows
clearly that C cannot be an exact constant of motion,
such as K: it precesses with the coordinate r; (Ref. 16)
but this motion is slow if particle O is heavy. Indeed, the
commutator with H is

[H,C(0)]=ifAiQBXmy/my . (17)

In the atomic case, if we choose the nucleus as particle O,
the commutator (17) can be considered as small since it
involves the inverse of the mass of the heaviest particle.

IV. GENERALIZED APPROXIMATE CONSTANT
OF MOTION

Let us now search for more general solutions of (11) to
(14). We choose to write them as linear combinations of
the #; and k;. Equation (13) is then automatically
satisfied because of (5). Now we require translation in-
variance. Up to a multiplicative factor which is discussed
below, the most general combination which satisfies (14)
is

N
Cla)=K+Q 3 (a;/q;)m;—k;), (18)
i=0
where the a; (i=0 to N) are real parameters and a
represents (a,a,, . . ., ay) as explained below. With (3),
the fact that C(a) commutes with V also appears clearly
in the equivalent expression

N
Cla)=K—QBX S a,r, . (19)
i=0

Notice that (19) is now valid even if some g; are zero.
The commutation relation (11) of C with K imposes the
condition

N
Sa;=1. (20)

i=0

Finally, one easily checks that the relations (12) are
fulfilled so that the overall factor is +1 or —1. The fact
that C is defined up to a global sign is without practical
importance.

The condition (20) shows that one of the parameters a;
is not free. Let us now define more precisely the notation
C(a): this operator is a function of N arbitrary real pa-
rameters which we choose to be a; to ay. We can
rewrite (19) as
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Cla)=K—QBXR(a), ¥3)

with

N N
R(a)= Y a;r;=ry+ 3 a,(r;—1,) . (22)
1=0 i=1
Comparing (21) with (3) shows that R(a) has a simple
physical interpretation. It is the coordinate associated
with the collective motion, i.e., the generalization of the
c.m. coordinate. It differs from r; by an arbitrary transla-
tion invariant expression.
With (16) and (21), C(a) can be rewritten as

C(a)=C(0)—Q9BX[R(a)—ry] . (23)

Generalizations of C(0) differ from it by the vector prod-
uct of B by an arbitrary translation invariant coordinate
vector. Interesting particular cases of (23) are obtained
for a=0 where the original approximate constant of
motion is recovered and, if Q70, for a; =g, /Q since

C(q/Q)=1I, (24)

where q=(q,,...,qy). In the former case, the coordi-
nate R(0) is the particle-0 coordinate ry. In the latter,
R(q/Q) is the center of charge coordinate. If the system
is neutral, C(a) becomes independent of the a; and iden-
tical to K (and therefore distinct from IT). If B vanishes,
C(a)=K is nothing but the total momentum.

The commutator of C(a) with the Hamiltonian is

N
[H,C(a)]=ihQOBX ¥ (a;/m;)m; . (25)

=0

The important point is that the constraint (20) on the «;
forbids the commutator (25) to vanish if Q or B is not
zero. This commutator can, however, be made ‘“‘small” if
some m; are much larger than the other ones. Then the
corresponding a; can be chosen large enough to satisfy
(20) and the remaining @; can be arbitrarily small. If par-
ticle O is much heavier than most other ones, the commu-
tator is small if

1

a;50=0 e (26)
0

This case is typical of an atom.
Before closing this section, let us add the useful rela-
tion generalizing (12)

[Cila),C (a')]=i#Q¢,;,,B, (27)

for any sets @ and a'.

V. CANONICAL TRANSFORMATION

As in our previous works, we shall make use of a linear
canonical transformation involving K and C(a) to
separate as much as possible the internal and collective
motions. Unlike our previous works, we do not introduce
a separate treatment of charged and neutral systems.
Also, we do not need any more to treat differently the
transverse and longitudinal terms. The derived equations
are valid in the direction parallel to the field. However,
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in applications, it might be useful to choose different
values for the free parameters «; in the parallel and trans-
verse directions. This possibility remains open in the
present approach but does not deserve any additional
complication in the notations. The properties of C(a) al-
low us to perform a linear canonical transformation in
which the approximate constant of motion and the total
pseudomomentum respectively become the kinetic
momentum and the pseudomomentum associated with
the collective motion, i.e., with the new particle O.

