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Electron-correlation and spin-orbit-interaction effects are known to play an important role in the
quantitative description of multiphoton ionization of heavy atoms. In this paper an ab initio ap-

proach to two-photon ionization {2PI) of closed-shell atoms in the framework of the relativistic
time-dependent Dirac-Fock theory is proposed. This formulation is known to contain important
electron-correlation corrections and includes the spin-orbit interaction by use of relativistic wave

functions. Computational results for nonresonant 2PI total cross sections of the rare gases are
given. The approach is suitable for calculations of angular distributions, branching ratios, and au-

toionizing resonances.

I. INTRODUCTION

Multiphoton ionization (MPI) of complex atoms, in
particular of the rare gases, has been of continuous
theoretical and experimental interest during recent few
years. ' Experimental progress is stimulated by the
availability of pulsed tunable uv lasers, which allow the
investigation of frequency-dependent properties in few-
photon ionization of atoms with high ionization poten-
tials. As opposed to atoms with a single valence electron
outside a tightly bound core, a theoretical description of
MPI of atoms with several valence electrons and closed-
shell atoms poses two particular challenges to the theor-
ist: First, electron correlations have to be taken into ac-
count in a manner more detailed than a model potential
can achieve. Second, for heavy atoms, electrons will have
relativistic velocities close to the nucleus. The most im-
portant relativistic effect in this context is the spin-orbit
interaction, which is responsible for the fine-structure
splitting of levels and ionization thresholds (1.3 eV for xe-
non), as well as an L S dependence of amplitudes. The
relativistic Dirac-Fock Hamiltonian describes the spin-
orbit interaction as well as the relativistic contraction of
inner orbitals correctly and in a natural manner.

Several theoretical papers have recently addressed the
first of these two problems. ' Their results confirm the
importance of electron correlations expected from an in-
terpretation of pertinent experiments. For the particular
case of two-photon ionization (2PI) of rare gases, a gen-
eral tendency of a suppression of 2PI cross sections, as
compared to older results, is found. Since in none of
these studies was the spin-orbit interaction included,
however, the positions of the resonances do not agree
with experimental energy levels for the heavier atoms.
The spectroscopic effects of the spin-orbit interaction on
MPI have been treated semiempirically in the framework

of the multichannel quantum defect theory (MQDT) for
multiphoton autoionization of xenon. It should be noted,
though, that nonrelativistic wave functions cannot give
an accurate description of photoionization processes in
atoms, even if the fine-structure splitting of thresholds is
included, e.g. , by using experimental thresholds. For
single-photon ionization of rare-gas atoms, it has been
demonstrated that usage of relativistic wave functions
(i.e., inclusion of spin-orbit effects in the wave functions)
leads to a substantial improvement of single-photon am-
plitudes, in particular, the branching ratios for ionization
into the P3/2 versus P, &2 channels.

It is the purpose of this paper to formulate and test a
theoretical approach to MPI of closed-shell atoms (i.e.,
the rare gases), which accounts for electron correlations
as well as spin-orbit interactions. We have chosen the
relativistic time-dependent Dirac-Fock (TDDF) method,
which is closely related to the relativistic random-phase
approximation (RRPA). The RRPA is known to give ac-
curate matrix elements, autoionization spectra, and reac-
tance matrices for single-photon ionization of heavy
rare-gas atoms. The TDDF is a generalization of the
RRPA allowing an extension to arbitrary order in the
external field. The equations resulting from an order-by-
order expansion of the TDDF equations are formally
closely related to the approach of inhomogeneous
differential equations, which are often called Dalgarno-
Lewis equations.

Our paper is organized as follows: in Sec. II the equa-
tions of the relativistic TDDF model are derived and
linearized. In Sec. III these equations are decomposed in
terms of angular momentum eigenstates. The equations
are applied to the problem of 2PI of rare-gas atoms in
Sec. IV, and results for the simplest case, i.e., 2PI with
final-state energies above both fine-structure components
of the P threshold, are given. Section V gives a short
summary and conclusions.
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II. RELATIVISTIC TIME-DEPENDENT
DIRAC-POCK MODEL

0 (t)—:(N! )

p F perm(X)
sgn(p)gu, (x (, ), t) (2.5)

Our formal derivation of the TDDF equations is simi-

lar to the treatment by Smet, Tillieu, and van Groenenda-
el, with a slightly simplified treatment of the Lagrange
multipliers. In Sec. II A the derivation and order-by-
order expansion of the TDDF equations is given. The re-

sulting equations are reduced to radial equations by
means of angular momentum algebra in Sec. II B.

A. TDDF equations

We start with the time-dependent Schrodinger or
Dirac equation (the particular form of the kinetic energy
operator and the external perturbation is unimportant in
the context of this section) for an N-particle wave func-
tion (p(t) (we omit the spatial and spin coordinates for
brevity)

We make use of this property in later sections. A
suScient condition for satisfying the normalization (2.2)
is that

(u, (t)lu„(t) & =5,„. (2.6)

Here, u, , . . . , u, are a family of X time-dependent or-

bitals identified by labels a], . . . , a&. In the following,
we will often omit the argument x in writing the orbitals

u, for brevity. The summation p sperm(N) extends over

all permutations of the set [ 1, . . . , N I. Note that the ex-

pectation value of a single-body operator 0=+, o(x, ),

such as the charge or current density, is the sum of the
single-body expectation values

(q(t)lGlq(t) & =g (u. (t)l lu. (t) & .

i +—H—+V(t) (l((t)=O,0 (2.1)

(+(t)l+(t)&=l . (2.2)

Here, H0 is the Hamiltonian of the unperturbed atom

S z 1Ho= g t()(i) —+ g-
r, „ lr, —rl '

i&j

(2.3)

where the term in large parentheses is the single-particle
Hamiltonian ho(i), consisting of the kinetic energy opera-
tor to(i) of the electron with the spatial and spin coordi-
nates x, =(r;,m, ), r, = lr; l, and the potential energy Zlr,

I

of the electron in the field of the nucleus with the nuclear
charge Z. The external perturbation V(t) is a single-

body operator

V(t)= g V(r, , t) . (2.4)

The TDDF model space is defined by restricting %(t)
to those time-dependent wave functions which can be
represented by a single Slater determinant of time-
dependent single-particle wave functions (orbitals)

u, (x, t)

which is to be solved approximately in a model space sub-

ject to the normalization constraint

Note that all sets of orbitals that define the same many-

body wave function [Eq. (2.5)] are related to each other
by similarity transforms. Therefore condition (2.6) does
not impose any additional restrictions upon the model
space.

The time-dependent Hartree-Fock procedure, requir-

ing that the functional

l(()=(e(() -(—+a, +V(() e(()
at

be stationary under infinitesimal variations of the orbitals
u, (t)~u, (t)+5u, (t), is now carried through in a
manner fully analogous to the time-independent pro-
cedure and yields the time-dependent Hartree-Fock equa-
tion

a—i—+ho+ W[u, (t), u, (t)]+ V(t) u, (t)

=g A,,„(t)u, (t) . (2.7)

The Lagrange multipliers A,,(, (t) maintain the orthogonal-
ity condition of the orbitals (2.6) in the unrestricted varia-
tion that corresponds to solving a differentia equation.
As an abbreviation for the various Hartree-Fock-type po-
tential terms in the subsequent sections, we introduce a
generalized Hartree-screening function defined as follows:
if xb and yb are some arbitrary sets of orbitals, the index
b ranging from a, to a~, and z is an arbitrary orbital, the
functional W[, ] is defined by

1, y, 1
( W[x„,y„]z)(r)—:g fdr' xb(r'), p„(r')z(r) —xb(r'), , z(r')pb(r)

r —r' !r—r' (2.8)

For the following argument, we restrict our attention
to the relativistic Dirac equation. ' We are going to
show that the TDDF equation has the same behavior un-

der gauge transforrnations of an externally applied elec-
tromagnetic field as the equation for a single electron

I

moving in a local electrostatic potential Vo(r)

Bu
iA =[ca (p eA)+1.3m—c +e(p+ Vo]u

at
(2.9)

