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Direct reactions in relativistic atomic collisions and the influence of Coulomb boundary conditions
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It is shown that in a Born treatment of excitation, ionization, and pair production in relativistic
atomic collisions, cross-section calculations are not affected by the presence or absence of explicitly
imposed Coulomb boundary conditions. On the other hand, in relativistic single- or two-center
coupled-channel calculations, the results are strongly affected. For U”2" +U°'" collisions at 1
GeV/u, it is illustrated that in all calculations unperturbed atomic basis sets lead to long-range cou-
plings along the trajectory while for basis states satisfying boundary conditions the couplings among
states are localized around the distance of closest approach. The necessity of imposing Coulomb
boundary conditions for relativistic direct reactions is emphasized.

I. INTRODUCTION

For sufficiently high relativistic velocities, direct atom-
ic reactions like excitation, ionization, and pair produc-
tion are reasonably well described by the Born approxi-
mation. However, in cases where the collision velocity is
comparable to the speed of the active electron, relativistic
coupled-channel calculations constitute an appropriate
method for simultaneously deriving cross sections both
for direct reactions and for charge transfer.

In previous publications,' "> we have worked out and
applied this approach for relativistic projectile and elec-
tron velocities. In Ref. 2 we gave a detailed description
of the method that uses a two-center atomic expansion in
terms of exact hydrogenic Dirac eigenstates. As an illus-
tration, we have considered the collision of U%>" projec-
tiles with U°!* target atoms at 500 MeV/u. In Ref. 3 we
have augmented the basis sets by target and projectile
pseudostates, thus simulating part of the continuum that
is needed for a description of ionization.

The calculations in Refs. 1-3 are patterned in analogy
to nonrelativistic coupled-channel calculations,* which
have become a powerful tool for predicting atomic cross
sections. This means that the basis states at both centers
were taken to be unperturbed atomic eigenstates or pseu-
dostates. In reality, even at asymptotically large
projectile-target separations, the presence of one collision
partner results in a distortion of the atomic states at the
other collision partner. As has been discussed in Ref. 5
for nonrelativistic collisions, this effect is taken into ac-
count by a phase factor multiplying the atomic eigenfunc-
tions. Since these phase factors depend on the internu-
clear separation, i.e., only on the time ¢ in an impact-
parameter description, and not on the electronic coordi-
nate, they can be simply absorbed in the time-dependent
expansion coefficients. As a result, the asymptotic distor-
tions of the basis wave functions by a remote charge, or
in other words, the Coulomb boundary conditions, can be
disregarded in nonrelativistic coupled-channel calcula-
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tions.> The question arises whether this is also true for
relativistic collisions.

There is a clue that this might not always be the case.
In our relativistic coupled-channel calculations,> we
discovered the existence of anomalous long-range cou-
plings in excitation processes that are absent in nonrela-
tivistic collisions. While in the latter case the coupling
between states has the characteristic dipole behavior with
an R % dependence on the internuclear separation R, the
leading coupling term for relativistic collisions decreases
as R !, suggesting the influence of a monopole Coulomb
contribution.

It is the purpose of this paper to investigate the role
played by the Coulomb distortion in calculations for rela-
tivistic direct reactions. In Sec. II, we first establish the
phase factor describing the asymptotic Coulomb distor-
tion; subsequently, in Sec. III, we study its effect on Born
calculations for direct reactions; and in Sec. IV, we dis-
cuss the effect of boundary conditions on single-center
and two-center coupled-channel calculations. In Sec. V,
the numerical results are presented and discussed, and in
Sec. VI some conclusions are drawn. Atomic units are
used unless explicitly stated otherwise.