In close analogy with Ref. 10 [Eq. (2.7)], Ref. 11 [Eq.
(12)], and Ref. 8 [Egs. (27) and (28)], we perform the
linear canonical transformation for the transverse com-
ponents (i =1,...,N)

75, =C(a), (28)
ko =K, , (29)
7 =7, —a,Cyla) (30
K=k, + g;—(ﬂm—km)—aiCL(%a) . 31)

Some general properties of this type of canonical trans-
formations which belong to the SO(N +1,N +1) group
are discussed in the Appendix. The main difference with
the earlier works—which correspond to a=0—is that
m;, now differs from ;. However, the expressions (28)
to (31) are not valid for the parallel components. There-
fore, we prefer to rewrite and extend them as

m=Cla), (32)
ro=R(a), (33)
m=m—a,Clia), (34)
r=r,—1,. (35)

Now, the transformation is valid for the parallel com-
ponents as well. The hybrid system of coordinates 7; and
r; is more physical but the canonical character of the
transformation is less obvious. It is most easily checked
by observing that all the components of the r; commute,
that the components of the u; have the same commuta-
tion relations as the m; [with (27)], and so on. Anyway,
choosing a gauge allows one to write the canonical trans-
formation in a more standard form involving momenta
and coordinates.

The physical interpretation of (32) to (35) is obvious.
The approximate constant of motion C(a) is the collec-
tive kinetic momentum and is associated to the collective
coordinate R(a). The internal kinetic momenta ; are
associated to relative coordinates with respect to particle
0. This transformation takes its simplest form when
a=0.

More general canonical transformations can be
defined. For example, one can replace (34) by
N
T =m—a,C(3a)+1BX 3 0;(r;—rp) , (36)

j=1
with

Q; =jS ’

without affecting the canonical character of the transfor-
mation. However, here, we do not make use of this addi-
tional generality.

In order to determine the transformed Hamiltonian,
we have to inverse (32) to (35). In fact, (35) allows one to
transform easily the potential term. Moreover, one has

N N
To=aomy— S K;+H1+a)@BX Sa;r;, (37
j=1 j=1

N
T = ta;m+30,0BX ¥ a;r; . (38)
j=1

Hence, the transformed Hamiltonian reads

HI:Hc.m.+Him+Hc ’ (39)
where
¥ a 2
Hn,=|2 5 (40)
c.m = 2mj

is the collective term. The internal Hamiltonian is

2
1 SN ,
it = S g}[ki*%(1+ao)Qa,-B><r,-]
N 1 , N , 2
+.2—2m» mi+30;QBX Zajrj
i=1 i j=1
+Vi(r,ri—r1}) . (41)

The coupling term reads

Nl @ |,
Hc=i§,l g |0
+§ 1 % afz +ﬂ Qa___‘}_()_q_ T -BXr'
=12 [[Som;  mo B .
(42)

These expressions are valid for any choice of the N arbi-
trary parameters ;. In fact, these parameters should be
chosen in such a way that H, can be treated as a pertur-
bation®'®® up to high values of the magnetic field. Let us
now consider possible choices of these parameters which
lead to simplifications.

The simplest choice

a0=1, a,->0:0 (43)

provides the usual operator C(0). This leads to a drastic
simplification of H;, (see Ref. 10). The coupling term
may be rewritten as
1 N
H.=——my ki . 44
c mo o [§1 i (44)
This expression has been employed in our treatment of
the transverse Hamiltonian of hydrogenic ions [Eq. (2.11)
of Ref. 10]. It has not been used yet in the neutral case.
A second obvious choice is (i =0 to N)
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a,=m,/N , 45)

where M is the total mass. In this case, an example of
H,, is given by Eq. (11) of Ref. 6. The coordinate R(a)
is then the usual c.m. coordinate and H, reduces to

1 N
H=—myBX Y

i r . (46)

m;

2 Q37 4
The choice (45), which is traditional in the absence of
external field, has been employed in our treatment of neu-
tral atoms [compare (46) with Eq. (12) of Ref. 6]. The
coupling term, with 7 replaced by its eigenvalue, is then
well known to represent the “motional Stark effect.”!’
Such an effect also occurs in the charged case with the
present treatment. The only difference is that #( is not an
exact constant of motion. The choice (45) allows a simul-
taneous treatment of the longitudinal and transverse
motions. In our previous treatment of the charged case,'®
the choices (43) and (45) were applied respectively to the
transverse and parallel motions. However, the values (45)
lead, when Q differs from zero, to a much more compli-
cated internal Hamiltonian. Other choices are possible.
For example, it is possible to eliminate the second term of
(42); in this case a is solution of a cubic equation.