(in rational units, a,P are the Dirac-Pauli spin matrices),
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A= A+Vy, y=y+By/BI, , (2.10)

which is form invariant under a transformation of the
four-component spinor u (r, t } and the external potentials
A( r, t ) and q( r, t ), using a gauge function y( r, t )

B. Perturbative and harmonic expansion
of the TDDF equations

We assume a perturbing external potential purely har-
monic in time

u=e xu (2.11)
V(t)= V+e ' '+ V e (2.16)

W[e"rub, e"rub]e"ru, =e"rW[u~, ub]u, . (2.12)

This renders the gauge discussion of the TDDF equation
(2.7) identical to that of the single-particle Dirac equation
(2.9), and it can easily be shown that Eqs. (2.10) and (2.12)
constitute a symmetry transform of the TDDF equation
(2.7). The observables of the TDDF, namely, the elec-
tronic current and charge densities

p(r, t)=g eu, (r, t)u, (r, t ) (2. 13a)

Equation (2.7) is a generalization of Eq. (2.9): Vo is re-

placed by W[u b(t), ub(t)], and V(t)= —ea A.+ey. The
transformation of the external potentials in the TDDF
equation is defined by Eq. (2.10), and the orbitals are
transformed according to Eq. (2.11); this means, for all
orbitals a, u, (r, t)=e "r""u,(r, t). Since the phase fac-
tor e "~ is common to all orbitals, it may be factored out
in front of the Hartree-Fock potential

The time-independent operators V— satisfy V =(V+)
to ensure Hermiticity of V(t). Consistent with the har-
monic perturbation we expand u, (t) in powers of e

and orders of perturbation theory in V +—

u, (x, t)=e ' g g u,'"' (x)e
k=0 f= —k

(2.17)

where k indicates the order of perturbation theory in the
external perturbation V(t), and f denotes the harmonic
components of the perturbed wave function u, (t). The
meaning of e„which is an arbitrary parameter here, will
be clarified in the discussion of the zeroth-order equation.
We call the time-independent orbitals u,'"'~( )xthe "kth-
order, f-frequency" components of u, (x, t). Likewise, we
expand the Lagrange multipliers

and

j (r, t ) =g ecu, (r, t)au, (r, t) (2.13b)

X (t)=e '"'~X'"'Je-'l"
&b e ~ &b e

k, f
(2.18)

are evidently invariant under these transformations.
Since the identity of two power-series expansions in an
independent variable x (in our case the field amplitude
Eo) implies the equality of all coefficients of x, we can
conclude that this gauge invariance will also hold true or-
der by order in the perturbational expansion of the
TDDF equation, which is presented in Sec. II B.

For multiphoton ionization with visible and near-
visible uv light, the wavelength of the external radiation
field is much larger than the dimensions of the atom,
which allows one to describe the interaction of the atom
with the radiation field in the dipole approximation. In
Coulomb gauge, the potentials for an externally applied
field E(t)=Eoae"' '"'+c.c. (Eo is the amplitude, a the
polarization unit vector of the field) are r independent in
the dipole approximation

(0)0 U+ —
u

(1)+1
Ug —Qg

0 — (2)0 + — (2)+&
a a 7 Ng —ug

(2.19)

The k =0,f =0 term of the expansion yields

We insert the wave functions and lagrange multipliers
Eqs. (2.17) and (2.18) into Eq. (2.7), and separate terms of
identical order in V — that have identical time depen-
dence. The resulting equations define a recurrence in k
and f, starting at k =0 and f =0. After inserting, it is
seen that the pure harmonicity of the perturbation Eq.
(2.16) limits the expansion (2.17) to terms for which k+f
is even. All other components are decoupled and thus
zero. For convenience, we use the following abbrevia-
tions:

A(r, t)—= A(0, t }= Eose ' '+c.c.—, y(r, t)=0,l
(ho —e, + W[ub, ub])u, =g A', b' ub, ,

b

(2.20)

(2.14)

which leads to the dipole velocity form of the interac-
tion operator V(t)= —e A. +aey. A transformation of
these potentials with the gauge function
y(r, t)= (i/to)Eos —re '"'+c.c. cancels the vector part
of the external potential and yields

& u. ~ u„& =5.„, (2.21)

the well-known single-configuration Dirac-Hartree-Fock
equation for an unperturbed atom, where u, are the usual
time-independent Dirac-Hartree-Fock orbitals. The pa-
rameters e, obtain their usual meaning of eigenenergies
for the orbitals u, if we require that the diagona1
Lagrange multipliers A. ',,N be zero. Equation (2.20) is to
be solved subject to the normalization constraint

A(r, t)=0, y(r, t)= Eos re ' '+c c— .

which is the dipole length form of V(t).

(2.15) which is obtained from the k =0, f =0 term of Eq. (2.6)
after insertion of the expansion Eq. (2.17).

Proceeding to the first order, we obtain the equation
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[ho —(e, +o~)+ W[ub, ub]] v, +( W[vb+, ub]+ W[ub, vb ]—)u,

+ V —
u =~(k"'—'u +g' ' v

+—
)a ~ ab b ab

b

(2.22)

subject to the normalization constraint

(v.- iu„)+(u, iv ) =0 . (2.23a)

This normalization condition does not define the solution
to Eq. (2.22) uniquely. If we replace v,

+— by

v,
+—+gb a,+bub, —where a,+b+ab—, '=0, the new functions

are again solutions of Eq. (2.22), with A, ','b' —' replaced by
A,,"b' —'+ [eb —(e, +oi)]a,—b. A convenient choice of a par-
ticular realization of Eq. (2.23a) is the requirement that
the perturbed orbitals U,

+— be orthogonal to all initial-state
orbitals

(u, iv;+)=0. (2.23b)

This choice has the practical benefit that in a numerical
procedure to solve Eq. (2.22) the solutions are guaranteed
not to be dominated by arbitrarily growing, components
proportional to occupied orbitals, which could otherwise
lead to a loss of numerical significance. Equation (2.22),
solved with the orthogonality condition (2.23b), is

structurally identical to the equation discussed in Ref. 11,
so all the analysis and discussions of that paper also apply
here. In a recently published review on RRPA the ques-
tion of the inclusion of solutions with negative Dirac en-

ergy (positron solutions) into the expansion of RRPA
states in terms of Dirac-Fock eigenfunctions is dis-
cussed. '

We call Equation (2.22) the inhomogeneous RRPA
equation. This is an inhomogeneous equation which is
linear in a solution vector whose components are com-
posed of (v,+, v, *). The equations are driven by the in-

homogeneity V—u, . The Lagrange multipliers k,b
— pro-

ject out components parallel to initial-state orbitals from
the solution.

To discuss the properties of the solutions of Eq. (2.22),
it is useful to compare the inhomogeneous RRPA equa-
tion to the homogeneous RRPA equation, i.e., with V+-

set identical to zero. We refer to the homogeneous equa-
tion corresponding to (2.22) as (2.22)h, in the following,
and denote its solutions by the symbol y,—.It will be seen
that the homogeneous equation also plays an important
role in the numerical determination of multiphoton ion-
ization amplitudes with final states in the continuum,
which can be obtained as scalar products of the solution
of the homogeneous equation with the respective driving
term [in Eqs. (2.22) and (2.24)], i.e., V —u, for single-
photon ionization.

In the summation over the orbitals b in Eq. (2.22)h,
in the term for which b =a, direct and exchange parts of
W[ub, ub]y,

—and W[ub, yb
+—]u, cancel mutually. There-

fore the efFective potential in Eq. (2.22)b, is a V(N —l)
potential converging to (N —l Z) Ir. Equation—
(2.22)„, defines an eigenvalue problem for co with eigen-
frequencies co„. The corresponding eigenstates y,— cor-

n

respond to one-particle, one-hole excited or continuum

states of the atom. The full wave function of the system
is composed of a sum of Slater determinants in which in
the ith term the ith orbital in the determinant is y,

—[or

v; analogously for (2.22)], whereas all other orbitals j &i
I

are unperturbed u, . Physically, this corresponds to the
j

various dissociation channels of the atom, leaving behind
an ionic core with a hole u, . The adrnixtures from vari-

I

ous nonequivalent orbitals in these states represent the
effects of electron-correlation terms that are included in
the RRPA, as compared to purely ((L,S, )J,j )J coupled
states. Thus the homogeneous equation (2.22)„, yields
one or more Rydberg series of eigenstates, each arising
from a certain linear combination of core wave functions.
Above each threshold (e, +co) 0), we obtain a continu-
um of states belonging to the corresponding Rydberg
series.

