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Fully numerical complex-coordinate Hartree-Fock calculations
for the He 2s 2p ' P autodetaching states
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A fully numerical multiconfiguration Hartree-Fock program has been modified for performance

of calculations on atomic quasibound states using the complex-coordinate (complex dilation) tech-

nique. We present results of a lowest-order calculation of the 2s2p "P' autodetaching states of He

using this method, and we examine the dilational stability of our calculations. Because the numeri-

cal method exhibits a high degree of dilational stability, we need not perform auxiliary calculations

to stabilize the energy with respect to the dilation parameter, as is necessary in most basis-set calcu-

lations. We also report some small-scale multiconfiguration calculations in which we account for

correlation in the closed channels but attempt no improvement of the open-channel part of the wave

function. As the closed-channel space is enlarged, our results show a variational collapse of the

width similar to (but more pronounced than) that observed in early basis-set studies using the dila-

tion method. The resonance position, on the other hand, is well behaved and appears to be converg-

ing to agreement with established values.

I. INTRODUCTION

The method of complex-coordinates (complex dilation
method) has been widely applied in atomic self-consistent
field (SCF) resonance calculations (see, for example, Ref.
1). In this procedure the complex energy E„, e=iy—/2
giving both the position c and the width y of the reso-
nance, is calculated self-consistently as the complex ei-
genvalue of the dilated Hamiltonian, as described below.
Most dilated SCF applications have been performed with
basis-set expansions in which some of the difficulties of
representing highly oscillatory functions are avoided by
using a partially dilated basis set. As a result, the com-
puted energies exhibit a significant dependence upon the
dilation parameter 8. An auxiliary variational procedure
is then employed in which the energy calculation is per-
formed over a range of dilation parameters, and the re-
sulting "8 trajectory" is analyzed in order to find a sta-
tionary point of the energy. This stationary value of the
energy is then assumed to give the best approximation to
the exact resonance energy. These problems are not en-
countered in the numerical scheme since it does not rely
upon basis-set expansions and since all radial coordinates
are dilated. The calculated energies therefore exhibit a
high degree of stability in the dilation parameter, as we
show here (for Feshbach resonances} and elsewhere (for
shape resonances}.

The formal development of this technique may be
found in the literature, but we give a brief description of
its application in the numerical scheme in Sec. II. In Sec.
III the results of our calculations are presented and corn-

pared with other published results, and stability in the di-

lation parameter is examined.

II. NUMERICAL DILATION METHOD

The complex dilation method is applied, in practice, by
replacing each radial variable r in the nonrelativistic

d'P„, (z)

dz2 Z2

2——[Z —Y„t(z) ]+e t, t P„t(z)+ 0 t (z),

where X=l(i+ I), l being the angular momentum quan-
tum number; Z is the nuclear charge; Y„t(z) is the nu-
clear screening function; and s„t „t is the (complex) diago-
nal Lagrange multiplier, which insures that the function
P„t(z) satisfies the normalization condition (P„t,P„t ) =1.
The inhomogeneity Q„,(z) contains the exchange func-
tion and terms of the form E„t „.iP„.t(z), where E„t „ t is
the (complex) off-diagonal Lagrange multiplier, which en-

scattering Hamiltonian with the complex coordinate
z =re', where 0&8&m. /2 is the dilation parameter.
The resulting dilated Hamiltonian is non-Hermitian and
possesses isolated complex eigen values of the form
s —iy/2, with s &0 and y&0, corresponding to quasi-
bound states. Since the corresponding eigenfunctions are
normalizable, bound-state SCF methods may be modified
for application to the study of these resonance states.

In the standard formulation of the dilated SCF
method, the variational principle is applied to an energy
functional constructed with the dilated Hamiltonian.
Proceeding almost exactly as in the real case (that is, for
bound state systems), it leads to a set of coupled, complex
differential equations for the radial factors in the single-
particle spin orbitals. The SCF functions determined in
this way yield a stationary complex energy that approxi-
mates the eigenvalue of the dilated Hamiltonian.

