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Relativistic effects on low-frequency Rayleigh scattering including spin flip for hydrogenic atoms

Viorica Florescu and M. Marinescu
Faculty of Physics, Uniuersity ofBucharest, P O. B. ox MG-II, Bucharest Ma-gurele, 76900 Romania

R. H. Pratt
Department ofPhysics and Astronomy, University ofPittsburgh, Pittsburgh, Pennsylvania 15260

(Received 13 April 1990)

We present an approximate analytic expression for the low-frequency ground-state relativistic
Rayleigh scattering matrix elements for hydrogenic atoms, including the possibility of electron spin
flip as a result of the elastic photon atom scattering. Our expression is obtained by taking the long-
wavelength approximation in the relativistic Coulomb matrix elements, without neglecting the pho-
ton frequency dependence in the Coulomb Green operator. By comparison with existing exact nu-

merical calculations, we demonstrate that our approximation is appropriate for photon frequencies
below the photoelectric threshold, at least for the non-spin-flip amplitude. Using our expressions,
we investigate two issues: (i) the comparison of static and dynamical polarizabilities, and (ii) the be-
havior of the electron spin-flip amplitude, related to magnetic scattering.

I. INTRODUCTION

We wish to discuss relativistic features in the low-
frequency Rayleigh (photon) scattering from hydrogenic
atoms, including spin-orientation effects.

Rayleigh scattering by hydrogenic atoms in the ground
state can be described by analytic equations. Three par-
ticular cases have been investigated in detail: (i) the non-
relativistic dipole approximation, (ii) the nonrelativistic
case with full inclusion of retardation, and (iii) the rela-
tivistic high-frequency limit (co~ ao, with finite momen-
tum transfer). An earlier work on both nonrelativistic
and relativistic cases remained unfinished, but stimulat-
ed the first numerical calculations. A very recent calcu-
lation expresses the relativistic matrix element by a
series of some special functions, but does not explore in
detail the numerical consequences. Exact numerical re-
sults are available in several particular cases from the
Rayleigh scattering code designed for many electron
atoms. There are several reviews of Rayleigh scatter-
ing ' emphasizing the x- and y-ray regions. A study of
relativistic dynamic polarizability of hydrogen is men-
tioned in Ref. 11, but its behavior is described only quali-
tatively.

Here we describe the approach to Rayleigh scattering
representing the long-wavelength limit of the exact ma-
trix element, suited in principle for photon energies much
smaller than the electron rest energy multiplied by aZ (a
is the fine-structure constant and Z is the nuclear charge).
This does not involve (see Ref. 12) neglecting the depen-
dence on the photon frequency in the Green's propagator
(the static hmit). We include the possibility of spin fiip in
the scattering process. The approach is presented in Sec.
II, also giving the explicit expression of the analytic re-
sults. Some limiting cases are discussed in Sec. III. We
show also that at low frequencies and for not-too-high-Z
ions the relativistic corrections are more important than
retardation effects. In Sec. IV, devoted to numerical re-

suits, we first compare in Table I our results with several
exact results. We find that below the photoelectric
threshold the relativistic effects are the main explanation
for deviations from the nonrelativistic dipole approxima-
tion. We present then some of the predictions of our ana-
lytic formulas. In Table II we note a comparison between
static and dynamic polarizabilities. In Table III we illus-
trate the behavior of the two scalar amplitudes in the
transition matrix below the first resonance and in Table
IV between the first two resonances.

II. RELATIVISTIC RAYLEIGH SCATTERING
IN THE LONG-WAVELENGTH LIMIT

We consider the relativistic 2X2 matrix describing
Rayleigh scattering by a ground-state electron in hydro-
genic atoms:

3

M = g s,,szt,.ak~ (to) .
j, k

(If we are not taking the long-wavelength limit the a will

also depend on the photon momenta k, and k2.) We
denote by s, and s2 the initial and scattered photon polar-
ization vectors and by m and m' the values of the initial
and, respectively, the final electron spin components on a
fixed axis with unit vector e3. If in the exact expression

ik .r -ik2 r
of the tensor a the exponentials e ' and e ' are re-
placed by 1, one obtains

at„=—m, c ( im~a&G(Q, ) ai+ atG(A 2) a„~ 1 m') . (2)

Here
~
lm ) is the ground-state bispinor with spin com-

ponent m on the e3 axis, a are the Dirac matrices, G is
the electron relativistic Coulomb resolvent, m, is the
electron mass, c is the velocity of light, and

(3)
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where E, is the ground-state relativistic energy and co is
the photon frequency.