The spectrum predicted by RRPA is an approximation
of the atomic spectrum. In particular, reactance matrices
obtained from RRPA continuum states have their usual
meaning and can be used in a multichannel quantum de-
fect theory analysis of resonance series induced by Ryd-
berg states. However, an interpretation of the RRPA
eigenstates as approximations to excited-state wave func-
tions of the atom leads to difficulties. It is discussed in
Ref. 11 for the example of the first-order RRPA, that in
matrix elements (y,+ ~

V+
~ u, ) + ( u, ~

V ~y, ) of an

operator V—+ the contributions from the positive-
frequency components y,

+ to the matrix element can be
identified with many-body perturbation theory (MBPT)
corrections for excited-state correlations, whereas those
from the negative-frequency components y, correspond
to ground-state correlations. This implies, on the one
hand, that RRPA does not neglect correlation correc-
tions for the initial state, as one might conclude upon the
first look at Eq. (2.5), which appears like a single
configuration. On the other hand, however, RRPA ma-
trix elements of higher order in the external field cannot
be identified with terms of MBPT easily. Note, also, that
the RRPA does not contain certain higher-order MBPT
terms such as double-particle double-hole excitations.

The spectral properties of the homogeneous and inho-
mogeneous equations are identical: The solution of the
inhomogeneous equation has poles at the eigenfrequen-
cies co„of the homogeneous equation, since at these fre-

quencies the left-hand side of the equation is singular
(definition of an eigenvalue). The wave functions v,

—and
therefore also the observables (p, j) have poles at oi„.

In Sec. III we expand Eq. (2.22) in terms of angular
momentum eigenfunctions, assuming that the initial state
is the ground state of a closed-shell atom, and V(t) is an
arbitrary rnultipole operator. Two cases are of particular
interest in our context: First, if V (r) is the electric dipole
operator, Eq. (2.22) describes one-photon ionization of an
atom, which has been investigated in the present formal-
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ism for the case of the rare gases in Ref. 13. Second, it
will be shown that the inhomogeneity of the second-order
equation (2.24) can be split up into terms of well-defined
multipolarity. This means that the solution of Eq. (2.24)
can be decomposed into terms with well-defined angular
momentum, which renders our analysis of 2PI in many
respects an extension of the methods used in the context
of 1PI.

The equation for the (2)+0 component w, [Eq. (2.19)],
which describes the time-independent second-order
response of the atom to the field, is completely decoupled
from the equation for u,' ' —+ =w,—.Since we are interest-
ed in a description of 2PI in only lowest order in the
external field in this work, we may ignore w, .

The second order (+2)-frequency equation is obtained
as

[ "o (& +2')+W[ui„ut, ]]w,+—+(W[wb+, ub]+W[ub, w& ])u&

+(W[u&+, ub]+ W[ub, ub+])u—, +W—[ui,+, ui, ]u—, + V—
u -=g(g' ' —u +A' '

u
——+A, 'b+wb—+) . (2.24)

b

(w,+ ~u, )+(u,+ ~u„-)+(u, ~w;) =0. (2.25)

The spectroscopy of Eq. (2.24) reflects correctly the
intermediate- and final-state resonances. The inhomo-
geneity of (2.24) has poles at the eigenfrequencies co=co„
of the homogeneous first-order equation (2.22)„, , coin-
ciding with the intermediate-state resonances. The
homogeneous equation corresponding to (2.24) (i.e., with
V +—and u,

—set identically to zero) is structurally identical
to Eq. (2.22)„, . Its eigenvalues indicate the positions of
final-state resonances.

In this equation, the terms in the first line can easily be
identified as formally identical with terms in the first line
of Eq. (2.22), whereas the inhomogeneity in the second
line consists of several components now: the first three
terms represent second-order products of the linear
response of the atom to the field, whereas the last term
V —

u,
—is analogous to the inhomogeneity of Eq. (2.22) if

we compare Eq. (2.24) to a second-order "Dalgarno-
Lewis" equation. This structure implies that, besides the
particular form of the inhomogeneity, most of the
analysis, in particular the radial reduction, can be per-
formed in common for the first- and second-order equa-
tions (and likewise, higher-order equations).

Equation (2.24) is to be solved subject to the normaliza-
tion condition

—(1 +1)=—(j+—,'), ~(0
+l=+(j+—,'), ~)0. (3.3)

The coefficients (lsm&m,
~ jm ) in (3.2) are the Clebsch-

Gordan coefficients, Y& (r) the spherical harmonics in
the Condon-Shortley phase convention, and

m, =+—,', is the two-component spinor for a spin- —,
' parti-

cle. The four-spinor

ig(r)Q, (r)

r f(r)& „(r) (3.4)

has well-defined parity m =( —1)' and angular momentum
j (j and I are always understood as functions of a). Note
that u, is only in the nonrelativistic limit an eigenfunc-
tion of L because it is constructed from two different ei-
genvalues I =j+—,'. We insert u, into the time-
independent Dirac equation with a central potential y(r)

hpQ =EQ (3.5)

and obtain the radial Dirac equation

(ho e)u

I

tive integer values. The angular momentum quantum
numbers j and I are related to K by

III. ANGULAR MOMENTUM DECOMPOSITION
OF THE TDDF EQUATIONS

The Dirac Hamiltonian hp of a particle in a central
electrostatic potential p(r) with no external radiation
field ( A=0)

mc —e+ ecp

K

dr r

d K

r

—(mc +e—eg)

g(r)
f(r)

ho=ca p+Pmc'+ep (3.1)
{3.6)

commutes with the total angular momentum J=L+S
and the parity H operators. The eigenfunctions of h p J
and II are defined in terms of the two-component spheri-
cal spinor

A„(r)= g (lsm, m, ~jm) Y& (r)y
m&, m

{3.2)

where K is the eigenvalue of the operator
K —= —(2L S+ 1), which determines angular momentum j
and parity m and can assume nonzero positive and nega-

where the matrix in large parentheses is hp . From Eq.
(3.6) can be seen that g and f are real. In the following,
we always write radial wave functions as two-
component vectors (gf~"„~). For an electron in the field of
an atomic nucleus, y is the Coulomb potential
V {r) = e y{r) = —aZ /r, where a = 1/137.036 is the Som-
merfeld fine-structure constant. In the remainder of this
work, we use atomic units, where iri= 1, m, =1, ~e~ =1,
ap = 1, thus c = 1/o. , and shift the energy scale by the

electron rest energy E=@—m, c, which leads to the ra-
dial Dirac equation in atomic units
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Z

1 d +-
a dr r

2

a
Z

1 d ]c

a dl' p' g(r) g(r)

,f(r) f(r)

(3.7}

has the constant value

a
W(s, c)=—,

7T

independent of the radius r

B. Angular momentum decomposition
of the TDDF equation —outline

(3.11)

A. Relativistic Coulomb functions

1/2
Ea +2 Ea +1

cos pr + ln2pr +5
p

SEK 1/2
Ea Ea +1

sin pr + ln2pr +5,
p

The long-range behavior of the potential for an elec-
tron moving in the field of an ionic core is dominated by
the Coulomb term 1/r. Accordingly, the components of
the respective wave function, corresponding to the vari-
ous dissociation channels, will asymptotically converge to
solutions of the relativistic Coulomb problem, which has
been described in detail in Ref. 13. %'e adhere to the no-
tation of Ref. 13 for Coulomb functions. The analysis
given there can be directly applied to the treatment of the
multichannel case (for an introduction, see the review by
Seaton' for nonrelativistic problems), which has been
worked out for RRPA in Ref. 15. %e give a short sum-
mary in the following.