II. COULOMB BOUNDARY CONDITIONS

The target nucleus is considered as a classical point
charge Z, fixed at the origin of the laboratory system,
while the point charge Z, representing the projectile
moves with a relativistic velocity v along a classical recti-
linear trajectory R(z)=b+vt, where b is the impact pa-
rameter. We seek to construct the solution W(r,?) of the
exact time-dependent Dirac equation
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where (rp,t) and (rp,t') are the electronic space-time
coordinates with respect to the target nucleus in the tar-
get frame and with respect to the projectile nucleus in the
projectile frame. The Lorentz transformation into the
projectile frame of an eigenfunction ¥ defined in the tar-
get frame is mediated by the spinor transformation®®

Y(Fp,t ) =SUrp,1) 2)
with
+1 172
S= % (1—8a,)=S", (3)

where y =(1—8%)7"'2, B=v/c, 8=[(y —1)/ (y +1]'/?,
and a,, a,, a,, v, are the 4 X4 Dirac matrices.®

For asymptotically large internuclear separations, we
may introduce the replacements

rr—R=(b>+v%?)!? )
and

rp—R'=(b2+v2t'?)1/2 (5)

If in the asymptotic limit, &7 and ®7 are the asymp-

totic wave functions for an electron bound to the target

and to the projectile nucleus, respectively, the asymptotic
Dirac equations to be satisfied are

z z
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Introducing the Sommerfeld parameters vi=Z/v and
vp=Zp /v, the solutions of Egs. (6) and (7) can be written
as

—ivpln(R'—vt")

QR(rp,t)=e Yr(ry,t) (8)

and

ivyIn(R — vt
DR (rp,t)=e T

ST W(rh, 1) (9)
Here ¢+ is an unperturbed target wave function in the
target frame, while ¢, is an unperturbed projectile wave
function in the projectile frame. In contrast to ¢, and
¥, the functions 7 and ®p are said to satisfy Coulomb
boundary conditions.

III. BORN APPROXIMATION FOR EXCITATION,
IONIZATION, AND PAIR PRODUCTION

Let us consider the excitation or ionization of a one-
electron target atom by a relativistic projectile. In first-
order perturbation theory, the amplitude for transitions
between ‘“boundary-corrected” states (8) is calculated by
taking the appropriate matrix element of the transition
operator H —id/dt, where H is the quantity in the large
parentheses at the right-hand side of Eq. (1). The in-
clusion of the phase factors in Eq. (8) leads to the replace-
ment
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As a result, we have a short-range perturbation and in
the laboratory system obtain the transition amplitude

Afizif_:dtfdrrlf’}(rrxt)sz bilrr,),

(11

where we have used the fact that the phase factors in Eq.
(8) are state-independent and hence cancel one another
for arbitrary initial and final target states. The term
Zp /R’ or any other potential depending on R’ alone
would appear to contribute to the integral, since accord-
ing to Eq. (5) and the relation t'=y(t —vzy/c?), the sep-
aration R’ depends on r; and ¢t. On the other hand, we
may as well calculate 4, in the projectile system by re-
placing the (r,?) integration with an (rp,t’) integration
and by inserting the transformation (2) which is valid,
provided the ¥, , are exact eigenstates. Then the term
Zp /R’ does not depend on the space coordinate rp and
hence gives a vanishing matrix element between orthogo-
nal target states.

We therefore conclude that in first-order perturbation
theory for target excitation or ionization, one obtains a
result that is identical to (11) and reads

w z
Ap=if" d:fdrﬂb}(rr,t)szr—f’zp,.(rr,z). (12)
*© P

This is just the expression usually written down for un-
perturbed target states, ignoring the Coulomb boundary
conditions.”® A corresponding expression is valid for
pair production when the electron and positron states are
target eigenstates and their orthogonality is hence en-
sured. For charge transfer, the phase factors as well as
the additional interaction have to be included®’ because
initial and final states are not orthogonal.

IV. COUPLED-CHANNEL CALCULATIONS

We have shown that the inclusion of Coulomb bound-
ary conditions in a first-order Born calculation does not
change the transition amplitude (12) originally derived
for unperturbed initial and final states. This observation
relies on the fact that (a) the complete space-time integra-
tion occurring in (11) is Lorentz invariant and (b) the
functions ¢, , are exact eigenfunctions of the atomic
Hamiltonian. These arguments are no longer valid for an
expansion of the wave function in terms of a finite set of
asymptotically distorted basis states, since it neither
represents an eigenstate of the atomic Hamiltonian nor of
the complete Hamiltonian.