By comparison with the exact matrix element for Ray-
leigh scattering, in which in an exact numerical calcula-
tion factors of the type (a s)(e'"') are expanded in mul-
tipole terms (electric and magnetic), Eq. (2) corresponds
to the neglect of all multipoles, excepting the dipole elec-
tric term (L= 1) together with the replacement of the
spherical Bessel function jo by 1 and the neglect of the
Bessel function j, (long-wavelength limit approximation).
However the parameters 0, and 02 are not altered,
which keeps the tensor matrix a,k frequency dependent.

The approximate approach just described appears to
have a rather large domain of validity. We shall report in
Sec. III that at low frequencies and for small aZ the re-
tardation correction to the non-spin-flip amplitude is
smaller than the relativistic correction. A comparison
with exact numerical results, described in Sec. IV, indi-
cates that even for Z as high as 82 and for photon fre-
quencies not too close to the photoelectric threshold, the
relativistic corrections are predominant. Our approxima-
tion is also interesting because it gives information about
the spin-flip process that can take place during the pho-
ton scattering. Such a process is the object of recent
studies on x-ray scattering on solid targets. In general it
originates from magnetic as well as from electric interac-
tions. "

The tensor matrix n can be expressed in terms of two
scalar amplitudes A and 8:

a k (co)= A (co)5,k5 +iB (~)a~I

l(crt�

)

where n are Pauli matrices, (oI ) ~ their matrix ele-
ments, and c the Levi-Civitta tensor. This expression is
in agreement with the general structure of the dynamic
polarizability tensor. ' ' Because of the spin character
of the ground state only two invariant amplitudes charac-
terize the transition.

For m =m', we get the non-spin-flip amplitudes

scalar amplitude A of the scattering angle. The ampli-
tude B has the same property. Retardation effects change
this behavior.

From the matrix elements (5) and (6) one constructs
different observable quantities, referring to different types
of experiments (polarized or unpolarized atomic hydro-
gen, polarized or unpolarized initial photons, etc.). The
necessary formulas are easily obtained. We reproduce
here only the quantities referring to unpolarized hydro-
gen:

=(I Al' —IBI )Is, s
I

+ IBI
m, m'

—,'y y IM...I'=-,'(IAI' —Bl')(1—ls, v, ')+ Bl',
sl m, m'

I' = -,'(
I
A I' —I BI')( I+cos'() )+ 2 I BI' .

I
s&, s2 m, m

v, and vz are unit vectors along the initial and final pho-
ton momenta and 0 denotes the angle between these vec-
tors.

Now we try to see how the new amplitude 8 affects the
results. From Eq. (7) it follows that for orthogonal polar-
izations of the incident and final photon, the scattering
cross section is determined only by B. Equation (8)
shows that for unpolarized initial photons and final polar-
ization orthogonal to the initial photon momentum
(s, v, =0), the scattering is also conditioned only by the
fact that 8 is not zero.

If the hydrogenic results are extended to a many-
electron atom (without including the electron interac-
tions, a fairly good approximation in heavy elements) the
K-shell contribution to the elastic photon scattering will
be

M++ = A (co)sl 2+lB(G))(S2XS)) g . (5) Mx= gM =2A(co)s, s2 . (10)

In the ground-state case we consider here, the second
term does not appear in the nonrelativistic calculations,
even when retardation is included.

For m Wm', the spin-flip amplitudes are

M++ =iB(co)(s2 Xsi)'(et+ie2)

where e, and ez form, together with e3 already men-
tioned, an orthonorrnal basis in the geometrical space.
To our knowledge the amplitude 8 has not been studied
in the low-frequency regime. In the high-energy limit
this amplitude survives in the same way as the non-spin-
flip amplitude.