Any solution to the relativistic Coulomb problem can
be expressed as a linear combination of the linearly in-
dependent relativistic Coulomb functions sE, and cE„
defined by their energy, angular momentum, parity, and
their behavior at the origin and at infinity, and normal-
ized on the energy scale. Solution sE, is regular at the
origin, cE, is singular. The continuum solutions depend
on the polar angles according to Eq. (3.4), and their radi-
al parts become asymptotically for r —+ ~ (in a.u.),

ig, (r)Q, (r)
a a

u, (r) =-
r f, (r)& „(r) (3.12)

The index a =—(n„~„m, ) uniquely identifies each orbital.
The radial functions g, and f, depend only on the princi-
pal n, and angular momentum and parity ~, quantum
numbers, but not on the magnetic quantum number m, .
The total angular momentum of the ground state of a
closed-shell atom is automatically J =0.

The perturbed orbitals x, (substitute U and w for x) are
set up as linear combinations of single-particle wave
functions x,' '

+ with definite angular momentum

a =—(a, m, )

We expand the solution functions of Eqs. (2.20), (2.22),
and (2.24) into linear combinations of angular momentum
eigenfunctions. All factors depending on angular coordi-
nates can be evaluated analytically, and the equations are
thus reduced into a system of coupled ordinary
integrodifferential equations.

Let us first outline the general procedure for the angu-
lar reduction of Eqs. (2.20), (2.22), and (2.24): The first
step is to decompose the orbitals into eigenstates of the
single-particle angular momentum and parity operators
[Eq. (3.4)]. Due to the spherical symmetry of the
ground-state Hartree-Fock potential, the unperturbed or-
bitals u, have definite angular momentum and can be
written as

(3.8)

and

1/2
Ea +2 Ea +1

sin pr + ln2pr +5,
p

CEK 1/2
Ea Ea +1

cos pr + 1n2pr +5

(3.9)

W'(u, , u, )=det

where 6 is the Coulomb phase defined according to the
conventions of Ref. 13 [Eq. (23)]. The detailed behavior
of the solutions for e (0 is of no particular relevance for
the analysis in this work and can be found in the men-
tioned paper.

The Wronski determinant of s and c, generally defined
by [cf. Eq. (3.4)]

is'", (r)n. (r)
a a1x(Jj «'" (r)n (r)a a+ K Pl
a a

(3.13)

The radial functions s and t have to be determined by
solving the resulting radial equations. Each of the
x' '

+, when substituted for u, into the Slater deter-
minant at the respective location a, gives rise to a one-
particle, one-hole product state of a core having angular
momentum J,=j, and M, = —m, and an excited-state
orbital with angular momentum j and m,

x'" .=b" b. ~g&, (3.14)

where ~g ) is the initial (ground) state and b, (b, + ) are
the destruction (creation) operators of orbitals a (a+).
Consequently, the indices (n„lr„~,,J}label ((I.,S, )J,j}J
coupled dissociation channels when the product states
are coupled to yield states x,—' ' of given total angular
momentum J
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Ja
—m —M m,

Ja
x; 1= (

—1)'J +m +I+I
a, M

The completeness relation for the spherical spinors

g A„(r)f dr' —5(r —r')0, (r')F(r')=F(r)
K, m

(3.17)

XP(J,M}x"I (3.15)

x-=~ x-'"
J

(3.16)

The equations governing x,—' '+ will turn out to be

decoupled with respect to J.
The orbitals (u, and x,—,where x,+—are replaced by v,—

or w,— in the following) are inserted into the respective
equations. The Coulomb potential is multipole expanded,
which yields summations over spherical harmonics and
radial Hartree screening functions A (see the Appendix).

I

The terms in large parentheses are the Wigner 3-j sym-
bols in the standard phase convention (see, e.g. , Ref. 16).
The phase factor is arbitrary and has been introduced for
notational consistency with earlier work. The term
P(J,M) contains the spherical components of the pertur-
bation [see Eq. (3.19)] and coeScients that ensure that the
amplitude Eo of the external field can be factored out
from all terms of the equation and thus makes the solu-
tions x,+—' ' independent of the strength of the perturba-
tion. For dipole excitation, selection rules restrict J to
J=1 for the first-order orbitals, and J=0,2 for second
order. The summation a is limited to angular momenta
compatible with the triangular b,(j„j,,J) and parity

I +I +J
II(l„t, ,J ) = —,

' [1+(
—1) ' ' ]=1 selection rules. It

follows from the definition of the 3-j symbol that a sum-

mation of Slater determinants built up from states x,—' '

over a complete subshell (specified by fixed n, and Ir„
summing over m, } has a total angular momentum J. The
perturbed orbita1 x,—is the sum

[where F(r} is an arbitrary two-component spinor] is ap-
plied to transform all terms into linear combinations of
functions with well-defined angular momentum. The an-
gular matrix elements thus obtained are reduced by the
Wigner-Eckart theorem, leading to products of 3-j sym-
bols and reduced matrix elements of spherical harmonics.
All summations over doubly occurring magnetic quan-
tum numbers are carried out, and terms

—m +J —M
(
—1)'

M

j, J
—m

Ja
P(J,M)

Q

are factored out. This factorization is possible because
the ground-state Dirac-Fock potential commutes with
the total angular momentum operator, and because the
perturbed orbitals have been constructed in a way that
their angular symmetry imitates that of the inhomogenei-
ty. Finally, terms with identical dependencies on the
remaining magnetic quantum numbers m„m, , and

P(J,M), and on the angular coordinate r are identified
and separated. The resulting equations, which are the
desired result, are independent of all magnetic quantum
numbers, r, and P (J, M), and are decoupled in J.

C. The zeroth-order equation

Let us now carry out the program outlined above,
starting with the zeroth-order equation. We postulate
that the orbitals u„be of the form of Eq. (3.12), insert
into Eq. (2.20) and follow the reduction steps to obtain
the radial Dirac-Fock equation for the unperturbed
ground-state orbitals

J, JI L
~0 —~. +&[gab]+0[ub ub] u, —g[jb] ~ 0 II(l„lb,L)AL[ub, u, ]ub=pk, ,bub .

b

(3.18)

Here QL, which is defined in Eq. (A2), is the radial part
of the 2 -pole component of the Hartree screening func-
tion &of Eq. (2.8), and [j]= (2j + 1).

D. The first-order equation

The spherical decomposition of the external interaction
defines what has to be substituted for P(J,M). We as-
sume excitation by an electric 2 -pole potential in length
form

V +—u, =g (
—l)~V —C„(r)X(r)u, (r)

q

yields

(3.20)

I

external field [Eq. (2.14)]. Although we are exclusively
concerned with electric dipole excitation in the remainder
of this work, we give the full multipole decomposition of
the first-order equation because we want to identify the
terms in the first line of the dipole-driven second-order
equation (2.24) as monopole and quadrupole terms. An-
gular decomposition of the driving term

V —+(x)=g V,
+—C„(r)X(r), (3.19) k j,

—m —
q m,

which has to satisfy V —=( —1)~( V )* to ensure Hermi-
ticity. For radiation fields in length approximation,
X(r):r", and, in dip—ole approximation, V—=EO5(q, 0)
for linear, V =FO5(q, +1) for circular polarization, 5
being the Kronecker delta and Eo the amplitude of the

a, q

X (j ~~CI, ~~j, )X(r}u (r) (3.21)

after decomposition. The subscript a:a is, for any orbital

u, =u„[Eq. (3.4)], defined by
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ig, (r)Q, (r)
1 0 Q

u (r)=-
r f,(r)Q, (r)

(3.22)

and obtain
k J,

(J)
m q m & &+a

For consistency in the dependence of all terms of the
first-order equation on r, q, m„and m, we define

(3.24)

P(J,M)= V —5(k, J)5(q, M), (3.23)
Insertion into (2.22) yields the radial first order TDDF
equation for 2 -pole excitation

J-
ho —(e, +co)+g [jb]%0[ub, ub] v,

' ', +
—g [jb]

b a, b, L

L
II(t~, lb, L }%1[ub, v,' ', + ]ub,

2

+2 &alIlCilla &&blIlCillb &(&ilub v,'"; )+&i[vb'";„ub]}u..—, ; [J]