We start with the discussion of a single-center expan-
sion
—ivpIn(R'—v

W(rp,1)= Sag(tle it t) (13)
k

in terms of asymptotically Coulomb-distorted target
states. The representation (13) is distinguished from the
commonly adopted one”!® by the presence of the phase
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factors exp[ —ivpIn(R’—wt')]. Since for nonrelativistic
collisions ¢'—t and R’'— R (t), the phase factors depend
solely upon time, they can be absorbed’ into the expan-
sion coefficients a;(t), as has been pointed out in the In-
troduction. This is not so for relativistic collisions, owing
to the Lorentz transformation of time as
t'=y(t —vzy/c?). When inserting the expansion (13)
into Eq. (1) and projecting upon the basis states of the
form (8), we obtain the usual”!° coupled time-dependent
equations for the expansion coefficients with the replace-
ment (10). Similarly, as for the Born amplitude (11), the
state-independent phase factors drop out. However, in
contrast to the first-order case, the term Z, /R’ cannot be
removed in the laboratory system by simply transforming
into the projectile system and by showing that they van-
ish there. The reason why such a procedure is not possi-
ble lies in the fact that time and space coordinates are not
treated on an equal footing. The additional terms Zp /R’
in the interaction have an important effect on the transi-
tion probabilities, as is confirmed numerically in Sec. V.
Existing coupled-channel calculations using unperturbed
basis states!'® therefore ought to be reconsidered.

While a description of the process in the target system
represents the natural choice, which offers an unambigu-
ous interpretation of the amplitudes, it is also possible, in
principle, to describe target excitation and ionization in
the projectile frame. In that case, the additional term
Zp /R’ has vanishing off-diagonal matrix elements and
the phases drop out. Hence Coulomb boundary condi-
tions are always satisfied whether or not they are explicit-
ly included. This is paid for by the flaw that during the
interaction time, the truncated expansion in terms of
target-centered states cannot be transformed back to the
laboratory system and hence cannot be interpreted in the
coordinate frame in which the measurements are made.
Calculations with sets of equivalent basis states in target
and projectile frames are not expected to, and in fact do
not, numerically lead to identical transition probabilities
for target excitation. In order to ensure an unambiguous
interpretation at all times and in order to avoid Lorentz-
contracted basis states it is natural to choose the target
frame with boundary-corrected basis sets (13) for
representing the process.

In order to calculate charge transfer and to include its
effect on excitation and ionization, it is necessary to at-
tach basis states to both target and projectile nuclei. In
our previous calculations,! ~ we used unperturbed target
and projectile wave functions. This is in accord with the
usual procedure followed in nonrelativistic collisions.*
We propose here the use of “boundary-corrected” wave
functions of the type 7 and ®p defined in Egs. (8) and
(9) as basis states. Generalizing the expansion (13) and
denoting target and projectile states by the labels k and
k', respectively, we write

—ivpln(R'—v

Y(rp,t)= 3 a;(t)e tl)xl/k(rr,t)
K
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When we insert the boundary-corrected expansion (14)
into Eq. (1) and project upon the basis states, we get the
usual coupled time-dependent equations,’ except for the
replacement of the unperturbed basis states by the
phase-distorted basis states appearing in Eq. (14), by the
replacement (10), and by the substitution

— . (15)

We are now in a position to return to the long-range cou-
plings acting in excitation processes induced by relativis-
tic projectiles. These couplings have first been seen in
two-center coupled-channel calculations,”? but also
would have appeared in single-center calculations'® had
the authors looked in detail at the time development. Let
us expand the projectile-electron interaction

bx,+y2vtz
1 +#+...
(Ry)

s —y(1-Ba,) |1 ., 16

rp Ry
in powers of the inverse nucleus-nucleus separation
R{=(b*+7%%?)"? measured in the projectile frame.
Here the leading off-diagonal matrix elements responsible
for the long-range couplings arise from the term
—yBa,/Rg. It is just this term that drops out when the
replacement (10) is introduced and similarly expanded in
powers of 1/R;. Hence, if proper Coulomb boundary
conditions are imposed upon the basis states, the long-
range couplings are expected to disappear. This is borne
out by numerical calculations discussed in Sec. V.

V. RESULTS AND DISCUSSION

The range of the interaction within the process or, in
other words, the effect of the boundary conditions on the
theoretical description is best illustrated in the time evo-
lution of the occupation probabilities of the various tar-
get shells for a given impact parameter b.

Let us first take a look at the Born approximation.
The time-dependent occupation probabilities can be
defined by performing the time integral in Eqgs. (11) and
(12) from — o to t and by subsequently taking the abso-
lute square of the resulting amplitude. The final transi-
tion probability then is reached for t — .