A characteristic of our approximation, like any long-
wavelength approximation, is the independence of the

Now we describe the analytic results for the invariant
amplitudes A and B in our approach. Due to the struc-
ture of Eq. (2), A and 8 are each constructed from two
terms:

A (co) =a (II, )+a (II2),

8 (co)=b (II, ) b(Q~), —

so analytic expressions of two functions, a and b, have to
be described. These functions are given by radial in-
tegrals, which we are able to evaluate using previous re-
sults for the relativistic perturbed Coulomb 1s orbital in
the long wavelength limit. ' We find that A and 8 are
the combinations,
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a (Q) = —(I, +2&2I2 ),
3&3

b(Q)= —(I, &—2I2),
3&3

(12)

of two quantities I, and I2 representing, respectively, the
contribution of all p, &2 and all p3/p virtual intermediate
states (bound and continuum) to Rayleigh scattering.
Other intermediate states do not contribute in our ap-
proximation.

We first explain the parameters entering the expression
of I, and Iz.

y =(k~ —rt~Z )'~ (k =1,2}

A, =aZm, c,
2

i /2

X= mc—0
c2

0Z=—
X m, c'

(ReX &0),
(13)

The expression of I, is rather simple, containing an ele-

mentary function and a hypergeometric Gauss function

I =—
1

mec

1
1

0
2&3

' (2yi+1)(1+1/X+yi+Z)
(1+y, )(y, +Z)(1+A./X)

(4') "
X '&&+&2 4 +2 2F) y, Z+1,2y, +2, y, —Z+2;

(X+A, )
' X+~ (14)

with

5) =2@,+1,
4

5 =—
y) —5+1

( A, /X)( 1+y, )
—Z

1+—
X

The expression of I2 is more complicated:

I~ = — 1+1 0
2 6

1 1

m, c' 2X+& 1+y) 1(2y)+1)

2X " 2g " 1 '(yl+y 1)
T I 2y, +2-

X+A, X+A, I (2y~+1)

where T is the series

„-Z~ („-Z+1).J. '
X " ' 'F' " " " 'X+S

2X+ (y]+ yp+ 1)pP) —m, y]+ y2+ 1,2yp+ 1;'X+X
2

(16)

For photon frequencies below the photoelectric thresh-
old all the quantities involved in our equations are real.
Due to the neglect of higher multipoles, the scattering
amplitude does not incorporate all the resonances of the
relativistic hydrogenic atom, but only those which corre-
spond to transitions from the ground state to the fine-
structure levels with total angular momentum number

j =1/2 and 3/2. The position of these resonances is ex-
actly the same as in an exact treatment of the problem
and, of course, it is different from the positions in the
nonrelativistic approximation, the difference increasing
with Z.

III. THE NONRELATIVISTIC LIMIT:
RELATIVISTIC EFFECTS ON THE DYNAMIC

DIPOLE POLARIZABILITY

INR ++3P(gNR)

INR Q 3P(~NR)
(17)

It is first interesting to see how the nonrelativistic limit
is contained in our equations. By replacing y, by 1 and

y2 by 2, and considering also that Ace/m, c &&1, we get
the results
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bNR(II )—
2

These results together with Eq. (11) lead to

A NR( )
— [1 P(IINR) P(fINR)]

g NR( )
—()

(18)

(19)

In this way Gavrila's result is recovered, and we also
have a direct proof that the nonrelativistic limit of the
spin-flip amplitude is zero.

It is interesting to note that the first term in A (cv),
which is equal to —l, comes only from p, &2 intermediate
states; on the other hand it is known (Ref. 12) that this
term, which in the nonrelativistic case represents the A
term contribution ( A the potential vector of the elec-
tromagnetic field) comes from negative continuum (posi-
tron) states. The p&&2 states contribute one third and the

p 3/2 states contribute two thirds of the other terms in the
total amplitude.

Now we discuss the behavior of the matrix element for
co~0. For this purpose it is useful to transform each
term in Eq. (2) as follows:

where P(Q ) is Gavrila's amplitude [Eq. (54) of Ref. 1].
In the limit considered here the parameters in Eq. (13)
take their nonrelativistic meaning. We mention only the
connection 0=m, c +0, a relation valid if one
neglects terms of the order (aZ) . Then, from Eq. (12)
we get

a NR(n) = —-'+ p(nNR)

8(cv)=O(k ), (25)

in agreement with the general properties (see Ref. 15)

A ( —co) = A (co), 8 (
—co) = —8 (~) .