[ A (ab, ab;LJ)AI [ub, u, ]vb
' „-+,+ A(ab, ab;LJ)W~[v'~' —,u, ]u I

b, b, L

+g ( —1)"+'(j,Ilc„ IIj, &x(r)u =g A,'", „5(j,jb )u . (3.25)
a, q

Note that in Eq. (3.25), summation indices (a, b, b) no
longer include magnetic quantum numbers. The
coefficients A ( ) are defined in Eq. (A7).

w,—= V~-. V —
( —1}'+ + j +m +J—M+q+q'

a, q, q', J,M

E. The second-order equation

P(J, M) = g( —1)~
q~q

J 1
V+—V——q' M —

q
(3.26)

we have

For the second-order equation, we restrict our atten-
tion to dipole excitation k =1. The external driving term
is in this case V+—U,—.By letting

—m —M m,

1 J 1
~(J)—q' M —

q a a+ (3.27)

where the summation over a is limited to terms satisfying
the parity selection rule I(laa, J)=1. From the selec-
tion rules, the symmetry of V +—

, and the angular momen-
tum diagrams it is easily concluded that the summation
over J is restricted to J=0,2. The decomposition is car-
ried through along the same lines as above. The result is
the radial equation for dipole excitation in second-order
TDDF, where we indicate first-order channels by a ~a,
b ~b, b ~b, and second-order channels by a ~a, b ~b,

J; Jb L
e'+2~ +g[jb]AO[ub'ub] w~- —g [jb] ——' —' 0 II(l 'tb'L)+ [tu' bw

b a, b, L

+g (a IIC~lla &(bIIC~IIb &(A~[ub, wb
'

b ]+A~[wb b, ub])u, ,
b, b

I A(ab, ab;LJ)%~[ub, u, ]wbI
'
b+, + A(ab, ab;LJ)Wr, [wb b

u ]ub,; I

b, b, L

1 J 1

+y( —»' '[J]. . . & Ilc II &«) .
a

+ g (
—1) ' ' '(allC, lla &(bllC, lib &(B,[ub, vb b ]+Ai[vb b+, ub])v,[J] 1 J 1

a a a
a, b, b

a, b, b, L

(
—1) ' '[J] '

1 J 1

[ ( —1 )
' ' A (ab, ab;L 1 )Wl [ub, v. ..]vb

Q Q

+ A(ab, ab;L 1 )Al [vb b+, v, ,+]ub, I
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1 J 1
+ g (

—1) ' " ' — (bf/CJ//b)(a//CJ/fa)AJ[vb ~ —,v& b ]u
b, b, b

1 J 1
( —1) ' ' —'[J]A(ab, ab;LJ)At [vb b, u, ]vb

b, b, b, L

1 J 1J +j-
,' ",'.+b5(j, ,jb)u~, + g ( —1) ' '5(j,j„)5(j-„jb)' A"' .+ bvb (3.28)

Comparing this equation with Eq. (3.25), we see that, up
to tv~2to, the homogeneous terms of Eq. (3.28) are iden-
tical to those of Eq. (3.25). The orbital labels a, a, etc. in
the 6-j-symbols are shorthand for the respective j quan-
tum numbers j„j,, etc. Note that P(J,M) has been

defined in a way that the various J components of the
equation are decoupled.

F. The homogeneous RRPA equation:
Dissociation channels and reactance matrix

s, b,, +c,R,, (i EP)
y( j)

0 (i EQ), (3.29)

As will be shown in Sec. IV, the TDDF amplitude for
1PI and 2PI are obtained from RRPA scalar products of
the solution to the homogeneous RRPA equation with
the respective inhomogeneity. The analysis given there
expresses the asymptotic behavior of solutions to the
homogeneous equation in terms of the reactance ma-
trix. '

For a given frequency co, we call the dissociation chan-
nels a~a+ originating from orbitals with e, +co&0
open. All the other positive-frequency and all negative-
frequency a ~a — channels are closed. The closed-
channel wave functions have an asymptotically exponen-
tial behavior at large r and have to decay exponentially in
order for the total wave function to be normalizable. The
open-channel wave functions converge asymptotically to
a linear combination of continuum Coulomb functions.
If there are Io open channels, there are Io linearly in-
dependent solutions that satisfy the regularity condition
at the origin. We introduce the label i as an abbreviation
for the channel index a~a+ (so i numbers the com-
ponents), write i E P for open and i E Q for closed chan-
nels, and define, assuming that J is fixed, the asymptotic
behavior of the jth linearly independent solution to the
homogeneous equation y,

' '=—y "j'+ as

IV. TWO-PHOTON IONIZATION OF RARE GASES

In typical multiphoton ionization experiments, observ-
ables such as the total current, angular and energy distri-
butions, and spin polarization of photoelectrons are mea-
sured. For the physical interpretation of the TDDF
equations we adopt the picture of Sommerfeld, ' where
for harmonic perturbations photoionization cross sec-
tions and angular distributions are related to the photo-
electron current density.

The following derivation is broken up into two parts:
first we derive the total and differential multiphoton ion-
ization cross sections assuming that the solutions Eqs.
(3.24) and (3.27) to the inhomogeneous equations (3.25)
and (3.28) satisfy outgoing partial wave boundary condi-
tions in each open channel. The result is that the cross
section and angular distribution coefficients can be ex-
pressed as quadratic functions of the asymptotic ampli-
tudes of the outgoing partial waves in each channel.
Then we show that, to obtain these amplitudes, it is not
necessary to solve Eqs. (2.22),(2.24), and (3.25),(3.28) ex-
plicitly under outgoing partial wave boundary conditions.
Instead, these amplitudes can be expressed in terms of
scalar products of the solutions to the homogeneous
equation with the inhomogeneity.

A. Photoelectron current and differential cross section

The total photoelectron current J„, is obtained by in-
tegrating the radial component of the current density j r
over a sphere with large radius r. In the regime of lowest
order of perturbation theory in the external field, the to-
tal current is proportional to the Nth power of the pho-
ton flux density F=I/Ace in N-photon processes. This
allows to define an intensity-independent generalized
cross section for N-photon ionization

(4.1)

where s,- and c, are the Coulomb functions with energy
and angular momentum identical to those of channel i,
and R is the reactance matrix.

We show in Sec. IV how the amplitudes of solutions to
the inhomogeneous equation can be obtained starting
from a complete set of solutions to the homogeneous
equations at one given frequency, satisfying the asymp-
totic condition Eq. (3.29), and the respective inhomo-
geneity.

and

1 1F= —Eo
2KQ

(4.2)

V( t) =xE Doee' '+c.c. , (4.3)

The photon flux F is related to the amplitude of the radi-
ation field Eo and thus to the perturbation V(x, t) in di-
pole approximation by
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where c is the polarization unit vector of the radiation
field

E(t)=Eoee ' '+c.c. , (4.4)

and D=g, r; is the dipole operator in length form. The
amplitude of the perturbation is V =Epf. r and there-
fore

I
Vq~l =Eo.

Angular distributions can be represented by the
coefficients of expansions of the polar angle dependence
of the current in terms of spherical harmonics Cog(r).

1
ja(r) =—g (u,tau, )(r) .

m

(4.7)

Since the contributions to the photoelectron current den-

sity j (r, t ) (which is a one-body operator} arising from
different orbitals add up incoherently, we need to consid-
er only the contribution jz from one given completely oc-

cupied subshell a —= (n„)t, ) in the following.
Inserting TDDF orbitals for the wave functions, this

partial current is

~ lim r j r= y—yx.g(j)Cxg(r),
dt's r~oo ~ Q

2K +1
y)rg(j)= lim r drct(g(r}j r .