Figure 1 shows the numerically calculated time evolu-
tion of the occupation probabilities of various excited tar-
get states populated from an initial 1s,,, state in a
U”* +U%'" collision at 1 GeV/u. The probabilities are
calculated in the Born approximation at b =0.01 a.u.,
which is approximately equal to the K-shell radius ag of
uranium and roughly corresponds to the impact-
parameter region with maximum contribution to the
cross section. The upper part of Fig. 1 is calculated from
the space integral of Eq. (12) while the lower part is ob-
tained from Eq. (11), which includes an additional Z, /R’
term arising from boundary-corrected target states. As
has been shown in Sec. III, the final transition probabili-
ties are indeed the same in both cases, although the time
development at intermediate stages is quite different. It is
clearly seen that with unperturbed target states, the pro-
jectile acts over a longer part of the trajectory, while for
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FIG. 1. Time evolution of the occupation probabilities of tar-
get states in U2" +U'* (1s, ;) collisions at 1 GeV/u laborato-
ry energy. Calculations are performed in the Born approxima-
tion at an impact parameter b =0.01 a.u. The upper set of
curves represents results obtained from unperturbed initial and
final states, Eq. (12), while the lower set of curves corresponds
to boundary-corrected states, Eq. (11). The absicssa plotted is
the projection of the projectile-target separation on the beam
direction. The projection of angular momentum is indicated by
+,—, ++,and —— form;=+1, —1, +3,and — 1, respec-
tively.

boundary-corrected target states the final occupation
probability is determined within a short time span before
and after the distance of closest approach is reached at
vt =0.

While in a Born approximation there is only a uni-
directional coupling between the initial and the final
states, a more detailed treatment requires consideration
of multiple couplings among all basis states. Following
the procedure outlined in Ref. 2, we have treated the
time-dependent two-center Dirac equations for the wave
function (14) by solving the coupled equations for the oc-
cupation amplitudes a,(z) and a;.(¢). The only approxi-
mation involved is the truncation of the basis set in Eq.
(14). The matrix elements of the interactions (10) and
(15) as well as the overlap matrix elements are evaluated
by direct three-dimensional numerical integration. In
contrast to earlier calculations' ~3 with unperturbed basis
states, it is not possible now to take advantage of a sym-
metry? that relates matrix elements for the ingoing part
to those of the outgoing part of the collision. This fact,
together with the existence of the additional interaction
term in Egs. (10) and (15), leads to an increase in comput-
ing time.

In Fig. 2 we compare the time evolution during the
collision of the occupation probabilities for the target
shells (excitation) assuming again an impact parameter of
0.01 a.u. Similarly, as in Fig. 1, unperturbed basis states
have been used in the upper part of the figure, while the
lower part is obtained for boundary-corrected basis states

3899
10 1GeV/u 153,
uszeyst 25in_ g
10-1 unperturbed VARLE
15112
10-2 35t
1073
S 10
L
(=]
& 10-5
c
2 .
g 10 15
§ 4| boundary-corrected ]
s 10 /151
10-2 2py), |
10-3
+
‘30312
1074t 2pyj,
+
10°5 2p3,;
-0.4 -0.2 0.0 0.2 0.4

vila.u.)

FIG. 2. Time evolution of the occupation probabilities of tar-
get states in U2 +U°!" (15, ,) collisions at 1 GeV/u laborato-
ry energy. Calculations are performed with 18 hydrogenic basis
states at both the target and projectile and for an impact param-
eter b =0.01 a.u. The upper set of curves represents results ob-
tained from unperturbed basis states, while the lower set of
curves corresponds to boundary-corrected basis states, Eq. (14).
For the notation, see the caption of Fig. 1.

(14). Here, the long-range couplings, that are visible for
unperturbed basis states have disappeared.!! The
2p32(3), 2P12(3), 3p3(3), and 3p, (L) (where the
quantity in parentheses denotes the projection m; of an-
gular momentum) states that are excited for unperturbed
basis states already long before the distance of closest ap-
proach is reached, begin to be populated for boundary-
corrected basis states only at about vt = —10ag. Similar-
ly, after the collision, the boundary-corrected basis states
attain their asymptotic occupation probabilities at much
smaller values of vt than the unperturbed basis states.
Moreover, the asymptotic values themselves are changed.
This is different from the Born approximation discussed
above. We verified that single-center calculations lead to
exactly the same behavior.