A (co)= ——'k [1——"(aZ) ] . (26)

The first term is the nonrelativistic term' and the second
is the first relativistic correction in the low-frequency re-
gime. The neglected terms are of orders k and k (0) .
Equation (26) offers a first argument in favor of including
relativistic effects in comparison with retardation effects,
in the low-frequency, low-aZ cases: it has been proven
recently ' that retardation effects in the nonrelativistic re-
gime lead to the behavior

A NR, ret ok2[1 i
( Z)2]

8 9 (27)

The coefficient ao in Eqs. (22) and (24) is the relativistic
static dipole polarizability of the ground state (up to the
dimensional factor ao, with ao the Bohr radius). This
quantity has been studied by many authors. The simplest
expression for ao is that given by Zon, Manakov, and Ra-
paport. ' Precise numerical values were also presented
by these authors. A more complicated expression togeth-
er with numerical results has been given by Shestakov
and Khristenko, ' and recently a very precise numerical
evaluation of ao was published by Goldman. '

The first term in the expansion of the static polarizabil-
ity ao in terms of (aZ) has been known for a long time.
Using it in combination with Eq. (24) one has

( 1m~a, G(Q)al, ~

lm')

0—E]
(Im~xiai, im')+ (Im~xjxk~1m')

Ac

(0—E )+ (lmix xkG(Q)elm') .
fi c

(20)

The first retardation correction in (27) and the first rela-
tivistic correction in (26) are both of the order k (aZ),
but the coefficient of the retardation correction is smaller
than that of the relativistic correction. Our numerical
evaluation based on our analytic results in Sec. II will

emphasize where relativistic corrections become impor-
tant.

2%co

(aZ) m,,c'

We have in this way

(21)

a (0, , ) =+ (1+y, )(2y, + 1)——'aok'-,
12 8

b ( II, ) = ——'( 2y, + 1 ) +/3ok ' .6

(22)

(23)

Then, from Eq. (11)we obtain

A (co) = —
—,'aok +O(k ), (24)

The identity is based on the successive use of the relation
(k~a~n ) =(I/itic)(E„EI, )(k~r~n ) b—etween the matrix
elements of the Dirac matrices a and of the position vec-
tor r, taken between Dirac energy eigenstates. The first
two terms in (20) have simple expressions; since accord-
ing to (3) Q, &2=E, +hcv, one can obtain the first term in
the low-frequency expansion of the functions a(Q) and
b (0).

We express the low-frequency results with photon en-

ergy measured in Z x Ry:

IV. NUMERICAL RESULTS

We present representative numerical data for frequen-
cies below the K-shell photoelectric threshold.

We mention that in the numerical evaluation of I2
[Eqs. (15) and (16)], some care has to be taken in evaluat-

ing the series T. The convergence of this series is not too
fast, especially for increasing Z and k. Precise evaluation
is required, especially at low values of k, because there
are cancellations between the two terms in Eq. (11). The
quantity B is the most sensitive to this. Also, a simple
evaluation of the polynomial zF& in Eq. (16) for large
values of m (m & 20) usually can lead to errors, now be-
cause of cancellations in the polynomial itself. We have
chosen appropriate methods, like analytic continuations
of the Gauss function, for evaluating these polynomials.

First we present, in Table I, a comparison between the
values of the amplitude A and its values taken from the
literature ' or calculated recently, representing "ex-
act" results, i.e., including "all" multipoles in a relativis-
tic treatment. The results in Table I refer to several
values of the nuclear charge Z. The photon energy is
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TABLE I. Comparison between the values of the amplitude A in Eq. (5) in our calculations (RDPLWL), exact calculation (RMP)
and the approximations RDP and NRDPA (from references described in the text) as functions of the photon energy for different
values of Z.