7T r~ (x)

(4.5)

(4.6)

For large r, only open channels contribute to j~. Using
the notation of Sec. III, Eqs. (3.13) and (3.15), to unify the
treatment of 1PI and 2PI as long as possible, we obtain

yxg(a)= lim r g dr[u, a rct(g(r)u, ](r)
2K+1

r- 4m'
m

= lim r g f dr[x,+ a rcttg(r)x, +](r)2K +1
r —+ oc

m

2IC+1 + ( 1)s, i, ——

m, a, a', Q, Q', J,J', M, M'

J-a Ja J; Ja
—m, —M' m, —m —M m,

XP(J', M')*P(J, M) r f d r[x,' ', , +a rc)tg(r)x( ', + ](r) (4.8)

The term in large curly braces, I, is written out in terms
of upper and lower components [Eq. (3.13)] and the iden-
tity tr rQ, (r) = —0 „(r) is used to transform I into a
radial expression and an angular integral which is re-
duced by the Wigner-Eckart theorem. We obtain

=( $(J ), t(J) t(J ), (J)
( 1)in n

a ~a'+ a ~a+ a ~a'+ a ~a+

Coulombic, and the driving terms vanish, thus x,' ', +
converges to a linear combination of Coulomb functionsx'":W(" (c +ts )a~a+ a~a+ a~a+ a~a+f~ (X)

(4.10)

with —as yet undetermined —complex amplitudes
+. Since W(s, c)=(a/m} [Eq. (3.11)],we obtain the

final result for the radial term
r

J-a
—m,

K j,
(u inc, iiu & .

a
(4.9)

gr(x(J')s x(J) ) g (J')e g (J)
a -~a' ' a ~a+ a a'+ a a+ &~r —+ oo

The reduced matrix element is between functions a' and
a that arise from the same initial states and therefore
have the same parity, which implies that K E2%, as we
expect for symmetry reasons. We recognize in Eq. (4.9)
that the term in large parentheses is the relativistic
Wronski determinant 8'(x' '*,+,x' '

+ ) as defined in

Eq. (3.10).
Given that the initial condition is a bound state, the

perturbed orbitals must satisfy outgoing spherical wave
boundary conditions. For large r, the potential becomes

I

i(5 —5,)

Xe a a+ a- a+'
7 (4.11)

where 5 + is the Coulomb phase of c + and

s +, as it occurs in Eqs. (3.8) and (3.9). The phase fac-

tor arises from taking the Wronski determinant of
Coulomb functions of the same energy, but different an-
gular momentum.

Now we sum over all doubly occurring magnetic quan-
tum numbers and obtain, after factoring out a 6-j symbol,
that

2k +1
1'rcg(d) =

J,J', M, M', a, a'

) ~~~M K J' J
( —1)' J K J'

, '((t'iicx iitT) M M, P(J', M')*

XP(J M) g (J')e g (1) a i+ a —a+'t(5 —5,)

a ~a'+ a ~a+ (4.12)
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This result relates the differential cross section to the am-
plitudes A' ' of the outgoing partial waves of the solu-

tion of the TDDF. The terms P(J,M) in Eq. (4.12)
are evaluated by inserting V+—for the respective modes
of polarization. For linear polarization, we
have V =Eo5(q, O), and for circular polarization
V+—=Eo5(q, +1). In Sec. IV B it is shown how the ampli-
tudes A ' '

+ can be obtained from the solutions of the
homogeneous RRPA equation.

B. Asymptotic amplitudes of the TDDF solutions

To reduce the number of indices, we omit J from
x '

+ [Eq. (3.15)], assuming that J is fixed. We denote
the solutions of the radial inhomogeneous equations (3.25)
or (3.28) as x, ,+, and the solutions to the correspond-

ing homogeneous equation as y, +. We abbreviate

and (3.29)

Before we continue, let us notice some details pertinent
to the following derivation. Equations (4.14) and (4.15)
are linear in the positive-frequency and antilinear in the
negative-frequency component of the solutions. This will
require us to write the Hermitian adjoint of the negative-
frequency equations below. X + contains the radial
kinetic energy operator t [defined by

isQ isO,
1

tQ,

ya~a+ a~a+ a a+,j a~a+ a a+j
— =s 6 . +c R

f' —+ Qo

(a~a open) . (4. 17)

CO

ho — ca+ '2
analogous to Eq. (3.6)]

(4. 13)

and write for the inhomogeneity in the a~a channel
. Since the central theorem of this section refers to

radial integrals, but its proof is much simpler when the
equations are not written in angularly decomposed form,
we shall write the equations in their original form (2.22),
(2.24), inserting the angular expansion (3.15) only for

+x, and A, , but not for the Coulomb poten-
tial terms. The explicit form of the coefficients in Eq.
(3.15) has no significance in the context of this section, so
we abbreviate

Q

0

K—a-
a " r

Ka-
a r

(4.18)

where c} indicates partial differentiation 8/Br operating to
the right. The Hermitian adjoint of this operator is

j —m +I+M J-
(
—1)'

Ja
P(J,M)—:c—m —M m a~a

a

1 —a-
a

Ka

(4.19)

and imply summation over a in all terms that contain

c. .. that is, c, x, ,+=—x,—. With these abbrevia-

tions, the inhomogeneous and homogeneous equations
read

-+x, ,++ W[ub, ub ]x,—

1
8„a

Note that the differentiation operates to the left in the ad-

joint of t. The difference of the operators t and t

+( W[xb, ub]+ W[ub, xb
—])u, +c A =0, ta a a

0 1

() ( c}„+8„) (4.20)

and

(4.14)
sandwiched between the two radial wave functions x and

y, yields the derivative of the Wronski determinant of x
and y

c +,— yI" ++ W[ub, ub]y,—"

+( [W+y'buJ]b+W[ub, yb IJ'])u, =0 . —(4.15)

y (t —t )x= W(y*,x) . (4.21)

The solutions decay exponentially for all closed channels.
For open channels, they satisfy the asymptotic conditions

,-+ - &, ,+(c, ++i s + ) (a ~a open)r~ oo

(4.16)

Since, at r =0, x and y start off proportional to each oth-
er, the value of the Wronski determinant at the origin is
zero.

We write the positive- and negative-frequency com-
ponents of Eqs. (4.14), (4.15) separately, taking the ad-
joint of the negative-frequency inhomogeneous and
positive frequency ho-mogeneous equations. Note that
W[ub, xb ]=W[xb+-, ub ]:—
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c, X, ,+x,++ W[ub, ub]x,++(W[xb, ub]+ W[ub, xb+])u, +c,% + —= A, + =0,
c xt Xt +x, tW[ub, ub]+u, (W[xb, ub]+ W[ub, xb+])+c, ,%, , :B—, , =0,

c, y, X, , +y,+ W[ub, ub]+u, ( W[yb, ub]+ W[ub, yb+])=C, , =0,

c, ,X, , y, , + W[ub, ubly, +(W[yb ub]+ W[ub, yb+])u, =D =0 .

We form

(4.22)

f f]
dr r drc (y A +B y —C x —x D )=0 (4.23)a-~Q ya~a+ a~a+ a~a —ya~Q — a~a+ a~8+ Q~Q — a~a0

and observe that the term r cancels with the two factors 1/r in the wave functions. The orthonormality relation be-
tween spherical spinors induces a factor 5 ~, thus we obtain, after surnrning over a and letting r

&
~ 00, the relation

g (c, , )'—[ W(y,*, , x + ) ~ „=„+W(x,*, ,y, , ) i „=„]+[
p1

Q'
a, a

+g (c )'((y ~W )+ (% ~y, ) }=0. (4 24)
Q, Q

The exponential dropoff causes the Wronskians of all
closed channels to converge to zero at infinity. Using the
orthonorrnality relation of the 3-j symbols, we can, after
summing over m, and m, transform (c, ) into

[J]~+M P(J,M)~, which is independent of the summa-
tion index and therefore can be factored out of the (a, a )

summation. The terms in ellipses arise from the various
components of the Hartree-Fock potential (W[, ]) and
can easily be shown to cancel, when summed over all or-
bitals a and b. This yields a relation between radial quan-
tities alone

1
W(y, j'* +,x +)~„

a~aEP

+ g ((y'&' ~.R )+(R ~y"', ))=0.
a a

(4.25)

We finish the derivation by deducing from the asymptotic
forms Eqs. (4.16), (4.17), and W(s, c)=a/m, Eq. (3.11),
that

W( '~'*,x ) =A —(1 iR)—ya a+' a a+ ~=~ a a+ — —a a J)

(4.26)

which yields, after inverting, the desired final result

b b,j
+ ( Jib b

~y~"'
b ) )[(1—iR ) '].