The time evolution of the occupation probabilities of
the projectile states (corresponding to charge transfer) is
determined by the overlap of the atomic wave functions
in target and projectile and hence is not qualitatively
affected by the replacements (10) and (15). For the
change in the cross sections see Table I. An example of
this time evolution is given in Ref. 2 and is not repeated
here.

While the two types of basis sets lead to different total
excitation cross sections, one may ask whether the long-
range or short-range couplings are reflected in the
differential cross sections. However, this is not so, be-
cause for sufficiently large impact parameters b the z,
dependence of ¢’ in R'=(b2+v2t"?)"2=(b2+y2?t?)!/?
can be neglected, so that the term 1/R’ in Eq. (10) does
not contribute. As a result, the numerically calculated
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TABLE I. Excitation and transfer cross sections (in barns) between target 1s,,,(1) and projectile nl;(m,) states in U?* +U°'*

collisions at 1.0 GeV/u laboratory energy. The 36-state close-coupling calculations with unperturbed or boundary-corrected basis
states include target and projectile K, L, and M shells. The numbers in square brackets give the power of 10 multiplying the preced-

ing number.

Excitation Transfer
Final state Unperturbed Corrected Born approximation Unperturbed Corrected
Is; (%) 6.28[2] 7.46[2]
2s1,2(3) 4.95(3] 1.66[3] 2.13[3] 2.22[2] 2.45[2]
251 2(—3) 3.94(2] 1.14[2] 4.60[1] 1.21[1] 1.28[1]
2p1(3) 3.12(3] 6.48[2] 4.23[2] 8.80[1] 7.26[1]
2p1(— 1) 5.83[3] 4.71(3] 5.64[3] 2.30[1] 2.31[1]
2p3(3) 5.51[3] 4.60[3] 6.11[3] 6.60[0] 6.63[0]
2p32(3) 7.54[3] 1.48[3] 9.02[3] 3.44[1] 3.24[1]
2p3,(— 1) 1.16(3] 1.01[3] 1.36[3] 1.09[1] 4.75[0]
2p3,2(—3) 1.06[2] 9.94(1] 1.17[2] 9.15[—1] 4.92[—1]

values P(b) have almost the same impact-parameter
dependence? in both cases.

In Table I we show excitation and transfer cross sec-
tions for U??* +U”'" collisions at 1 GeV/u, resulting
from 36-state two-center coupled-channel calculations.
Atomic states up to the 3p;,, shell at both centers have
been included. In all cases, the initial state is assumed to
be 1s,,,(1). We see that for excitation, the inclusion of
boundary corrections decreases the cross section by a fac-
tor of about 2 while for charge exchange the corrections
are of the order of 10% or less in most cases. The Born
cross section, which for excitation is also shown, does not
have a systematic correlation to the coupled-channel
cross sections with or without boundary conditions. In
fact, at 1 GeV/u, the projectile energy may still be too
low for the Born approximation to be applicable.

VI. CONCLUSIONS

We show that in a Born treatment of excitation, ioniza-
tion, and pair production in relativistic atomic collisions,
it is irrelevant whether or not one explicitly imposes
proper Coulomb boundary conditions, since they are
satisfied in either case. While the transient time develop-
ment of the occupation probabilities is different in both

cases, the final populations and hence the transition prob-
abilities are the same.

Similarly, for relativistic single-center and two-center
coupled-channel calculations with wunperturbed basis
states, the coupling among states is long range and acts
long before and long after the encounter takes place,
while for basis states satisfying Coulomb boundary condi-
tions, the couplings are localized around the distance of
closest approach. However, in contrast to the Born ap-
proximation, which couples only two states in a unidirec-
tional way, the multiple couplings occurring in a
coupled-channel calculation eventually lead to transition
probabilities and cross sections that are distinctly
different for unperturbed and boundary-corrected basis
states. This shows that it is mandatory for a description
of direct reactions to take care of the long-range
Coulomb interaction from the beginning. It is to be ex-
pected that this also improves the convergence behavior
with respect to the number of basis states.
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