In the numerical scheme the dilation method leads to
dilated Hartree-Fock (HF) equations that differ in form
from the real equations only in that z appears in the
place of r, and complex quantities replace real ones.
Thus, in atomic units (used throughout unless otherwise
noted), the dilated Hartree-Fock equation for the radial
function P„t(z) is
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sures satisfaction of the orthogonality
(P„(,P„., ) =0, in the case of n'An

We rewrite the equations in the form

condition

d P„((r;6)
Gff

2

2e"
[Z —Y„((r;8)]

+e' E„(„( P„((r;8)+G„((r;8), (2)

where the notation indicates that 8 is considered to be a
parameter, and G„(=e' 9„(. We have solved these equa-

tions for the He 2s2p ' P' autodetaching systems using
an extensively modified version of the multiconfiguration
Hartree-Fock (MCHF) code of Froese Fischer. The
boundary conditions to be satisfied by all of the radial
functions are

where k is the (complex) outgoing wave momentum, q is

the net charge of the atomic residue, and qt is the
partial-wave phase shift. For the cases examined here we

use q=1. At no point in the calculation is it necessary to
set the value of gt or k.

III. He 2s2p ' P' FESHBACH RESONANCES

The various doubly excited states that occur in helium

have received much attention by theorists and have been
observed in electron-scattering, photon-absorption, and

P„((0;8)=0, lim P„((r; 8)=0 .
p —+ 00

In practice, the second of these conditions must be re-

placed by a specification of the asymptotic behavior of
P„I because the equation is solved only over a finite range
of r. Thus, for the scattering orbital, one must consider
the appropriate Siegert boundary condition

i [kz —ln /2+(qlk)ln(2kz)+ q(]im k(z -e

ion-scattering experiments. The work presented here is a
demonstration of the applicability of the dilated numeri-
cal MCHF method to the calculation of the positions and
widths of Feshbach resonances, as exemplified by these
states. This possibility was first suggested by McCurdy
et al. , who also demonstrated the inadequacy of the
single-configuration approximation for the description of
such resonances. The formation and decay of these sys-
tems is an effect of interaction of configurations, hence
the lowest-order approximation to the wave function that
can provide an adequate description for the He 2s2p sys-
tems is of the form c, ~

2s2p ) + cz lsd ).
The energies of these helium resonances are ordinarily

referred to the ground state of the helium atom, most
commonly given as the Frankowski-Pekeris value
—2.903 72438 a.u. ; our results are displayed in Tables I
and II and are given relative to this energy. We have
used 27.2113961 as the conversion factor from a.u. to
eV.

In our calculations, the dilation parameter was 8 =0.05
rad, and all radial functions were determined self-
consistently except for the 1s function, which was held
fixed. This frozen 1s orbital was taken from a dilated cal-
culation of He+ 1s at 8=0.05 rad. It therefore gives an
exact description for the target when the scattering elec-
tron is far away, but represents only a lowest-order ap-
proximation to the 1s function of the resonance state.
The starting functions for the other bound orbitals were
taken from a dilated single-configuration calculation of
2s2p P' (which converges to a real energy). The starting
function for cp was the resonance orbital from a calcula-
tion of the Be shape resonance 1s 2s cp.

In Fig. 1 we show the real parts of the direct potentials
of the 2p and cp orbitals for the P' system; the corre-
sponding potentials for the 'P' system are very similar.
The real parts of the normalized 2p and cp functions for
P' are shown in Fig. 2, and those for the 'P' system are

shown in Fig. 3. The 2p-cp orthogonality constraint

Study

TABLE I. Results for the He 2s2p 'P' resonance.

Method c (eV) y (meV)

Present
I
II
III
IV
V

Ho'
Moccia and Spizzo

Bhatia and Temkin'
Cederquist, Kisielinski, and
Manner vik

Numerical dilated HF:
two configurations
three configurations
four configurations
five configurations
six configurations

Dilated Hylleraas basis set
L' basis-set configuration interaction:

phase shift analysis
complex stabilization

Feshbach projector
Experiment

58.4992
58.3643
58.3086
58.3076
58.3045
58.3205

58.3097
58.3097
58.2937

9.88
9.68
0.40
0.34
0.33
8.13

8.18
8.25
8.90
7.12+0.12

'Reference 7.
Reference 8.

'Reference 9.
Reference 10.
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TABLE II. Results for the He 2s2p 'P' resonance.

Study

Present
I
II
III
V

Ho'
Moccia and Spizzo

Bhatia and Temkin'
Morgan and Ederer

'Reference 11.
Reference 8.

'Reference 9.
Reference 12.

Method

Numerical dilated HF:
two configurations
three configurations
four configurations
six configurations

Dilated Hylleraas basis set
2L basis-set configuration interaction:

phase shift analysis
complex stabilization

Feshbach projector
Experiment

(eV)

61.0909
60.2901
60.2142
60.1967
60.1456

60.1542
60.1548
60.1450
60.151+0.010

r
(meV)

42.19
43.20
30.03
30.10
37.1

37.0
34.6
36.3
38.0+2.0

affects the resonance orbital strongly in the P' case and
results in the suppression of the cp wave function that is
apparent in the vicinity of the 2p orbital. The constraint
is much less important for 'P'.