(4.27)

It should be noted that the second-order Lagrange multi-
plier terms contained in % +, which can be deter-

mined only by solving the inhomogeneous equation and
hence are unknown to us, do not contribute to the in-
tegrals in Eq. (4.27) because these terms are proportional
to the core orbitals, to which y'~' + have been orthogo-
nalized.

C. Results

The numerical procedure to obtain 2PI amplitudes ap-
plied in this work is essentially a straightforward exten-
sion of Ref. 13. First, the Dirac-Hartree-Fock equation
(3.18) is solved for the ground state. The frequencies for
2PI are chosen such that 1PI is energetically impossible
and the energy of the final 2PI state is located in the con-
tinuum, above the autoionizing range. The first-order
TDDF equation (3.25} is solved for these frequencies. A
basis set y,

' ' +— of the solution space of the homogeneous
RRPA equation corresponding to (3.28) with dissociation
channels having total angular momentum J=O and 2,
and satisfying the asymptotic boundary condition Eq.
(3.29), is obtained by an iterative solution process The.
details of this procedure are described in Ref. 13. Given
the solutions U,

+—of Eq. (3.25), the inhomogeneity A—
[defined in Eq. (4.13)] of Eqs. (2.24) and (3.28) is comput-
ed. 2PI amplitudes are determined using the formula Eq.
(4.27), and finally, the 2PI cross section is obtained ac-
cording to Eq. (4.12).

Figures 1 —5 show our results for total cross sections of
2PI of the rare gases, both for linear and circular polar-
ization. As a general tendency, the main contributions to
the 2PI amplitudes come from the V+~V,+—) term in the
inhomogeneity, whereas the terms containing second-
order products of the first-order solutions U,

* give only
small corrections. This observation was confirmed in a
comparison with the results of Starace and Jiang for the
special case of argon. The types of correlation correc-
tions included in the TDDF can be obtained by iterating
Eqs. (2.22) and (2.24) formally and inserting the iterative
solutions into Eq. (4.27). It is found that the formulation
of Ref. 2 includes the same type of correlation correc-
tions as ours, at least to lowest-order MBPT. The elec-
tron scattering interaction (ESI) level results of Ref. 2 for
Ar agree with the present results quantitatively within
drawing accuracy.

L'Huillier et al. have calculated 2PI cross sections for
xenon over a wider energy range in the framework of a
nonrelativistic RPA-type approach. Close to threshold,
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FIG. 4. 2PI total cross section of krypton. Captions as in
Fig. 3.
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our results are approximately in the middle between the
results of Ref. 2 with full screening and with only the first
electron-photon interaction screened. As the frequency is
increased, our results agree qualitatively with the fully
screened results. Due to the pronounced fine structure of
xenon, the TDDF approach predicts the positions of the
resonances more precisely. In Fig. 6 we show the partial
cross sections for 2PI of xenon into the two possible
final-state channels leaving behind a P3/2 or P&y2 Xe+
core.

The numerical accuracy of the present solutions still
needs to be improved. In particular, the iteration pro-
cedure to solve the first-order TDDF equation (2.22) con-
verges poorly in the vicinity of resonances. Above the
first of first few resonances, it becomes impossible to ob-
tain convergence at all, which is the limiting factor for
the frequency ranges treated in the present paper. Our
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tion (solid curve); 0, circular polarization (dashed curve).

FIG. 5. 2PI total cross section of xenon. Abscissa, co (a.u.).
Ordinate, o' ' (10 ' cm s), logarithmic. Data points: +,
linear polarization (solid curve); Q, circular polarization
(dashed curve).
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numerical results are of a somewhat preliminary charac-
ter. Inaccuracies of the numerically computed wave
functions close to the nucleus, becoming manifest in a
failure to obtain exact agreement of the results computed
in both length and velocity forms, could not be complete-
ly resolved. Theoretically, this agreement should be ex-
act I'see the discussion following Eq. (2.13)]. The results
reported here are given in length form: The length form
of the interaction operator weighs the integrands strongly
for large radii and makes the results less sensitive to inac-
curacies close the nucleus. For the same reason, trunca-
tion of the excitation channels to those arising from the
outermost orbitals is only possible in length form. We es-

FIG. g. Lu-Fano MQDT plot for neon J=2. Captions as in
Fig. 7.

timate these results to be numerically more accurate than
5%.

The present approach can be extended to a treatment
of two-photon autoionization, that is, 2PI with the final
state located energetically between the P3&2 and P, &2

thresholds of the atom. We have not performed such cal-
culations yet, but the spectral accuracy that is to be ex-
pected can be easily assessed from a comparison of the
theoretically predicted Lu-Fano MQDT plot' with ex-
perimental energy levels. In Figs. 7 —14, we show the per-
tinent MQDT plots for the rare gases for total angular
mornenta J =0,2, computed close to threshold. We see
that for Ne, the agreement with experiment is excellent;
for heavier atoms, it decreases down to the order of 10%%uo

of the level spacing in the Rydberg series. A general
problem with the TDDF approach is the fact that the
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FIG. 7. Lu-Fano MQDT plot for neon J =0. Abscissa, v~ 1 /2

Ordinate, v~ . Solid lines prediction by RRPA reactance ma-

trix. Small circles, experimental levels, with spectral designa-
tions.

0.0 V
P 1/2

FIG. 9. Lu-Fano MQDT plot for argon 1=0. Captions as in
Fig. 7.
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thresholds predicted by TDDF are identical to the

Dirac-Fock binding energies of the respective orbitals

(Table I). These thresholds are too high for light atoms,

and the fine-structure splitting of the core is generally

overestimated. An improvement may be obtained by in-

cluding higher-order MBPT corrections into the wave

functions.

V. CONCLUSIONS

We have formulated a relativistic many-body approach
to 2PI of closed-shell atoms that includes both effects of
electron correlation and of spin-orbit interaction into 2PI
amplitudes. Inclusion of relativistic, and many-body
effects makes the TDDF particularly suitable for heavy

FIG. 12. Lu-Fano MQDT plot for krypton J =2. Captions
as in Fig. 7.

atoms, where these effects are known to play an impor-
tant role. Results of numerical evaluations of the equa-
tion are given and show good agreement with other com-
putations that account for electron-correlation effects in
2PI. The inclusion of the spin-orbit interaction in the
present formulation improves the agreement of the posi-
tions of resonances with experiment.

Experiments on one-color two-photon ionization of
rare gases from the ground state are most likely to be car-
ried out first for xenon with the final state located in the
autoionizing region. An MQDT analysis of autoionizing
final-state resonances in the style of Ref. 18 may be one of
the most worthwhile extensions of the present work. If
experimental necessity arises, angular distributions of
photoelectrons, possibly with energy discrimination, can
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FIG. 11. Lu-Fano MQDT plot for krypton J =0. Captions
as in Fig. 7.

FIG. 13. Lu-Fano MQDT plot for xenon j=0. Captions as

in Fig. 7.
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There are two paths to follow when the present method
is to be extended to higher orders of MPI. The perturba-
tional expansion of the TDDF equations which we have
carried out up to second order in the external field can be
continued to arbitrary orders. The main obstacle to a
realization of this extension is that the angular reduction
results in quite unwieldy radial equations even in the
second order [Eq. (3.28)] and becomes almost unmanage-
able for the third and higher orders. Another possibility
is to avoid an order-by-order (in the external field) pertur-
bational expansion of the perturbed orbitals altogether
and to make an all-order Floquet expansion of the orbit-
als in the spirit of Ref. 20. An interesting possibility to
improve the accuracy of 2PI amplitudes by variational
stabilization of matrix elements was pointed out by
Starace et a/. ' Incorporating this method into the
present context may substantially decrease the computa-
tional eff'ort required to obtain 2PI amplitudes of a cer-
tain accuracy. As a long term goal, a systematic MBPT
approach to MPI needs to be formulated and implement-
ed.

be obtained for arbitrary polarizations of the exciting
field using the formula Eq. (4.12).

The extension of the MQDT parametrization of inter-
mediate resonances in terms of quantities with a smooth
energy dependence to TDDF (Ref. 19) is another interest-
ing step, though still academic for the rare gases. It has
been pointed out, however, in the treatment of hydrogen,
that, although smooth intermediate state wave functions
can be found in any case, the existence of physically
meaningful smooth matrix elements depends on the
transformation of the dipole interaction into a short-
range interaction. This still needs to be formulated for
relativistic many-body problems.