VI. AN EXAMPLE: THE ATOMIC CASE
In the atomic case, one has
m;,o=m<<mg ,
9i>0=49 -
If we make the symmetric choice
@i50=a, 47
ay=1—Na,

the generalized constant of motion takes from (22)-(24)
the simple form

c0)+L2am . (48)

Obviously, it is a single-parameter mixing of the two sim-
ple operators which possess the properties of a total ki-
netic momentum. In fact, any C(a) possesses these prop-
erties. However, its commutator with H is not always
small and approximate constants of motion are restricted
to a values of the order of m /m,.

The coupling term between the internal and c.m.
motion becomes

a Qg N
H=|———\my >
c m mo Oigl i
m
2 20
+ayt+Na“— a
amy | [T % (2
N
—2qa |myBX X/, (49)
i=1

which is small for a of the order of m /m,. We note that
the additional parameter a does not allow a significant
simplification of the problem with respect to the treat-
ment of Refs. 9, 10, and 6.

VII. CONCLUSION

In the present work, we show that the close similarities
observed in analytical® or numerical® studies of the c.m.
problem for charged and neutral systems in a magnetic
field, are not fortuitous. A unified treatment of the ap-
parently disconnected charged and neutral cases is possi-
ble. Simultaneously, this treatment unifies the descrip-
tions of the longitudinal and transverse motions. It in-
cludes the zero-field problem as a particular case.

The definition of the approximate constant of motion
introduced in Ref. 7 is not unique. This operator must
behave as a kinetic momentum associated with the total
pseudomomentum. This physical definition fixes the
algebra satisfied by this operator.!! More general linear
combinations of the #; and k; involving N arbitrary pa-
rameters (the number of particles minus one) are possible.
However, these expressions behave as approximate con-
stants of motion only if they are not too different from
the original operator C(0). Hence, while the additional
freedom explains the apparently fortuitous similarities
between the c.m. separation in charged and neutral sys-
tems, it does not introduce practical simplifications in the
atomic case. The parameter choice leading to the sim-
plest expressions (especially for the internal Hamiltonian)
remains the original one. However, the new flexibility of
the approximate constant of motion might be useful for
the more complicated molecular case which has recently
received attention.'®
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APPENDIX

The canonical transformations encountered in Sec. V
are not displayed in a standard form.!® In this appendix,
their canonical character is emphasized. They are shown
to belong to the SO(N +1,N +1) subgroup of the sym-
plectic group.

In order to simplify the presentation, we first discuss
the particular case of a single charged particle in a mag-
netic field (see Sec. II). The operators # and k are
redefined by dividing them by (#i[g|B)'/?>. We choose the
z axis along the field direction B. With these choices, (5)
provides

[7,7,]=isgn(q) ,
(A1)
[ky,k,]= —isgn(q) .

The remaining commutators between the components of
o and k are zero. From (A1), it appears that the canoni-
cally conjugate operators are on one hand 7,7, and on
the other hand k,k, if g is positive. If g is negative, they
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become 7,7, and k,,k,. Therefore, it is meaningful to
apply a canonical transformation to the components of
7, and k. However, the physical context requires trans-
formations which preserve the vector character and the
Hermiticity of w, and k, i.e.,

’
T

ki

m
= A kl

) (A2)

where A is a real 2 X2 matrix. With (A1), 4 must satisfy

ATg,4=0, (A3)

where g represents the Pauli matrices. The general form
of matrices satisfying (A3) and connected with the identi-
ty is

A =(cosha)l+(sinha)g, (A4)

where a is a real parameter. The canonical transforma-
tion (A2) therefore belongs to the SO(1,1) group. The
transformation (A2) can be realized with the operator

T(a)=exp[—iasgn(q)ﬁ-(kxm] . (A5)

Now, we extend the transformation to a system of
N +1 charged particles. Again, we redefine the 7; and k;
by dividing them by (#lg;|B)'/2. The vectors m;, and k,,
are arranged in a column matrix M in the following order

m,,(q;>0), k; (g, <0),

(A6)
k; (g;>0), m;(g;,<0).
Physically interesting transformations take the form
M=4M (A7)

with A real. It is readily shown that this matrix belongs
to the SO(N +1,N +1) group, since it satisfies (A3) with
the elements of g, replaced by zero or unit matrices.
The generators of the corresponding algebra are given by
the (N +1)(2N +1) operators

B-(m,Xk,) (i,j=0,...,N)
and

B-(m,xm;), B-(k;Xk;) (i>j=0,...,N).
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