Z

30

47

90

%co

(keV)

5.41
17.43
22.10
26.0

5.41
17.43
40.85
59.5
74.96
84.26

0.3
0.5
0.7
0.74

0.1012
0.3037
0.5061
0.7491

0.1800
0.5799
0.7353
0.8650

0.059 14
0.1905
0.4469
0.6504
0.8194
0.9210

0.1140
0.3421
0.5701
0.8437

RMP

—0.11585
—0.452 87
—3.069 51

—13.6315

—0.01106
—0.11329
—0.442 81

—13.833

—0.033
—0.646
—3.711

0.890

—0.002 45
—0.0265
—0.183
—0.627

—10.53
1.2115

—0.008 194
—0.083 473
—0.32040

—25.766

RDP

—0.0335
—0.649
—3.713

0.895

—0.002 54
—0.027
—0.1865

—10.535
1.2155

RDPLWL

—0.115843
—0.452 70
—3.0532

—13.2205

—0.11122
—0.11396
—0.445 924

—13.969

—0.033 576
—0.658 13
—3.7967

0.952 26

—0.002 544 3
—0.027 484
—0.19075
—0.655 06

—10.450
1.4277

—0.008 533 8
—0.087 221
—0.337 60

—24.307

NRDPA

—0.11702
—0.458 45
—3.1771

—15.764

—0.011 705
—0.120 383
—0.477 669

—170.833

—0.038 29
—0.8089

—10.77
—0.4015

—0.003 955
—0.043 16
—0.323 33
—1.537

1.6559
0.7290

—0.014912
—0.15975
—0.750 15

0.709 43

0.006
0.04
0.5
3.0

0.6
0.6
0.7
1.0

1.7
1.9
2.3
7.0

3.8
3.7
4.2
4.5
0.8

18.0

4.1

4.5
5.4
5.7

given in both keV and Z x Ry for the cases in which the
calculation in the literature corresponds to a photon en-

ergy given in keV. The column RMP gives the exact re-
sults (relativistic multipole). For Z=13, 30, and 90 we
reproduce numbers given by Zhou. The values for
Z=47 are taken from Ref. 22, together with the values
for Z= 82, with two exceptions: the result for photon en-
ergy 59.5 keV comes from Ref. 7 and that for Z=82 and
the energy 5.41 keV is the one recalculated recently
with increased precision compared to Ref. 22. The
column RDP represents the contribution of the relativis-

tic electric dipole term with retardation included, as cal-
culated in the literature, but the value for Z=82 and
photon energy 5.41 keV is one calculated with higher
precision by Zhou. Following the phase convention in
Ref. 1 the signs of RMP and RDP are the opposite of
those in Refs. 7 and 22. Our results are presented in the
column RDPLWL (relativistic dipole in the long-
wavelength limit). The next column (NRDPA) presents
numbers calculated by us from the nonrelativistic dipole
approximation formula of Gavrila. The last column gives
the modulus of the relative error e of our approach

TABLE II. Ratio between the non-spin amplitude A in our calculation and in the nonrelativistic dipole approximation. The
values in the first line represent the same ratio for the static polarizabilities from Refs. 17 (Z= 1, 3, 30, 50, and 70) and 18 (Z= 13 and
92).

Z 13 30 50 70 92

0.0
0.001
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.74

0.999 945
0.999 945
0.999 944
0.999443
0.999440
0.999 935
0.999 925
0.999 900
0.999 761
0.999 863

0.999 503
0.999 503
0.999499
0.999487
0.999463
0.999 418
0.999 329
0.999 104
0.997 857
0.989 878

0.990 69
0.990 68
0.990 606
0.990 377
0.989 927
0.989 098
0.987 452
0.983 310
0.960 991
0.838 671

0.950 569
0.950 57
0.950 206
0.949 031
0.946 731
0.942 527
0.934 288
0.914 151
0.817 650
0.489 856

0.864040
0.863 99
0.863 111
0.860 121
0.854 317
0.843 863
0.823 945
0.778 088
0.599 172
0.246 186

0.737 525
0.737 28
0.735 935
0.730 872
0.721 153
0.704 037
0.672 711
0.606 180
0.399 302
0.129 063

0.557 04
0.557 10
0.554 821
0.548 096
0.535 351
0.513 633
0.476 086
0.404 285
0.228 496
0.063 070
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(RDPLWL) compared with the exact number results
(RMP). As pointed out by Roy and Pratt the
differences between RDP and RMP are generally small.
The difference between RDPLWL and RDP gives an idea
about the magnitude of the retardation corrections in the
electric dipole term. Relativistic effects become visible
for Z=47 and the differences between relativistic and
nonrelativistic results increase with increasing k because
of the different position of the resonances.