The mixing coefficients for the con6gurations are com-
plex and were determined self-consistently at the follow-
ing values: for P

c& =(0.99991, 0.00015),

c2=(0.01655, —0.00935), Study Wave function

iltonian, rather than the usual ~c, ~ +~cz~ =1.) The c,
coefficients are much larger than the c2 coefficients,
showing the characteristic domination of the closed-
channel part of the wave function over the open channels
in this type of system.

Also listed in Tables I and II are the results of some
small-scale multiconfiguration calculations that we per-
formed using the following wave-function expansions:

for 'P'

c, =(1.00024, —0.00008),

c2=( —0.00380, —0.02227),

II
III
IV
V

2s2p +1scp +2p3d
2s2p + 1scp +2p3d +3s3p
2s2p +1scp +2p3d +3s3p +3p4d
2s 2p + 1sep +2p 3d +3s 3p +3p 4d + 3d 4f

where c, and cz satisfy c f +c2=1 in each case. (This re-
lation is appropriate for the non-Hermitian dilated Ham-

0 5

The results exhibit a "collapse" of the width that
occurs with the addition of configurations (most evident
in the P' results), while the position improves. A similar
but less pronounced collapse was observed by Bain
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FIG. 1. Real parts of the effective direct potentials for the 2p
orbital (deep well) and the cp orbital (shallow well) for the 'P
case. The effective direct potential is defined as the first two
terms inside the large parentheses in Eq. (2). The vertical axis is
marked in a.u.
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FIG. 2. Real parts of the normalized 2p and cp radial func-
tions for the 'P case. The vertical axis is marked in a0 ' '.
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TABLE III. 8 stability of the He 2s2p 'P' energy.

(rad)
ReE
(a.u. )

ImE
(a.u. )

0. 5

-0. 5

—1.5
0

I

10

Acr

I I

20 30 40
B &thill 8 r (t XIT~ &)f,i„,

I

50
I

60

0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

—0.753 921 066 162
—0.753 921 066 163
—0.753 921 066 178
—0.753 921 066 190
—0.753 921 066 193
—0.753 921 066 186
—0.753 921 066 170
—0.753 921 066 150
—0.753 921 066 133
—0.753 921 066 128
—0.753 921 066 143

—0.000 181 513 806
—0.000 181 513 787
—0.000 181 513 782
—0.000 181 513 787
—0.000 181 513 796
—0.000 181 513 804
—0.000 181 513 806
—0.000 181 513 794
—0.000 181 513 768
—0.000 181 513 728
—0.000 181 513 680

FIG. 3. Real parts of the normalized 2p and cp radial func-
tions for the 'P' case. The vertical axis is marked in a0 ' '.

et aI. ' in an early dilated basis-set study of the He
1s2s Feshbach resonance; the collapse occurred during
multiconfiguration improvement of the target wave func-
tion. In a report of later work on the same resonance,
Junker' mentions unpublished studies showing that the
width does not behave monotonically with the addition of
configurations and is very sensitive to such changes in the
wave function until a certain number of configurations
have been added. Similar behavior has been noted in
connection with shape resonances in a basis-set
configuration interaction study of Be 1s 2s zp by
McNutt and McCurdy' and in our multiconfiguration
study' of the Li 1s 2spp P' resonance. However, it is
unlikely that our present results for the 2s2p width are
explained by such fluctuations, since Junker demonstrat-
ed also that the collapse of the resonance width could be
avoided by improving the open-channel part of the wave
function. We are currently investigating the resolution of
this problem in the dilated numerical method.

The dilational stability of the numerical SCF approach
has been demonstrated already for calculations of shape

resonances. We note also that Krylstedt, Elander, and
Brandas, ' using a dilated version of the static-exchange-
plus-polarization technique, have also obtained results for
shape resonances that are independent of changes in the
dilation parameter. In Table III we demonstrate such
stability in a dilated numerical SCF calculation of a Fesh-
bach resonance. Our results show stability through at
least nine decimal places, in both the position and the
width, over a range of almost 40' in 8. This greatly
simplifies our computations by eliminating the
trajectory" analysis that is necessary in basis-set calcula-
tions as they are usually performed (see, for exatnple, Ref.
7).
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