The TDDF theory can be applied to positive and nega-
tive ions in rare-gas configuration. Negative halogen ions
appeal by their low binding energy and their strong elec-
tron correlation, both caused by the absence of a long-
range Coulomb force.
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APPENDIX: MULTIPOLE DECOMPOSITION
OF THE COULOMB POTENTIAL

For quantities of angular momentum theory, we use

exclusively the conventions and formalism as defined in

TABLE I. Dirac-Fock binding energies for the rare gases. Columns: Element, shell, DF binding en-

ergy and p, /2 p3/2 fine-structure splitting in eV, and experimental spectroscopic binding energy and fine
structure in eV.

Element

He

Ar

Shell

2p

2p 3/2

3p l/z

3p3/z

4P I /z

4p 3/2

5P 1 /2

5p 3/2

DF BE (eV)

26.10

23.21

23.08

16.20

16.00

14.74

14.00

13.40

11.97

FSP (eV)

0.12

0.74

1.44

Expt. BE (eV)

24.59

21.66

21.56

15.94

15.76

14.67

14.00

13.44

12.13

Expt. FSP (eV)

0.10

0.18

0.67

1.31
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the book by Lindgren and Morrison. ' for phase conven-
tions and reduced matrix elements.

The expansion of the Coulomb potential between two
electrons with coordinates r, and r, (r,2=Ir, —rzl) in

terms of spherical harmonics CLM is

ig;(r)Q„(r)
1s;(r)=-
r f, (r)Q, (r)

Defining the relativistic generalization of the radial Har-
tree screening function

1

L+, (
—1) CL~(r, )CI m(r2) .

12 LMP
(A 1)

L

AL[s, ,s ](r):—Jdr', [g, (r')g (r')+f, (r')f (r')],
r)

We want to decompose the expression W[s,s&]s,
where each of the s; stands for

(A2)
the direct and exchange terms in W[s, s&]s can each be
written in the form

(&s, Igrs, &s„)(r)—:Jdr's, (r'), s, (r')s„(r)1

r r'—
Q +L [s; si ](r) ( —1 }™&x; m; I CLM lid mg & g & i~lm! CL —M IKk mk &sk i (A3)
L, M KI y mI

where we have made use of the identities cr rO, = —0, and cr r cr.r=1 and have inserted the completeness rela-
tion g, Q, Q, =1. The symbol sk, i is an abbreviation for a wave function with radial function k and angular
dependence I

igk(r}Q, (r)
1

r fk(r)Q „(r)
Carrying out the summation over M, we obtain

&s, IgIs) &s„= g AL [s, , s)]( —1)
L, I, M

—m, —M m &illCLIIJ &&illCL Ilk &sk:t . (A5)

jp
—m~ M mp

( 1) a a b 5L+M+j —m +j —m

—M m

Returning to W[s, s&)sr = &s IgIs&&sr —&s IgIs13&sr, we use that for a, p, y, 5 half integer the relation

j L

I

= —g [L']' A
a a 5

L'+M'+J —m +g —m

L', M' 5 L
ja

—m

Jp L' j,
—M' mp —m~ M' my

(A6}

can be used to factor out the dependence of both direct and exchange terms on the magnetic quantum numbers. It is
convenient to introduce an abbreviation for the product of two reduced matrix elements of CL and a 6-j symbol

A(ap, y5;LJ): ( —1) — '&aIICL IIp&&yIICI II5& '5 J 'H(l, lr, J)Il(!is,l&,J),5 y J (A7)

with the symmetries A(aP, y5;LJ)= A(Pa. , 5y;LJ)=( —1) ' s ' 'A(y5, aP;LJ). Thus W[s, s(i]sr finally be-
comes

L, J,M, 6
—

m& M m

xr5«, J)& IIC IIP&&5IIC Ily» [. ], —[»~(»P»LJ}& [- (A8)

~P. Gangopadhyay, X. Tang, P. Lambropoulos, and R. Shake-
shaft, Phys. Rev. A 34, 2998 (1986).

2A. F. Starace and T-F. Jiang, Phys. Rev. A 36, 1705 (1987).
A. L'Huillier and G. %endin, J. Phys. B 20, L37 (1987); A.

L'Huillier, L. Jonsson, and G. Wendin, Phys. Rev. A 33, 3938
(1986).

~E. J. McGuire, Phys. Rev. A 24, 835 (1981);R. Moccia, N. K.
Rahman, and A. Rizzo, J. Phys. B 16, 2737 (1983); M. S.
Pindzola and H. P. Ke11y, Phys. Rev. A 11, 1543 (1975); B.
Ritchie, ibid. 16, 2080 (1977).

For reviews see, e.g. , R. Bruzzese, A. Sasso, S. Solirnento, Riv.
Nuovo Cimento 12, 1 (1989);Multiphoton Processes, Proceed-



3818 MICHAEL G. J. FINK AND WALTER R. JOHNSON

ings of the 4th International Conference on Multiphonon
Processes, Joint Institute for Laboratory Astrophysics,
Boulder, Colorado, 1987, edited by S. J. Smith and P. L.
Knight (Cambridge University Press, Cambridge, 1988); S. J.
Smith and G. Leuchs, Adv. At. Mol. Phys. 24, 126 (1987);
Multiphoton Ionization of Atoms, edited by S. L. Chin and P.
Lambropoulos (Academic, Toronto, 1984); F. H. M. Faisal,
Theory of Multiphoton Processes (Plenum, New York, 1986);
J. Morellec, D. Normand, and G. Petite, Adv. At. Mol. Phys.
18, 97 (1982). Experimental data: A. W. McCown, M. N.
Ediger, and J. G. Eden, Phys. Rev. A 26, 3318 (1982).

A. L'Huillier, X. Tang, and P. Lambropoulos, Phys. Rev. A 39,
1112 (1988).

7K-N. Huang and W. R. Johnson, At. Data Nucl. Data Tables
26, 33 (1981);C. D. Lin and W. R. Johnson, Phys. Rev. A 15,
1046 (1977).

A. Dalgarno and J. J. Lewis, Proc. Phys. Soc. London Sect. A
233, 70 (1955); F. H. M. Faisal, Theory of Multiphoton Pro
cesses (Plenum, New York, 1986), Sec. 4.3.

sF. Smet, J. Tillieu, and A. van Groenendael, Int. J. Quantum
Chem. 17, 531 (1980).

'oA. I. Akhiezer and V. B. Berestetskii, Quantum Electro

dynamics (Interscience, New York, 1965).
'M. Y. Amusia and N. A. Cherepkov, Case Stud. At. Phys. 5,

47 (1975).
' W. R. Johnson, Adv. At. Mol. Phys. 25, 375 (1988).
' W. R. Johnson and K. T. Cheng, J. Phys. B 12, 836 (1979);W.

R. Johnson and K. T. Cheng, Phys. Rev. A 20, 978 (1979);W.
R. Johnson and C. D. Lin, ibid. 20, 964 (1979).

' M. J. Seaton, Rep. Frog. Phys. 46, 167 (1983).
C. M. Lee and W. R. Johnson, Phys. Rev. A 22, 979 (1980);
W. R. Johnson, K. T. Cheng, K-N. Huang, and M. LeDour-
neuf, ibid. 22, 989 (1980).
I. Lindgren and J. Morrison, Atomic Many-Body Theory

(Springer-Verlag, Berlin, 1982).
A. Sommerfeld, Atombau und Spektrallinien, ~ellenmechan-
ischer Erganzungsband (Vieweg, Braunschweig, 1929).

' W. R. Johnson, D. Kolb, and K-N. Huang, At. Data Nucl.
Data Tables 28, 333 (1983).
M. G. J. Fink and P. Zoller, Phys. Rev. A 39, 2933 (1989).
A. Giusti-Suzor and P. Zoller, Phys. Rev. A 36, 5178 (1987).
Bo Gao and A. F. Starace, Phys. Rev. Lett. 61, 404 (1988);
Cheng Pan, Bo Gao, and A. T. Starace, Phys. Rev. A 41, 6271
(1990).