Our conclusion concerning the low-frequency behav-
ior, based on Table I and on the arguments presented in
proceeding sections, is that our RDPLWL approach
gives the main features of the Rayleigh scattering ampli-
tude at photon energies below the photoelectric thresh-
old. In fact, because we miss some of the resonances
(those corresponding to energies of transitions from the
ground state to states with j )—', ), we cannot go beyond
the fourth resonance (frequency corresponding to the
transition from ls to n =3, j=

—,
' states).

We present numerical results based on our equations in
Sec. II for the following quantities: (i) the ratio between
the amplitude A in (4) and its nonrelativistic dipole ap-
proximation limit in Eq. (19); (ii) the values of the ampli-
tudes A and 8 in Eq. (4) for several values of Z and
values of k below the first resonance; (iii) the values of the
amplitudes A and B between the first two resonances.

According to the discussion in Sec. III, when the pho-
ton frequency goes to zero, the ratio between the ampli-
tude A in the relativistic and nonrelativistic dipole ap-
proximation treatments should go to the ratio between
the relativistic and nonrelativistic static dipole polariza-
bilities. When the frequency increases, deviations from
this ratio should become observable. The situation is il-
lustrated in Table II. The first line, corresponding to
k=o, represents the static ratio cto lao taken from Ref.
17. For Z=13 and 92 the values are from Ref. 18. The
numbers in Ref. 17 and 18 agree with those in Ref. 19,
within the limit of the published number of significant
figures. Analysis of our values for A in the relativistic
and nonrelativistic approaches indicates that their ratio is
changing more slowly with increasing photon energy
than the two amplitudes themselves.

In Table III we give some values for the amplitudes A
and B for photon energies below the first resonance. For
the amplitude B we have no previous information. The
amplitude B has very small values at low frequencies
compared to the amplitude A: Eqs. (19) and (25) show
that the amplitude 8 is a quantity of the order (aZ) k .
But the amplitude B varies rather abruptly with k, goes
to a maximum, decreases, and goes through zero for a
value of k around 0.5, then, becoming negative, increases
in magnitude. It remains to be seen in further studies
how much retardation effects a6'ect this amplitude.

We illustrate the behavior of the amplitudes A and B
between the first two resonances in Table IV, for Z=47.

TABLE IV. Behavior of the amplitudes A and B, for Z=47,
between the first two resonances.

0.771
0.7712
0.7713
0.7714
0.771 44
0.771 47
0.7715
0.7716
0.772
0.774
0.775
0.776
0.778
0.779
0.7792
0.779 41
0.7795
0.78
0.782

—119.19
—197.95
—305.64
—710.84

—1575.2
resonance

1808.1
381.79
81.601
0.8277

—9.1320
—19.113
—65.170

—243.19
—480.21
resonance

1156.8
179.85
44.216

—100.71
—179.03
—286.49
—691.45

—1555.7

1827.8
401.67
102.55
29.454
25.945
26.196
44.101

131.57
249.82

—569.04
—81.133
—15.004
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The first resonance is located at k =0.77147 and the
second at k =0.77941. The two correspond respectively
to transitions from the ground state to the 2p, &2 and

2p3/2 states. They replace a single resonance located at
k=0.75 in the nonrelativistic model. The amplitude A

vanishes at a particular energy between the two reso-
nances. In the region investigated the amplitudes A and
B become comparable.

In conclusion, we have presented in Sec. II analytical
equations, including the lowest electric multipole in its
long-wavelength limit, which lead to the structure (5) for
the matrix element of Rayleigh scattering from the
ground state of hydrogenic atoms, with or without spin
Rip. We have shown, by comparison with exact numeri-
cal results, that our approach is meaningful for photon
frequencies below the fourth resonance. However, for
very precise predictions retardation corrections should
also be included.
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